# HG changeset patch # User paulson # Date 1396452877 -3600 # Node ID 713f9b9a7e51fa46a5de698ddd2611dbde7fa083 # Parent fbacdc80e1bce87e60c880254b45c81edccdec39 New theorems for extracting quotients diff -r fbacdc80e1bc -r 713f9b9a7e51 src/HOL/Fields.thy --- a/src/HOL/Fields.thy Wed Apr 02 17:11:44 2014 +0200 +++ b/src/HOL/Fields.thy Wed Apr 02 16:34:37 2014 +0100 @@ -391,6 +391,9 @@ "(a / b) / c = a / (b * c)" by (simp add: divide_inverse mult_assoc) +lemma divide_divide_times_eq: + "(x / y) / (z / w) = (x * w) / (y * z)" + by simp text {*Special Cancellation Simprules for Division*} @@ -708,6 +711,14 @@ finally show ?thesis . qed +lemma frac_less_eq: + "y \ 0 \ z \ 0 \ x / y < w / z \ (x * z - w * y) / (y * z) < 0" + by (subst less_iff_diff_less_0) (simp add: diff_frac_eq ) + +lemma frac_le_eq: + "y \ 0 \ z \ 0 \ x / y \ w / z \ (x * z - w * y) / (y * z) \ 0" + by (subst le_iff_diff_le_0) (simp add: diff_frac_eq ) + text{* Lemmas @{text sign_simps} is a first attempt to automate proofs of positivity/negativity needed for @{text field_simps}. Have not added @{text sign_simps} to @{text field_simps} because the former can lead to case