# HG changeset patch # User panny # Date 1387814396 -3600 # Node ID 7137303f9f88029b295fdac3b36ea3ed056aac42 # Parent 48a24d371ebbff1f1d18933df014eadd70b11f4e# Parent 980817309b781ebf25a0179e8fd6b1f24a7f70b4 merge diff -r 48a24d371ebb -r 7137303f9f88 NEWS --- a/NEWS Mon Dec 23 15:30:31 2013 +0100 +++ b/NEWS Mon Dec 23 16:59:56 2013 +0100 @@ -28,8 +28,11 @@ *** HOL *** +* Word library: bit representations prefer type bool over type bit. +INCOMPATIBILITY. + * Theorem disambiguation Inf_le_Sup (on finite sets) ~> Inf_fin_le_Sup_fin. -INCOMPATBILITY. +INCOMPATIBILITY. * Code generations are provided for make, fields, extend and truncate operations on records. diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/Bit_Comparison.thy --- a/src/HOL/Word/Bit_Comparison.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/Bit_Comparison.thy Mon Dec 23 16:59:56 2013 +0100 @@ -20,10 +20,10 @@ proof (cases y rule: bin_exhaust) case (1 bin' bit') from 3 have "0 \ bin" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) then have "0 \ bin AND bin'" by (rule 3) with 1 show ?thesis - by simp (simp add: Bit_def bitval_def split add: bit.split) + by simp (simp add: Bit_def) qed next case 2 @@ -41,12 +41,12 @@ proof (cases y rule: bin_exhaust) case (1 bin' bit') from 3 have "0 \ bin" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) moreover from 1 3 have "0 \ bin'" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit') (simp_all add: Bit_def) ultimately have "0 \ bin OR bin'" by (rule 3) with 1 show ?thesis - by simp (simp add: Bit_def bitval_def split add: bit.split) + by simp (simp add: Bit_def) qed qed simp_all @@ -61,12 +61,12 @@ proof (cases y rule: bin_exhaust) case (1 bin' bit') from 3 have "0 \ bin" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) moreover from 1 3 have "0 \ bin'" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit') (simp_all add: Bit_def) ultimately have "0 \ bin XOR bin'" by (rule 3) with 1 show ?thesis - by simp (simp add: Bit_def bitval_def split add: bit.split) + by simp (simp add: Bit_def) qed next case 2 @@ -84,10 +84,10 @@ proof (cases y rule: bin_exhaust) case (1 bin' bit') from 3 have "0 \ bin" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) then have "bin AND bin' \ bin" by (rule 3) with 1 show ?thesis - by simp (simp add: Bit_def bitval_def split add: bit.split) + by simp (simp add: Bit_def) qed next case 2 @@ -108,10 +108,10 @@ proof (cases x rule: bin_exhaust) case (1 bin' bit') from 3 have "0 \ bin" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) then have "bin' AND bin \ bin" by (rule 3) with 1 show ?thesis - by simp (simp add: Bit_def bitval_def split add: bit.split) + by simp (simp add: Bit_def) qed next case 2 @@ -135,21 +135,21 @@ proof (cases n) case 0 with 3 have "bin BIT bit = 0" by simp - then have "bin = 0" "bit = 0" - by (auto simp add: Bit_def bitval_def split add: bit.split_asm) arith + then have "bin = 0" and "\ bit" + by (auto simp add: Bit_def split: if_splits) arith then show ?thesis using 0 1 `y < 2 ^ n` by simp next case (Suc m) from 3 have "0 \ bin" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) moreover from 3 Suc have "bin < 2 ^ m" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) moreover from 1 3 Suc have "bin' < 2 ^ m" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit') (simp_all add: Bit_def) ultimately have "bin OR bin' < 2 ^ m" by (rule 3) with 1 Suc show ?thesis - by simp (simp add: Bit_def bitval_def split add: bit.split) + by simp (simp add: Bit_def) qed qed qed simp_all @@ -168,21 +168,21 @@ proof (cases n) case 0 with 3 have "bin BIT bit = 0" by simp - then have "bin = 0" "bit = 0" - by (auto simp add: Bit_def bitval_def split add: bit.split_asm) arith + then have "bin = 0" and "\ bit" + by (auto simp add: Bit_def split: if_splits) arith then show ?thesis using 0 1 `y < 2 ^ n` by simp next case (Suc m) from 3 have "0 \ bin" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) moreover from 3 Suc have "bin < 2 ^ m" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit) (simp_all add: Bit_def) moreover from 1 3 Suc have "bin' < 2 ^ m" - by (simp add: Bit_def bitval_def split add: bit.split_asm) + by (cases bit') (simp_all add: Bit_def) ultimately have "bin XOR bin' < 2 ^ m" by (rule 3) with 1 Suc show ?thesis - by simp (simp add: Bit_def bitval_def split add: bit.split) + by simp (simp add: Bit_def) qed qed next diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/Bit_Int.thy --- a/src/HOL/Word/Bit_Int.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/Bit_Int.thy Mon Dec 23 16:59:56 2013 +0100 @@ -9,7 +9,7 @@ header {* Bitwise Operations on Binary Integers *} theory Bit_Int -imports Bit_Representation Bit_Bit +imports Bit_Representation Bit_Operations begin subsection {* Logical operations *} @@ -25,7 +25,7 @@ function bitAND_int where "bitAND_int x y = (if x = 0 then 0 else if x = -1 then y else - (bin_rest x AND bin_rest y) BIT (bin_last x AND bin_last y))" + (bin_rest x AND bin_rest y) BIT (bin_last x \ bin_last y))" by pat_completeness simp termination @@ -46,7 +46,7 @@ subsubsection {* Basic simplification rules *} lemma int_not_BIT [simp]: - "NOT (w BIT b) = (NOT w) BIT (NOT b)" + "NOT (w BIT b) = (NOT w) BIT (\ b)" unfolding int_not_def Bit_def by (cases b, simp_all) lemma int_not_simps [simp]: @@ -68,7 +68,7 @@ by (simp add: bitAND_int.simps) lemma int_and_Bits [simp]: - "(x BIT b) AND (y BIT c) = (x AND y) BIT (b AND c)" + "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \ c)" by (subst bitAND_int.simps, simp add: Bit_eq_0_iff Bit_eq_m1_iff) lemma int_or_zero [simp]: "(0::int) OR x = x" @@ -78,40 +78,40 @@ unfolding int_or_def by simp lemma int_or_Bits [simp]: - "(x BIT b) OR (y BIT c) = (x OR y) BIT (b OR c)" - unfolding int_or_def bit_or_def by simp + "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \ c)" + unfolding int_or_def by simp lemma int_xor_zero [simp]: "(0::int) XOR x = x" unfolding int_xor_def by simp lemma int_xor_Bits [simp]: - "(x BIT b) XOR (y BIT c) = (x XOR y) BIT (b XOR c)" - unfolding int_xor_def bit_xor_def by simp + "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \ c) \ \ (b \ c))" + unfolding int_xor_def by auto subsubsection {* Binary destructors *} lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)" by (cases x rule: bin_exhaust, simp) -lemma bin_last_NOT [simp]: "bin_last (NOT x) = NOT (bin_last x)" +lemma bin_last_NOT [simp]: "bin_last (NOT x) \ \ bin_last x" by (cases x rule: bin_exhaust, simp) lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y" by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) -lemma bin_last_AND [simp]: "bin_last (x AND y) = bin_last x AND bin_last y" +lemma bin_last_AND [simp]: "bin_last (x AND y) \ bin_last x \ bin_last y" by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y" by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) -lemma bin_last_OR [simp]: "bin_last (x OR y) = bin_last x OR bin_last y" +lemma bin_last_OR [simp]: "bin_last (x OR y) \ bin_last x \ bin_last y" by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y" by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) -lemma bin_last_XOR [simp]: "bin_last (x XOR y) = bin_last x XOR bin_last y" +lemma bin_last_XOR [simp]: "bin_last (x XOR y) \ (bin_last x \ bin_last y) \ \ (bin_last x \ bin_last y)" by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) lemma bin_nth_ops: @@ -225,36 +225,36 @@ other simp rules. *} lemma bin_rl_eqI: "\bin_rest x = bin_rest y; bin_last x = bin_last y\ \ x = y" - by (metis bin_rl_simp) + by (metis (mono_tags) BIT_eq_iff bin_ex_rl bin_last_BIT bin_rest_BIT) lemma bin_rest_neg_numeral_BitM [simp]: "bin_rest (- numeral (Num.BitM w)) = - numeral w" by (simp only: BIT_bin_simps [symmetric] bin_rest_BIT) lemma bin_last_neg_numeral_BitM [simp]: - "bin_last (- numeral (Num.BitM w)) = 1" + "bin_last (- numeral (Num.BitM w))" by (simp only: BIT_bin_simps [symmetric] bin_last_BIT) text {* FIXME: The rule sets below are very large (24 rules for each operator). Is there a simpler way to do this? *} lemma int_and_numerals [simp]: - "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT 0" - "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT 0" - "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT 0" - "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT 1" - "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT 0" - "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT 0" - "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT 0" - "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT 1" - "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (- numeral x AND numeral y) BIT 0" - "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (- numeral x AND numeral y) BIT 0" - "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND numeral y) BIT 0" - "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND numeral y) BIT 1" - "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (- numeral x AND - numeral y) BIT 0" - "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (- numeral x AND - numeral (y + Num.One)) BIT 0" - "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND - numeral y) BIT 0" - "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND - numeral (y + Num.One)) BIT 1" + "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False" + "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT False" + "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False" + "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT True" + "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False" + "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT False" + "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False" + "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (- numeral x AND numeral y) BIT False" + "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (- numeral x AND numeral y) BIT False" + "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND numeral y) BIT False" + "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND numeral y) BIT True" + "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (- numeral x AND - numeral y) BIT False" + "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (- numeral x AND - numeral (y + Num.One)) BIT False" + "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND - numeral y) BIT False" + "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND - numeral (y + Num.One)) BIT True" "(1::int) AND numeral (Num.Bit0 y) = 0" "(1::int) AND numeral (Num.Bit1 y) = 1" "(1::int) AND - numeral (Num.Bit0 y) = 0" @@ -266,22 +266,22 @@ by (rule bin_rl_eqI, simp, simp)+ lemma int_or_numerals [simp]: - "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT 0" - "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT 1" - "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT 1" - "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT 1" - "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT 0" - "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT 1" - "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT 1" - "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT 1" - "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (- numeral x OR numeral y) BIT 0" - "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (- numeral x OR numeral y) BIT 1" - "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR numeral y) BIT 1" - "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR numeral y) BIT 1" - "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (- numeral x OR - numeral y) BIT 0" - "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (- numeral x OR - numeral (y + Num.One)) BIT 1" - "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR - numeral y) BIT 1" - "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR - numeral (y + Num.One)) BIT 1" + "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT False" + "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True" + "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT True" + "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True" + "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT False" + "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True" + "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT True" + "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (- numeral x OR numeral y) BIT False" + "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (- numeral x OR numeral y) BIT True" + "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR numeral y) BIT True" + "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR numeral y) BIT True" + "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (- numeral x OR - numeral y) BIT False" + "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (- numeral x OR - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR - numeral y) BIT True" + "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR - numeral (y + Num.One)) BIT True" "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)" "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" @@ -293,22 +293,22 @@ by (rule bin_rl_eqI, simp, simp)+ lemma int_xor_numerals [simp]: - "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT 0" - "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT 1" - "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT 1" - "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT 0" - "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT 0" - "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT 1" - "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT 1" - "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT 0" - "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (- numeral x XOR numeral y) BIT 0" - "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (- numeral x XOR numeral y) BIT 1" - "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR numeral y) BIT 1" - "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR numeral y) BIT 0" - "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (- numeral x XOR - numeral y) BIT 0" - "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (- numeral x XOR - numeral (y + Num.One)) BIT 1" - "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR - numeral y) BIT 1" - "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR - numeral (y + Num.One)) BIT 0" + "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT False" + "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT True" + "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT True" + "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT False" + "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT False" + "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT True" + "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT True" + "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT False" + "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (- numeral x XOR numeral y) BIT False" + "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (- numeral x XOR numeral y) BIT True" + "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR numeral y) BIT True" + "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR numeral y) BIT False" + "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (- numeral x XOR - numeral y) BIT False" + "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (- numeral x XOR - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR - numeral y) BIT True" + "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR - numeral (y + Num.One)) BIT False" "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)" "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" @@ -332,7 +332,7 @@ apply (unfold Bit_def) apply clarsimp apply (erule_tac x = "x" in allE) - apply (simp add: bitval_def split: bit.split) + apply simp done lemma le_int_or: @@ -385,7 +385,7 @@ subsection {* Setting and clearing bits *} primrec - bin_sc :: "nat => bit => int => int" + bin_sc :: "nat => bool => int => int" where Z: "bin_sc 0 b w = bin_rest w BIT b" | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w" @@ -393,7 +393,7 @@ (** nth bit, set/clear **) lemma bin_nth_sc [simp]: - "bin_nth (bin_sc n b w) n = (b = 1)" + "bin_nth (bin_sc n b w) n \ b" by (induct n arbitrary: w) auto lemma bin_sc_sc_same [simp]: @@ -409,11 +409,11 @@ done lemma bin_nth_sc_gen: - "bin_nth (bin_sc n b w) m = (if m = n then b = 1 else bin_nth w m)" + "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)" by (induct n arbitrary: w m) (case_tac [!] m, auto) lemma bin_sc_nth [simp]: - "(bin_sc n (If (bin_nth w n) 1 0) w) = w" + "(bin_sc n (bin_nth w n) w) = w" by (induct n arbitrary: w) auto lemma bin_sign_sc [simp]: @@ -428,21 +428,21 @@ done lemma bin_clr_le: - "bin_sc n 0 w <= w" + "bin_sc n False w <= w" apply (induct n arbitrary: w) apply (case_tac [!] w rule: bin_exhaust) apply (auto simp: le_Bits) done lemma bin_set_ge: - "bin_sc n 1 w >= w" + "bin_sc n True w >= w" apply (induct n arbitrary: w) apply (case_tac [!] w rule: bin_exhaust) apply (auto simp: le_Bits) done lemma bintr_bin_clr_le: - "bintrunc n (bin_sc m 0 w) <= bintrunc n w" + "bintrunc n (bin_sc m False w) <= bintrunc n w" apply (induct n arbitrary: w m) apply simp apply (case_tac w rule: bin_exhaust) @@ -451,7 +451,7 @@ done lemma bintr_bin_set_ge: - "bintrunc n (bin_sc m 1 w) >= bintrunc n w" + "bintrunc n (bin_sc m True w) >= bintrunc n w" apply (induct n arbitrary: w m) apply simp apply (case_tac w rule: bin_exhaust) @@ -459,10 +459,10 @@ apply (auto simp: le_Bits) done -lemma bin_sc_FP [simp]: "bin_sc n 0 0 = 0" +lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0" by (induct n) auto -lemma bin_sc_TM [simp]: "bin_sc n 1 -1 = -1" +lemma bin_sc_TM [simp]: "bin_sc n True -1 = -1" by (induct n) auto lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP @@ -482,25 +482,30 @@ subsection {* Splitting and concatenation *} -definition bin_rcat :: "nat \ int list \ int" where +definition bin_rcat :: "nat \ int list \ int" +where "bin_rcat n = foldl (\u v. bin_cat u n v) 0" -fun bin_rsplit_aux :: "nat \ nat \ int \ int list \ int list" where +fun bin_rsplit_aux :: "nat \ nat \ int \ int list \ int list" +where "bin_rsplit_aux n m c bs = (if m = 0 | n = 0 then bs else let (a, b) = bin_split n c in bin_rsplit_aux n (m - n) a (b # bs))" -definition bin_rsplit :: "nat \ nat \ int \ int list" where +definition bin_rsplit :: "nat \ nat \ int \ int list" +where "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []" -fun bin_rsplitl_aux :: "nat \ nat \ int \ int list \ int list" where +fun bin_rsplitl_aux :: "nat \ nat \ int \ int list \ int list" +where "bin_rsplitl_aux n m c bs = (if m = 0 | n = 0 then bs else let (a, b) = bin_split (min m n) c in bin_rsplitl_aux n (m - n) a (b # bs))" -definition bin_rsplitl :: "nat \ nat \ int \ int list" where +definition bin_rsplitl :: "nat \ nat \ int \ int list" +where "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []" declare bin_rsplit_aux.simps [simp del] @@ -611,8 +616,7 @@ apply (simp add: bin_rest_def zdiv_zmult2_eq) apply (case_tac b rule: bin_exhaust) apply simp - apply (simp add: Bit_def mod_mult_mult1 p1mod22k bitval_def - split: bit.split) + apply (simp add: Bit_def mod_mult_mult1 p1mod22k) done subsection {* Miscellaneous lemmas *} @@ -632,7 +636,7 @@ "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))" by auto -lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT 1" +lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT True" unfolding Bit_B1 by (induct n) simp_all @@ -645,8 +649,8 @@ by (rule mult_left_mono) simp then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp then show ?thesis - by (auto simp add: Bit_def bitval_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"] - mod_pos_pos_trivial split add: bit.split) + by (auto simp add: Bit_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"] + mod_pos_pos_trivial) qed lemma AND_mod: @@ -665,7 +669,7 @@ show ?case proof (cases n) case 0 - then show ?thesis by (simp add: int_and_extra_simps) + then show ?thesis by simp next case (Suc m) with 3 show ?thesis diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/Bit_Operations.thy --- a/src/HOL/Word/Bit_Operations.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/Bit_Operations.thy Mon Dec 23 16:59:56 2013 +0100 @@ -5,7 +5,7 @@ header {* Syntactic classes for bitwise operations *} theory Bit_Operations -imports "~~/src/HOL/Library/Bit" +imports Main begin class bit = diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/Bit_Representation.thy --- a/src/HOL/Word/Bit_Representation.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/Bit_Representation.thy Mon Dec 23 16:59:56 2013 +0100 @@ -5,40 +5,39 @@ header {* Integers as implict bit strings *} theory Bit_Representation -imports "~~/src/HOL/Library/Bit" Misc_Numeric +imports Misc_Numeric begin subsection {* Constructors and destructors for binary integers *} -definition bitval :: "bit \ 'a\zero_neq_one" where - "bitval = bit_case 0 1" - -lemma bitval_simps [simp]: - "bitval 0 = 0" - "bitval 1 = 1" - by (simp_all add: bitval_def) - -definition Bit :: "int \ bit \ int" (infixl "BIT" 90) where - "k BIT b = bitval b + k + k" +definition Bit :: "int \ bool \ int" (infixl "BIT" 90) +where + "k BIT b = (if b then 1 else 0) + k + k" lemma Bit_B0: - "k BIT (0::bit) = k + k" + "k BIT False = k + k" by (unfold Bit_def) simp lemma Bit_B1: - "k BIT (1::bit) = k + k + 1" + "k BIT True = k + k + 1" by (unfold Bit_def) simp -lemma Bit_B0_2t: "k BIT (0::bit) = 2 * k" +lemma Bit_B0_2t: "k BIT False = 2 * k" by (rule trans, rule Bit_B0) simp -lemma Bit_B1_2t: "k BIT (1::bit) = 2 * k + 1" +lemma Bit_B1_2t: "k BIT True = 2 * k + 1" by (rule trans, rule Bit_B1) simp -definition bin_last :: "int \ bit" where - "bin_last w = (if w mod 2 = 0 then (0::bit) else (1::bit))" +definition bin_last :: "int \ bool" +where + "bin_last w \ w mod 2 = 1" -definition bin_rest :: "int \ int" where +lemma bin_last_odd: + "bin_last = odd" + by (rule ext) (simp add: bin_last_def even_def) + +definition bin_rest :: "int \ int" +where "bin_rest w = w div 2" lemma bin_rl_simp [simp]: @@ -56,48 +55,55 @@ by (cases b, simp_all add: z1pmod2) lemma BIT_eq_iff [iff]: "u BIT b = v BIT c \ u = v \ b = c" - by (metis bin_rest_BIT bin_last_BIT) + apply (auto simp add: Bit_def) + apply arith + apply arith + done lemma BIT_bin_simps [simp]: - "numeral k BIT 0 = numeral (Num.Bit0 k)" - "numeral k BIT 1 = numeral (Num.Bit1 k)" - "(- numeral k) BIT 0 = - numeral (Num.Bit0 k)" - "(- numeral k) BIT 1 = - numeral (Num.BitM k)" + "numeral k BIT False = numeral (Num.Bit0 k)" + "numeral k BIT True = numeral (Num.Bit1 k)" + "(- numeral k) BIT False = - numeral (Num.Bit0 k)" + "(- numeral k) BIT True = - numeral (Num.BitM k)" unfolding numeral.simps numeral_BitM - unfolding Bit_def bitval_simps + unfolding Bit_def by (simp_all del: arith_simps add_numeral_special diff_numeral_special) lemma BIT_special_simps [simp]: - shows "0 BIT 0 = 0" and "0 BIT 1 = 1" - and "1 BIT 0 = 2" and "1 BIT 1 = 3" - and "(- 1) BIT 0 = - 2" and "(- 1) BIT 1 = - 1" + shows "0 BIT False = 0" and "0 BIT True = 1" + and "1 BIT False = 2" and "1 BIT True = 3" + and "(- 1) BIT False = - 2" and "(- 1) BIT True = - 1" unfolding Bit_def by simp_all -lemma Bit_eq_0_iff: "w BIT b = 0 \ w = 0 \ b = 0" - by (subst BIT_eq_iff [symmetric], simp) +lemma Bit_eq_0_iff: "w BIT b = 0 \ w = 0 \ \ b" + apply (auto simp add: Bit_def) + apply arith + done -lemma Bit_eq_m1_iff: "w BIT b = - 1 \ w = - 1 \ b = 1" - by (cases b) (auto simp add: Bit_def, arith) +lemma Bit_eq_m1_iff: "w BIT b = -1 \ w = -1 \ b" + apply (auto simp add: Bit_def) + apply arith + done lemma BitM_inc: "Num.BitM (Num.inc w) = Num.Bit1 w" by (induct w, simp_all) lemma expand_BIT: - "numeral (Num.Bit0 w) = numeral w BIT 0" - "numeral (Num.Bit1 w) = numeral w BIT 1" - "- numeral (Num.Bit0 w) = - numeral w BIT 0" - "- numeral (Num.Bit1 w) = (- numeral (w + Num.One)) BIT 1" + "numeral (Num.Bit0 w) = numeral w BIT False" + "numeral (Num.Bit1 w) = numeral w BIT True" + "- numeral (Num.Bit0 w) = (- numeral w) BIT False" + "- numeral (Num.Bit1 w) = (- numeral (w + Num.One)) BIT True" unfolding add_One by (simp_all add: BitM_inc) lemma bin_last_numeral_simps [simp]: - "bin_last 0 = 0" - "bin_last 1 = 1" - "bin_last -1 = 1" - "bin_last Numeral1 = 1" - "bin_last (numeral (Num.Bit0 w)) = 0" - "bin_last (numeral (Num.Bit1 w)) = 1" - "bin_last (- numeral (Num.Bit0 w)) = 0" - "bin_last (- numeral (Num.Bit1 w)) = 1" + "\ bin_last 0" + "bin_last 1" + "bin_last -1" + "bin_last Numeral1" + "\ bin_last (numeral (Num.Bit0 w))" + "bin_last (numeral (Num.Bit1 w))" + "\ bin_last (- numeral (Num.Bit0 w))" + "bin_last (- numeral (Num.Bit1 w))" unfolding expand_BIT bin_last_BIT by (simp_all add: bin_last_def zmod_zminus1_eq_if) lemma bin_rest_numeral_simps [simp]: @@ -112,51 +118,42 @@ unfolding expand_BIT bin_rest_BIT by (simp_all add: bin_rest_def zdiv_zminus1_eq_if) lemma less_Bits: - "(v BIT b < w BIT c) = (v < w | v <= w & b = (0::bit) & c = (1::bit))" - unfolding Bit_def by (auto simp add: bitval_def split: bit.split) + "v BIT b < w BIT c \ v < w \ v \ w \ \ b \ c" + unfolding Bit_def by auto lemma le_Bits: - "(v BIT b <= w BIT c) = (v < w | v <= w & (b ~= (1::bit) | c ~= (0::bit)))" - unfolding Bit_def by (auto simp add: bitval_def split: bit.split) + "v BIT b \ w BIT c \ v < w \ v \ w \ (\ b \ c)" + unfolding Bit_def by auto lemma pred_BIT_simps [simp]: - "x BIT 0 - 1 = (x - 1) BIT 1" - "x BIT 1 - 1 = x BIT 0" + "x BIT False - 1 = (x - 1) BIT True" + "x BIT True - 1 = x BIT False" by (simp_all add: Bit_B0_2t Bit_B1_2t) lemma succ_BIT_simps [simp]: - "x BIT 0 + 1 = x BIT 1" - "x BIT 1 + 1 = (x + 1) BIT 0" + "x BIT False + 1 = x BIT True" + "x BIT True + 1 = (x + 1) BIT False" by (simp_all add: Bit_B0_2t Bit_B1_2t) lemma add_BIT_simps [simp]: - "x BIT 0 + y BIT 0 = (x + y) BIT 0" - "x BIT 0 + y BIT 1 = (x + y) BIT 1" - "x BIT 1 + y BIT 0 = (x + y) BIT 1" - "x BIT 1 + y BIT 1 = (x + y + 1) BIT 0" + "x BIT False + y BIT False = (x + y) BIT False" + "x BIT False + y BIT True = (x + y) BIT True" + "x BIT True + y BIT False = (x + y) BIT True" + "x BIT True + y BIT True = (x + y + 1) BIT False" by (simp_all add: Bit_B0_2t Bit_B1_2t) lemma mult_BIT_simps [simp]: - "x BIT 0 * y = (x * y) BIT 0" - "x * y BIT 0 = (x * y) BIT 0" - "x BIT 1 * y = (x * y) BIT 0 + y" + "x BIT False * y = (x * y) BIT False" + "x * y BIT False = (x * y) BIT False" + "x BIT True * y = (x * y) BIT False + y" by (simp_all add: Bit_B0_2t Bit_B1_2t algebra_simps) lemma B_mod_2': - "X = 2 ==> (w BIT (1::bit)) mod X = 1 & (w BIT (0::bit)) mod X = 0" + "X = 2 ==> (w BIT True) mod X = 1 & (w BIT False) mod X = 0" apply (simp (no_asm) only: Bit_B0 Bit_B1) apply (simp add: z1pmod2) done -lemma neB1E [elim!]: - assumes ne: "y \ (1::bit)" - assumes y: "y = (0::bit) \ P" - shows "P" - apply (rule y) - apply (cases y rule: bit.exhaust, simp) - apply (simp add: ne) - done - lemma bin_ex_rl: "EX w b. w BIT b = bin" by (metis bin_rl_simp) @@ -170,8 +167,10 @@ done primrec bin_nth where - Z: "bin_nth w 0 = (bin_last w = (1::bit))" - | Suc: "bin_nth w (Suc n) = bin_nth (bin_rest w) n" + Z: "bin_nth w 0 \ bin_last w" + | Suc: "bin_nth w (Suc n) \ bin_nth (bin_rest w) n" + +find_theorems "bin_rest _ = _" lemma bin_abs_lem: "bin = (w BIT b) ==> bin ~= -1 --> bin ~= 0 --> @@ -248,7 +247,7 @@ lemma bin_nth_minus1 [simp]: "bin_nth -1 n" by (induct n) auto -lemma bin_nth_0_BIT: "bin_nth (w BIT b) 0 = (b = (1::bit))" +lemma bin_nth_0_BIT: "bin_nth (w BIT b) 0 \ b" by auto lemma bin_nth_Suc_BIT: "bin_nth (w BIT b) (Suc n) = bin_nth w n" @@ -275,7 +274,8 @@ subsection {* Truncating binary integers *} -definition bin_sign :: "int \ int" where +definition bin_sign :: "int \ int" +where bin_sign_def: "bin_sign k = (if k \ 0 then 0 else - 1)" lemma bin_sign_simps [simp]: @@ -285,8 +285,8 @@ "bin_sign (numeral k) = 0" "bin_sign (- numeral k) = -1" "bin_sign (w BIT b) = bin_sign w" - unfolding bin_sign_def Bit_def bitval_def - by (simp_all split: bit.split) + unfolding bin_sign_def Bit_def + by simp_all lemma bin_sign_rest [simp]: "bin_sign (bin_rest w) = bin_sign w" @@ -297,7 +297,7 @@ | Suc : "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT (bin_last bin)" primrec sbintrunc :: "nat => int => int" where - Z : "sbintrunc 0 bin = (case bin_last bin of (1::bit) \ -1 | (0::bit) \ 0)" + Z : "sbintrunc 0 bin = (if bin_last bin then -1 else 0)" | Suc : "sbintrunc (Suc n) bin = sbintrunc n (bin_rest bin) BIT (bin_last bin)" lemma sign_bintr: "bin_sign (bintrunc n w) = 0" @@ -313,7 +313,8 @@ apply simp apply (subst mod_add_left_eq) apply (simp add: bin_last_def) - apply (simp add: bin_last_def bin_rest_def Bit_def) + apply arith + apply (simp add: bin_last_def bin_rest_def Bit_def mod_2_neq_1_eq_eq_0) apply (clarsimp simp: mod_mult_mult1 [symmetric] zmod_zdiv_equality [THEN diff_eq_eq [THEN iffD2 [THEN sym]]]) apply (rule trans [symmetric, OF _ emep1]) @@ -334,13 +335,13 @@ lemma bintrunc_Suc_numeral: "bintrunc (Suc n) 1 = 1" - "bintrunc (Suc n) -1 = bintrunc n -1 BIT 1" - "bintrunc (Suc n) (numeral (Num.Bit0 w)) = bintrunc n (numeral w) BIT 0" - "bintrunc (Suc n) (numeral (Num.Bit1 w)) = bintrunc n (numeral w) BIT 1" + "bintrunc (Suc n) -1 = bintrunc n -1 BIT True" + "bintrunc (Suc n) (numeral (Num.Bit0 w)) = bintrunc n (numeral w) BIT False" + "bintrunc (Suc n) (numeral (Num.Bit1 w)) = bintrunc n (numeral w) BIT True" "bintrunc (Suc n) (- numeral (Num.Bit0 w)) = - bintrunc n (- numeral w) BIT 0" + bintrunc n (- numeral w) BIT False" "bintrunc (Suc n) (- numeral (Num.Bit1 w)) = - bintrunc n (- numeral (w + Num.One)) BIT 1" + bintrunc n (- numeral (w + Num.One)) BIT True" by simp_all lemma sbintrunc_0_numeral [simp]: @@ -354,21 +355,15 @@ lemma sbintrunc_Suc_numeral: "sbintrunc (Suc n) 1 = 1" "sbintrunc (Suc n) (numeral (Num.Bit0 w)) = - sbintrunc n (numeral w) BIT 0" + sbintrunc n (numeral w) BIT False" "sbintrunc (Suc n) (numeral (Num.Bit1 w)) = - sbintrunc n (numeral w) BIT 1" + sbintrunc n (numeral w) BIT True" "sbintrunc (Suc n) (- numeral (Num.Bit0 w)) = - sbintrunc n (- numeral w) BIT 0" + sbintrunc n (- numeral w) BIT False" "sbintrunc (Suc n) (- numeral (Num.Bit1 w)) = - sbintrunc n (- numeral (w + Num.One)) BIT 1" + sbintrunc n (- numeral (w + Num.One)) BIT True" by simp_all -lemma bit_bool: - "(b = (b' = (1::bit))) = (b' = (if b then (1::bit) else (0::bit)))" - by (cases b') auto - -lemmas bit_bool1 [simp] = refl [THEN bit_bool [THEN iffD1], symmetric] - lemma bin_sign_lem: "(bin_sign (sbintrunc n bin) = -1) = bin_nth bin n" apply (induct n arbitrary: bin) apply (case_tac bin rule: bin_exhaust, case_tac b, auto) @@ -384,23 +379,25 @@ "bin_nth (sbintrunc m w) n = (if n < m then bin_nth w n else bin_nth w m)" apply (induct n arbitrary: w m) - apply (case_tac m, simp_all split: bit.splits)[1] - apply (case_tac m, simp_all split: bit.splits)[1] + apply (case_tac m) + apply simp_all + apply (case_tac m) + apply simp_all done lemma bin_nth_Bit: - "bin_nth (w BIT b) n = (n = 0 & b = (1::bit) | (EX m. n = Suc m & bin_nth w m))" + "bin_nth (w BIT b) n = (n = 0 & b | (EX m. n = Suc m & bin_nth w m))" by (cases n) auto lemma bin_nth_Bit0: "bin_nth (numeral (Num.Bit0 w)) n \ (\m. n = Suc m \ bin_nth (numeral w) m)" - using bin_nth_Bit [where w="numeral w" and b="(0::bit)"] by simp + using bin_nth_Bit [where w="numeral w" and b="False"] by simp lemma bin_nth_Bit1: "bin_nth (numeral (Num.Bit1 w)) n \ n = 0 \ (\m. n = Suc m \ bin_nth (numeral w) m)" - using bin_nth_Bit [where w="numeral w" and b="(1::bit)"] by simp + using bin_nth_Bit [where w="numeral w" and b="True"] by simp lemma bintrunc_bintrunc_l: "n <= m ==> (bintrunc m (bintrunc n w) = bintrunc n w)" @@ -452,19 +449,19 @@ lemmas sbintrunc_Pls = sbintrunc.Z [where bin="0", - simplified bin_last_numeral_simps bin_rest_numeral_simps bit.simps] + simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_Min = sbintrunc.Z [where bin="-1", - simplified bin_last_numeral_simps bin_rest_numeral_simps bit.simps] + simplified bin_last_numeral_simps bin_rest_numeral_simps] lemmas sbintrunc_0_BIT_B0 [simp] = - sbintrunc.Z [where bin="w BIT (0::bit)", - simplified bin_last_numeral_simps bin_rest_numeral_simps bit.simps] for w + sbintrunc.Z [where bin="w BIT False", + simplified bin_last_numeral_simps bin_rest_numeral_simps] for w lemmas sbintrunc_0_BIT_B1 [simp] = - sbintrunc.Z [where bin="w BIT (1::bit)", - simplified bin_last_BIT bin_rest_numeral_simps bit.simps] for w + sbintrunc.Z [where bin="w BIT True", + simplified bin_last_BIT bin_rest_numeral_simps] for w lemmas sbintrunc_0_simps = sbintrunc_Pls sbintrunc_Min sbintrunc_0_BIT_B0 sbintrunc_0_BIT_B1 @@ -583,25 +580,25 @@ lemma bintrunc_numeral_simps [simp]: "bintrunc (numeral k) (numeral (Num.Bit0 w)) = - bintrunc (pred_numeral k) (numeral w) BIT 0" + bintrunc (pred_numeral k) (numeral w) BIT False" "bintrunc (numeral k) (numeral (Num.Bit1 w)) = - bintrunc (pred_numeral k) (numeral w) BIT 1" + bintrunc (pred_numeral k) (numeral w) BIT True" "bintrunc (numeral k) (- numeral (Num.Bit0 w)) = - bintrunc (pred_numeral k) (- numeral w) BIT 0" + bintrunc (pred_numeral k) (- numeral w) BIT False" "bintrunc (numeral k) (- numeral (Num.Bit1 w)) = - bintrunc (pred_numeral k) (- numeral (w + Num.One)) BIT 1" + bintrunc (pred_numeral k) (- numeral (w + Num.One)) BIT True" "bintrunc (numeral k) 1 = 1" by (simp_all add: bintrunc_numeral) lemma sbintrunc_numeral_simps [simp]: "sbintrunc (numeral k) (numeral (Num.Bit0 w)) = - sbintrunc (pred_numeral k) (numeral w) BIT 0" + sbintrunc (pred_numeral k) (numeral w) BIT False" "sbintrunc (numeral k) (numeral (Num.Bit1 w)) = - sbintrunc (pred_numeral k) (numeral w) BIT 1" + sbintrunc (pred_numeral k) (numeral w) BIT True" "sbintrunc (numeral k) (- numeral (Num.Bit0 w)) = - sbintrunc (pred_numeral k) (- numeral w) BIT 0" + sbintrunc (pred_numeral k) (- numeral w) BIT False" "sbintrunc (numeral k) (- numeral (Num.Bit1 w)) = - sbintrunc (pred_numeral k) (- numeral (w + Num.One)) BIT 1" + sbintrunc (pred_numeral k) (- numeral (w + Num.One)) BIT True" "sbintrunc (numeral k) 1 = 1" by (simp_all add: sbintrunc_numeral) @@ -728,7 +725,7 @@ "sbintrunc n (bin_rest (sbintrunc n bin)) = bin_rest (sbintrunc n bin)" apply (induct n arbitrary: bin, simp) apply (case_tac bin rule: bin_exhaust) - apply (auto simp: bintrunc_bintrunc_l split: bit.splits) + apply (auto simp: bintrunc_bintrunc_l split: bool.splits) done lemma bintrunc_rest': diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/Bool_List_Representation.thy --- a/src/HOL/Word/Bool_List_Representation.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/Bool_List_Representation.thy Mon Dec 23 16:59:56 2013 +0100 @@ -31,27 +31,33 @@ subsection {* Operations on lists of booleans *} -primrec bl_to_bin_aux :: "bool list \ int \ int" where +primrec bl_to_bin_aux :: "bool list \ int \ int" +where Nil: "bl_to_bin_aux [] w = w" | Cons: "bl_to_bin_aux (b # bs) w = - bl_to_bin_aux bs (w BIT (if b then 1 else 0))" + bl_to_bin_aux bs (w BIT b)" -definition bl_to_bin :: "bool list \ int" where +definition bl_to_bin :: "bool list \ int" +where bl_to_bin_def: "bl_to_bin bs = bl_to_bin_aux bs 0" -primrec bin_to_bl_aux :: "nat \ int \ bool list \ bool list" where +primrec bin_to_bl_aux :: "nat \ int \ bool list \ bool list" +where Z: "bin_to_bl_aux 0 w bl = bl" | Suc: "bin_to_bl_aux (Suc n) w bl = - bin_to_bl_aux n (bin_rest w) ((bin_last w = 1) # bl)" + bin_to_bl_aux n (bin_rest w) ((bin_last w) # bl)" -definition bin_to_bl :: "nat \ int \ bool list" where +definition bin_to_bl :: "nat \ int \ bool list" +where bin_to_bl_def : "bin_to_bl n w = bin_to_bl_aux n w []" -primrec bl_of_nth :: "nat \ (nat \ bool) \ bool list" where +primrec bl_of_nth :: "nat \ (nat \ bool) \ bool list" +where Suc: "bl_of_nth (Suc n) f = f n # bl_of_nth n f" | Z: "bl_of_nth 0 f = []" -primrec takefill :: "'a \ nat \ 'a list \ 'a list" where +primrec takefill :: "'a \ nat \ 'a list \ 'a list" +where Z: "takefill fill 0 xs = []" | Suc: "takefill fill (Suc n) xs = ( case xs of [] => fill # takefill fill n xs @@ -65,21 +71,25 @@ assuming input list(s) the same length, and don't extend them. *} -primrec rbl_succ :: "bool list => bool list" where +primrec rbl_succ :: "bool list => bool list" +where Nil: "rbl_succ Nil = Nil" | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)" -primrec rbl_pred :: "bool list => bool list" where +primrec rbl_pred :: "bool list => bool list" +where Nil: "rbl_pred Nil = Nil" | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)" -primrec rbl_add :: "bool list => bool list => bool list" where +primrec rbl_add :: "bool list => bool list => bool list" +where -- "result is length of first arg, second arg may be longer" Nil: "rbl_add Nil x = Nil" | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in (y ~= hd x) # (if hd x & y then rbl_succ ws else ws))" -primrec rbl_mult :: "bool list => bool list => bool list" where +primrec rbl_mult :: "bool list => bool list => bool list" +where -- "result is length of first arg, second arg may be longer" Nil: "rbl_mult Nil x = Nil" | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in @@ -106,7 +116,7 @@ lemma bin_to_bl_aux_Bit_minus_simp [simp]: "0 < n ==> bin_to_bl_aux n (w BIT b) bl = - bin_to_bl_aux (n - 1) w ((b = 1) # bl)" + bin_to_bl_aux (n - 1) w (b # bl)" by (cases n) auto lemma bin_to_bl_aux_Bit0_minus_simp [simp]: @@ -253,8 +263,7 @@ apply (induct n arbitrary: w bs) apply clarsimp apply (cases w rule: bin_exhaust) - apply (simp split add : bit.split) - apply clarsimp + apply simp done lemma bl_sbin_sign: @@ -317,7 +326,6 @@ apply (induct bs arbitrary: w) apply clarsimp apply clarsimp - apply safe apply (drule meta_spec, erule xtrans(8) [rotated], simp add: Bit_def)+ done @@ -334,9 +342,9 @@ apply (induct bs arbitrary: w) apply clarsimp apply clarsimp - apply safe apply (drule meta_spec, erule order_trans [rotated], simp add: Bit_B0_2t Bit_B1_2t algebra_simps)+ + apply (simp add: Bit_def) done lemma bl_to_bin_ge0: "bl_to_bin bs >= 0" @@ -422,15 +430,15 @@ by (cases xs) auto lemma last_bin_last': - "size xs > 0 \ last xs = (bin_last (bl_to_bin_aux xs w) = 1)" + "size xs > 0 \ last xs \ bin_last (bl_to_bin_aux xs w)" by (induct xs arbitrary: w) auto lemma last_bin_last: - "size xs > 0 ==> last xs = (bin_last (bl_to_bin xs) = 1)" + "size xs > 0 ==> last xs \ bin_last (bl_to_bin xs)" unfolding bl_to_bin_def by (erule last_bin_last') lemma bin_last_last: - "bin_last w = (if last (bin_to_bl (Suc n) w) then 1 else 0)" + "bin_last w \ last (bin_to_bl (Suc n) w)" apply (unfold bin_to_bl_def) apply simp apply (auto simp add: bin_to_bl_aux_alt) @@ -447,7 +455,7 @@ apply (case_tac w rule: bin_exhaust) apply clarsimp apply (case_tac b) - apply (case_tac ba, safe, simp_all)+ + apply auto done lemma bl_or_aux_bin: @@ -458,8 +466,6 @@ apply (case_tac v rule: bin_exhaust) apply (case_tac w rule: bin_exhaust) apply clarsimp - apply (case_tac b) - apply (case_tac ba, safe, simp_all)+ done lemma bl_and_aux_bin: @@ -846,7 +852,7 @@ lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt] lemma rbbl_Cons: - "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (x BIT If b 1 0))" + "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (x BIT b))" apply (unfold bin_to_bl_def) apply simp apply (simp add: bin_to_bl_aux_alt) diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/Misc_Numeric.thy --- a/src/HOL/Word/Misc_Numeric.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/Misc_Numeric.thy Mon Dec 23 16:59:56 2013 +0100 @@ -22,6 +22,11 @@ lemmas min_minus' [simp] = trans [OF min_max.inf_commute min_minus] +lemma mod_2_neq_1_eq_eq_0: + fixes k :: int + shows "k mod 2 \ 1 \ k mod 2 = 0" + by arith + lemma z1pmod2: "(2 * b + 1) mod 2 = (1::int)" by arith diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/Word.thy Mon Dec 23 16:59:56 2013 +0100 @@ -35,7 +35,8 @@ shows "uint w mod 2 ^ len_of TYPE('a) = uint w" using uint_nonnegative uint_bounded by (rule mod_pos_pos_trivial) -definition word_of_int :: "int \ 'a\len0 word" where +definition word_of_int :: "int \ 'a\len0 word" +where -- {* representation of words using unsigned or signed bins, only difference in these is the type class *} "word_of_int k = Abs_word (k mod 2 ^ len_of TYPE('a))" @@ -72,7 +73,8 @@ instantiation word :: (len0) equal begin -definition equal_word :: "'a word \ 'a word \ bool" where +definition equal_word :: "'a word \ 'a word \ bool" +where "equal_word k l \ HOL.equal (uint k) (uint l)" instance proof @@ -101,31 +103,39 @@ subsection {* Type conversions and casting *} -definition sint :: "'a :: len word => int" where +definition sint :: "'a :: len word => int" +where -- {* treats the most-significant-bit as a sign bit *} sint_uint: "sint w = sbintrunc (len_of TYPE ('a) - 1) (uint w)" -definition unat :: "'a :: len0 word => nat" where +definition unat :: "'a :: len0 word => nat" +where "unat w = nat (uint w)" -definition uints :: "nat => int set" where +definition uints :: "nat => int set" +where -- "the sets of integers representing the words" "uints n = range (bintrunc n)" -definition sints :: "nat => int set" where +definition sints :: "nat => int set" +where "sints n = range (sbintrunc (n - 1))" -definition unats :: "nat => nat set" where +definition unats :: "nat => nat set" +where "unats n = {i. i < 2 ^ n}" -definition norm_sint :: "nat => int => int" where +definition norm_sint :: "nat => int => int" +where "norm_sint n w = (w + 2 ^ (n - 1)) mod 2 ^ n - 2 ^ (n - 1)" -definition scast :: "'a :: len word => 'b :: len word" where +definition scast :: "'a :: len word => 'b :: len word" +where -- "cast a word to a different length" "scast w = word_of_int (sint w)" -definition ucast :: "'a :: len0 word => 'b :: len0 word" where +definition ucast :: "'a :: len0 word => 'b :: len0 word" +where "ucast w = word_of_int (uint w)" instantiation word :: (len0) size @@ -138,29 +148,37 @@ end -definition source_size :: "('a :: len0 word => 'b) => nat" where +definition source_size :: "('a :: len0 word => 'b) => nat" +where -- "whether a cast (or other) function is to a longer or shorter length" "source_size c = (let arb = undefined ; x = c arb in size arb)" -definition target_size :: "('a => 'b :: len0 word) => nat" where +definition target_size :: "('a => 'b :: len0 word) => nat" +where "target_size c = size (c undefined)" -definition is_up :: "('a :: len0 word => 'b :: len0 word) => bool" where +definition is_up :: "('a :: len0 word => 'b :: len0 word) => bool" +where "is_up c \ source_size c <= target_size c" -definition is_down :: "('a :: len0 word => 'b :: len0 word) => bool" where +definition is_down :: "('a :: len0 word => 'b :: len0 word) => bool" +where "is_down c \ target_size c <= source_size c" -definition of_bl :: "bool list => 'a :: len0 word" where +definition of_bl :: "bool list => 'a :: len0 word" +where "of_bl bl = word_of_int (bl_to_bin bl)" -definition to_bl :: "'a :: len0 word => bool list" where +definition to_bl :: "'a :: len0 word => bool list" +where "to_bl w = bin_to_bl (len_of TYPE ('a)) (uint w)" -definition word_reverse :: "'a :: len0 word => 'a word" where +definition word_reverse :: "'a :: len0 word => 'a word" +where "word_reverse w = of_bl (rev (to_bl w))" -definition word_int_case :: "(int => 'b) => ('a :: len0 word) => 'b" where +definition word_int_case :: "(int => 'b) => ('a :: len0 word) => 'b" +where "word_int_case f w = f (uint w)" translations @@ -232,7 +250,8 @@ subsection {* Correspondence relation for theorem transfer *} definition cr_word :: "int \ 'a::len0 word \ bool" - where "cr_word \ (\x y. word_of_int x = y)" +where + "cr_word = (\x y. word_of_int x = y)" lemma Quotient_word: "Quotient (\x y. bintrunc (len_of TYPE('a)) x = bintrunc (len_of TYPE('a)) y) @@ -341,7 +360,8 @@ apply (simp add: word_of_nat wi_hom_sub) done -definition udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50) where +definition udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50) +where "a udvd b = (EX n>=0. uint b = n * uint a)" @@ -361,10 +381,12 @@ end -definition word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50) where +definition word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50) +where "a <=s b = (sint a <= sint b)" -definition word_sless :: "'a :: len word => 'a word => bool" ("(_/ 'a word => bool" ("(_/ bin_last (uint a) = 1" - -definition shiftl1 :: "'a word \ 'a word" where - "shiftl1 w = word_of_int (uint w BIT 0)" - -definition shiftr1 :: "'a word \ 'a word" where + word_lsb_def: "lsb a \ bin_last (uint a)" + +definition shiftl1 :: "'a word \ 'a word" +where + "shiftl1 w = word_of_int (uint w BIT False)" + +definition shiftr1 :: "'a word \ 'a word" +where -- "shift right as unsigned or as signed, ie logical or arithmetic" "shiftr1 w = word_of_int (bin_rest (uint w))" @@ -434,76 +458,95 @@ end -definition setBit :: "'a :: len0 word => nat => 'a word" where +definition setBit :: "'a :: len0 word => nat => 'a word" +where "setBit w n = set_bit w n True" -definition clearBit :: "'a :: len0 word => nat => 'a word" where +definition clearBit :: "'a :: len0 word => nat => 'a word" +where "clearBit w n = set_bit w n False" subsection "Shift operations" -definition sshiftr1 :: "'a :: len word => 'a word" where +definition sshiftr1 :: "'a :: len word => 'a word" +where "sshiftr1 w = word_of_int (bin_rest (sint w))" -definition bshiftr1 :: "bool => 'a :: len word => 'a word" where +definition bshiftr1 :: "bool => 'a :: len word => 'a word" +where "bshiftr1 b w = of_bl (b # butlast (to_bl w))" -definition sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55) where +definition sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55) +where "w >>> n = (sshiftr1 ^^ n) w" -definition mask :: "nat => 'a::len word" where +definition mask :: "nat => 'a::len word" +where "mask n = (1 << n) - 1" -definition revcast :: "'a :: len0 word => 'b :: len0 word" where +definition revcast :: "'a :: len0 word => 'b :: len0 word" +where "revcast w = of_bl (takefill False (len_of TYPE('b)) (to_bl w))" -definition slice1 :: "nat => 'a :: len0 word => 'b :: len0 word" where +definition slice1 :: "nat => 'a :: len0 word => 'b :: len0 word" +where "slice1 n w = of_bl (takefill False n (to_bl w))" -definition slice :: "nat => 'a :: len0 word => 'b :: len0 word" where +definition slice :: "nat => 'a :: len0 word => 'b :: len0 word" +where "slice n w = slice1 (size w - n) w" subsection "Rotation" -definition rotater1 :: "'a list => 'a list" where +definition rotater1 :: "'a list => 'a list" +where "rotater1 ys = (case ys of [] => [] | x # xs => last ys # butlast ys)" -definition rotater :: "nat => 'a list => 'a list" where +definition rotater :: "nat => 'a list => 'a list" +where "rotater n = rotater1 ^^ n" -definition word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word" where +definition word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word" +where "word_rotr n w = of_bl (rotater n (to_bl w))" -definition word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word" where +definition word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word" +where "word_rotl n w = of_bl (rotate n (to_bl w))" -definition word_roti :: "int => 'a :: len0 word => 'a :: len0 word" where +definition word_roti :: "int => 'a :: len0 word => 'a :: len0 word" +where "word_roti i w = (if i >= 0 then word_rotr (nat i) w else word_rotl (nat (- i)) w)" subsection "Split and cat operations" -definition word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word" where +definition word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word" +where "word_cat a b = word_of_int (bin_cat (uint a) (len_of TYPE ('b)) (uint b))" -definition word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)" where +definition word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)" +where "word_split a = (case bin_split (len_of TYPE ('c)) (uint a) of (u, v) => (word_of_int u, word_of_int v))" -definition word_rcat :: "'a :: len0 word list => 'b :: len0 word" where +definition word_rcat :: "'a :: len0 word list => 'b :: len0 word" +where "word_rcat ws = word_of_int (bin_rcat (len_of TYPE ('a)) (map uint ws))" -definition word_rsplit :: "'a :: len0 word => 'b :: len word list" where +definition word_rsplit :: "'a :: len0 word => 'b :: len word list" +where "word_rsplit w = map word_of_int (bin_rsplit (len_of TYPE ('b)) (len_of TYPE ('a), uint w))" -definition max_word :: "'a::len word" -- "Largest representable machine integer." where +definition max_word :: "'a::len word" -- "Largest representable machine integer." +where "max_word = word_of_int (2 ^ len_of TYPE('a) - 1)" (* FIXME: only provide one theorem name *) @@ -2524,15 +2567,15 @@ by (clarsimp simp add: nth_sbintr word_test_bit_def [symmetric]) lemma word_lsb_numeral [simp]: - "lsb (numeral bin :: 'a :: len word) = (bin_last (numeral bin) = 1)" + "lsb (numeral bin :: 'a :: len word) \ bin_last (numeral bin)" unfolding word_lsb_alt test_bit_numeral by simp lemma word_lsb_neg_numeral [simp]: - "lsb (- numeral bin :: 'a :: len word) = (bin_last (- numeral bin) = 1)" + "lsb (- numeral bin :: 'a :: len word) \ bin_last (- numeral bin)" unfolding word_lsb_alt test_bit_neg_numeral by simp lemma set_bit_word_of_int: - "set_bit (word_of_int x) n b = word_of_int (bin_sc n (if b then 1 else 0) x)" + "set_bit (word_of_int x) n b = word_of_int (bin_sc n b x)" unfolding word_set_bit_def apply (rule word_eqI) apply (simp add: word_size bin_nth_sc_gen word_ubin.eq_norm nth_bintr) @@ -2540,28 +2583,28 @@ lemma word_set_numeral [simp]: "set_bit (numeral bin::'a::len0 word) n b = - word_of_int (bin_sc n (if b then 1 else 0) (numeral bin))" + word_of_int (bin_sc n b (numeral bin))" unfolding word_numeral_alt by (rule set_bit_word_of_int) lemma word_set_neg_numeral [simp]: "set_bit (- numeral bin::'a::len0 word) n b = - word_of_int (bin_sc n (if b then 1 else 0) (- numeral bin))" + word_of_int (bin_sc n b (- numeral bin))" unfolding word_neg_numeral_alt by (rule set_bit_word_of_int) lemma word_set_bit_0 [simp]: - "set_bit 0 n b = word_of_int (bin_sc n (if b then 1 else 0) 0)" + "set_bit 0 n b = word_of_int (bin_sc n b 0)" unfolding word_0_wi by (rule set_bit_word_of_int) lemma word_set_bit_1 [simp]: - "set_bit 1 n b = word_of_int (bin_sc n (if b then 1 else 0) 1)" + "set_bit 1 n b = word_of_int (bin_sc n b 1)" unfolding word_1_wi by (rule set_bit_word_of_int) lemma setBit_no [simp]: - "setBit (numeral bin) n = word_of_int (bin_sc n 1 (numeral bin))" + "setBit (numeral bin) n = word_of_int (bin_sc n True (numeral bin))" by (simp add: setBit_def) lemma clearBit_no [simp]: - "clearBit (numeral bin) n = word_of_int (bin_sc n 0 (numeral bin))" + "clearBit (numeral bin) n = word_of_int (bin_sc n False (numeral bin))" by (simp add: clearBit_def) lemma to_bl_n1: @@ -2645,7 +2688,6 @@ fixes w :: "'a::len0 word" shows "w >= set_bit w n False" apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm) - apply simp apply (rule order_trans) apply (rule bintr_bin_clr_le) apply simp @@ -2655,7 +2697,6 @@ fixes w :: "'a::len word" shows "w <= set_bit w n True" apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm) - apply simp apply (rule order_trans [OF _ bintr_bin_set_ge]) apply simp done @@ -2663,7 +2704,7 @@ subsection {* Shifting, Rotating, and Splitting Words *} -lemma shiftl1_wi [simp]: "shiftl1 (word_of_int w) = word_of_int (w BIT 0)" +lemma shiftl1_wi [simp]: "shiftl1 (word_of_int w) = word_of_int (w BIT False)" unfolding shiftl1_def apply (simp add: word_ubin.norm_eq_iff [symmetric] word_ubin.eq_norm) apply (subst refl [THEN bintrunc_BIT_I, symmetric]) @@ -2682,10 +2723,10 @@ lemma shiftl1_0 [simp] : "shiftl1 0 = 0" unfolding shiftl1_def by simp -lemma shiftl1_def_u: "shiftl1 w = word_of_int (uint w BIT 0)" +lemma shiftl1_def_u: "shiftl1 w = word_of_int (uint w BIT False)" by (simp only: shiftl1_def) (* FIXME: duplicate *) -lemma shiftl1_def_s: "shiftl1 w = word_of_int (sint w BIT 0)" +lemma shiftl1_def_s: "shiftl1 w = word_of_int (sint w BIT False)" unfolding shiftl1_def Bit_B0 wi_hom_syms by simp lemma shiftr1_0 [simp]: "shiftr1 0 = 0" @@ -3969,9 +4010,6 @@ subsubsection "map, map2, commuting with rotate(r)" -lemma last_map: "xs ~= [] \ last (map f xs) = f (last xs)" - by (induct xs) auto - lemma butlast_map: "xs ~= [] \ butlast (map f xs) = map f (butlast xs)" by (induct xs) auto @@ -4538,7 +4576,8 @@ subsection {* Recursion combinator for words *} -definition word_rec :: "'a \ ('b::len word \ 'a \ 'a) \ 'b word \ 'a" where +definition word_rec :: "'a \ ('b::len word \ 'a \ 'a) \ 'b word \ 'a" +where "word_rec forZero forSuc n = nat_rec forZero (forSuc \ of_nat) (unat n)" lemma word_rec_0: "word_rec z s 0 = z" diff -r 48a24d371ebb -r 7137303f9f88 src/HOL/Word/WordBitwise.thy --- a/src/HOL/Word/WordBitwise.thy Mon Dec 23 15:30:31 2013 +0100 +++ b/src/HOL/Word/WordBitwise.thy Mon Dec 23 16:59:56 2013 +0100 @@ -364,8 +364,7 @@ = (bl_to_bin (rev xs) < bl_to_bin (rev ys))" apply (induct xs ys rule: list_induct2) apply (simp_all add: rev_bl_order_simps bl_to_bin_app_cat) - apply (simp add: bl_to_bin_def Bit_B0 Bit_B1 add1_zle_eq) - apply arith? + apply (auto simp add: bl_to_bin_def Bit_B0 Bit_B1 add1_zle_eq Bit_def) done lemma word_le_rbl: