# HG changeset patch # User wenzelm # Date 1185903623 -7200 # Node ID 71c27b320610f3019a90ee71db2a153125e39170 # Parent 109f19a13872862dc99ca5dfbc11dfce2c4823a7 HOL setup for linear arithmetic -- moved here from arith_data.ML; diff -r 109f19a13872 -r 71c27b320610 src/HOL/Tools/lin_arith.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Tools/lin_arith.ML Tue Jul 31 19:40:23 2007 +0200 @@ -0,0 +1,897 @@ +(* Title: HOL/Tools/lin_arith.ML + ID: $Id$ + Author: Tjark Weber and Tobias Nipkow + +HOL setup for linear arithmetic (see Provers/Arith/fast_lin_arith.ML). +*) + +signature BASIC_LIN_ARITH = +sig + type arith_tactic + val mk_arith_tactic: string -> (Proof.context -> int -> tactic) -> arith_tactic + val eq_arith_tactic: arith_tactic * arith_tactic -> bool + val arith_split_add: attribute + val arith_discrete: string -> Context.generic -> Context.generic + val arith_inj_const: string * typ -> Context.generic -> Context.generic + val arith_tactic_add: arith_tactic -> Context.generic -> Context.generic + val fast_arith_split_limit: int ConfigOption.T + val fast_arith_neq_limit: int ConfigOption.T + val lin_arith_pre_tac: Proof.context -> int -> tactic + val fast_arith_tac: Proof.context -> int -> tactic + val fast_ex_arith_tac: Proof.context -> bool -> int -> tactic + val trace_arith: bool ref + val lin_arith_simproc: simpset -> term -> thm option + val fast_nat_arith_simproc: simproc + val simple_arith_tac: Proof.context -> int -> tactic + val arith_tac: Proof.context -> int -> tactic + val silent_arith_tac: Proof.context -> int -> tactic +end; + +signature LIN_ARITH = +sig + include BASIC_LIN_ARITH + val map_data: + ({add_mono_thms: thm list, mult_mono_thms: thm list, inj_thms: thm list, + lessD: thm list, neqE: thm list, simpset: Simplifier.simpset} -> + {add_mono_thms: thm list, mult_mono_thms: thm list, inj_thms: thm list, + lessD: thm list, neqE: thm list, simpset: Simplifier.simpset}) -> + Context.generic -> Context.generic + val setup: Context.generic -> Context.generic +end; + +structure LinArith: LIN_ARITH = +struct + +(* Parameters data for general linear arithmetic functor *) + +structure LA_Logic: LIN_ARITH_LOGIC = +struct + +val ccontr = ccontr; +val conjI = conjI; +val notI = notI; +val sym = sym; +val not_lessD = @{thm linorder_not_less} RS iffD1; +val not_leD = @{thm linorder_not_le} RS iffD1; +val le0 = thm "le0"; + +fun mk_Eq thm = (thm RS Eq_FalseI) handle THM _ => (thm RS Eq_TrueI); + +val mk_Trueprop = HOLogic.mk_Trueprop; + +fun atomize thm = case Thm.prop_of thm of + Const("Trueprop",_) $ (Const("op &",_) $ _ $ _) => + atomize(thm RS conjunct1) @ atomize(thm RS conjunct2) + | _ => [thm]; + +fun neg_prop ((TP as Const("Trueprop",_)) $ (Const("Not",_) $ t)) = TP $ t + | neg_prop ((TP as Const("Trueprop",_)) $ t) = TP $ (HOLogic.Not $t) + | neg_prop t = raise TERM ("neg_prop", [t]); + +fun is_False thm = + let val _ $ t = Thm.prop_of thm + in t = Const("False",HOLogic.boolT) end; + +fun is_nat(t) = fastype_of1 t = HOLogic.natT; + +fun mk_nat_thm sg t = + let val ct = cterm_of sg t and cn = cterm_of sg (Var(("n",0),HOLogic.natT)) + in instantiate ([],[(cn,ct)]) le0 end; + +end; + + +(* arith context data *) + +datatype arith_tactic = + ArithTactic of {name: string, tactic: Proof.context -> int -> tactic, id: stamp}; + +fun mk_arith_tactic name tactic = ArithTactic {name = name, tactic = tactic, id = stamp ()}; + +fun eq_arith_tactic (ArithTactic {id = id1, ...}, ArithTactic {id = id2, ...}) = (id1 = id2); + +structure ArithContextData = GenericDataFun +( + type T = {splits: thm list, + inj_consts: (string * typ) list, + discrete: string list, + tactics: arith_tactic list}; + val empty = {splits = [], inj_consts = [], discrete = [], tactics = []}; + val extend = I; + fun merge _ ({splits= splits1, inj_consts= inj_consts1, discrete= discrete1, tactics= tactics1}, + {splits= splits2, inj_consts= inj_consts2, discrete= discrete2, tactics= tactics2}) = + {splits = Library.merge Thm.eq_thm_prop (splits1, splits2), + inj_consts = Library.merge (op =) (inj_consts1, inj_consts2), + discrete = Library.merge (op =) (discrete1, discrete2), + tactics = Library.merge eq_arith_tactic (tactics1, tactics2)}; +); + +val get_arith_data = ArithContextData.get o Context.Proof; + +val arith_split_add = Thm.declaration_attribute (fn thm => + ArithContextData.map (fn {splits, inj_consts, discrete, tactics} => + {splits = insert Thm.eq_thm_prop thm splits, + inj_consts = inj_consts, discrete = discrete, tactics = tactics})); + +fun arith_discrete d = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} => + {splits = splits, inj_consts = inj_consts, + discrete = insert (op =) d discrete, tactics = tactics}); + +fun arith_inj_const c = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} => + {splits = splits, inj_consts = insert (op =) c inj_consts, + discrete = discrete, tactics= tactics}); + +fun arith_tactic_add tac = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} => + {splits = splits, inj_consts = inj_consts, discrete = discrete, + tactics = insert eq_arith_tactic tac tactics}); + + +val (fast_arith_split_limit, setup1) = ConfigOption.int "fast_arith_split_limit" 9; +val (fast_arith_neq_limit, setup2) = ConfigOption.int "fast_arith_neq_limit" 9; +val setup_options = setup1 #> setup2; + + +structure LA_Data_Ref = +struct + +val fast_arith_neq_limit = fast_arith_neq_limit; + + +(* Decomposition of terms *) + +(*internal representation of linear (in-)equations*) +type decompT = ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat * bool); + +fun nT (Type ("fun", [N, _])) = (N = HOLogic.natT) + | nT _ = false; + +fun add_atom (t : term) (m : Rat.rat) (p : (term * Rat.rat) list, i : Rat.rat) : + (term * Rat.rat) list * Rat.rat = + case AList.lookup (op =) p t of NONE => ((t, m) :: p, i) + | SOME n => (AList.update (op =) (t, Rat.add n m) p, i); + +exception Zero; + +fun rat_of_term (numt, dent) = + let + val num = HOLogic.dest_numeral numt + val den = HOLogic.dest_numeral dent + in + if den = 0 then raise Zero else Rat.rat_of_quotient (num, den) + end; + +(*Warning: in rare cases number_of encloses a non-numeral, + in which case dest_numeral raises TERM; hence all the handles below. + Same for Suc-terms that turn out not to be numerals - + although the simplifier should eliminate those anyway ...*) +fun number_of_Sucs (Const ("Suc", _) $ n) : int = + number_of_Sucs n + 1 + | number_of_Sucs t = + if HOLogic.is_zero t then 0 else raise TERM ("number_of_Sucs", []); + +(*decompose nested multiplications, bracketing them to the right and combining + all their coefficients*) +fun demult (inj_consts : (string * typ) list) : term * Rat.rat -> term option * Rat.rat = +let + fun demult ((mC as Const (@{const_name HOL.times}, _)) $ s $ t, m) = ( + (case s of + Const ("Numeral.number_class.number_of", _) $ n => + demult (t, Rat.mult m (Rat.rat_of_int (HOLogic.dest_numeral n))) + | Const (@{const_name HOL.uminus}, _) $ (Const ("Numeral.number_class.number_of", _) $ n) => + demult (t, Rat.mult m (Rat.rat_of_int (~(HOLogic.dest_numeral n)))) + | Const (@{const_name Suc}, _) $ _ => + demult (t, Rat.mult m (Rat.rat_of_int (HOLogic.dest_nat s))) + | Const (@{const_name HOL.times}, _) $ s1 $ s2 => + demult (mC $ s1 $ (mC $ s2 $ t), m) + | Const (@{const_name HOL.divide}, _) $ numt $ + (Const ("Numeral.number_class.number_of", _) $ dent) => + let + val den = HOLogic.dest_numeral dent + in + if den = 0 then + raise Zero + else + demult (mC $ numt $ t, Rat.mult m (Rat.inv (Rat.rat_of_int den))) + end + | _ => + atomult (mC, s, t, m) + ) handle TERM _ => atomult (mC, s, t, m) + ) + | demult (atom as Const(@{const_name HOL.divide}, _) $ t $ + (Const ("Numeral.number_class.number_of", _) $ dent), m) = + (let + val den = HOLogic.dest_numeral dent + in + if den = 0 then + raise Zero + else + demult (t, Rat.mult m (Rat.inv (Rat.rat_of_int den))) + end handle TERM _ => (SOME atom, m)) + | demult (Const (@{const_name HOL.zero}, _), m) = (NONE, Rat.zero) + | demult (Const (@{const_name HOL.one}, _), m) = (NONE, m) + | demult (t as Const ("Numeral.number_class.number_of", _) $ n, m) = + ((NONE, Rat.mult m (Rat.rat_of_int (HOLogic.dest_numeral n))) + handle TERM _ => (SOME t, m)) + | demult (Const (@{const_name HOL.uminus}, _) $ t, m) = demult (t, Rat.neg m) + | demult (t as Const f $ x, m) = + (if member (op =) inj_consts f then SOME x else SOME t, m) + | demult (atom, m) = (SOME atom, m) +and + atomult (mC, atom, t, m) = ( + case demult (t, m) of (NONE, m') => (SOME atom, m') + | (SOME t', m') => (SOME (mC $ atom $ t'), m') + ) +in demult end; + +fun decomp0 (inj_consts : (string * typ) list) (rel : string, lhs : term, rhs : term) : + ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat) option = +let + (* Turn term into list of summand * multiplicity plus a constant *) + fun poly (Const (@{const_name HOL.plus}, _) $ s $ t, + m : Rat.rat, pi : (term * Rat.rat) list * Rat.rat) = poly (s, m, poly (t, m, pi)) + | poly (all as Const (@{const_name HOL.minus}, T) $ s $ t, m, pi) = + if nT T then add_atom all m pi else poly (s, m, poly (t, Rat.neg m, pi)) + | poly (all as Const (@{const_name HOL.uminus}, T) $ t, m, pi) = + if nT T then add_atom all m pi else poly (t, Rat.neg m, pi) + | poly (Const (@{const_name HOL.zero}, _), _, pi) = + pi + | poly (Const (@{const_name HOL.one}, _), m, (p, i)) = + (p, Rat.add i m) + | poly (Const (@{const_name Suc}, _) $ t, m, (p, i)) = + poly (t, m, (p, Rat.add i m)) + | poly (all as Const (@{const_name HOL.times}, _) $ _ $ _, m, pi as (p, i)) = + (case demult inj_consts (all, m) of + (NONE, m') => (p, Rat.add i m') + | (SOME u, m') => add_atom u m' pi) + | poly (all as Const (@{const_name HOL.divide}, _) $ _ $ _, m, pi as (p, i)) = + (case demult inj_consts (all, m) of + (NONE, m') => (p, Rat.add i m') + | (SOME u, m') => add_atom u m' pi) + | poly (all as Const ("Numeral.number_class.number_of", Type(_,[_,T])) $ t, m, pi as (p, i)) = + (let val k = HOLogic.dest_numeral t + val k2 = if k < 0 andalso T = HOLogic.natT then 0 else k + in (p, Rat.add i (Rat.mult m (Rat.rat_of_int k2))) end + handle TERM _ => add_atom all m pi) + | poly (all as Const f $ x, m, pi) = + if f mem inj_consts then poly (x, m, pi) else add_atom all m pi + | poly (all, m, pi) = + add_atom all m pi + val (p, i) = poly (lhs, Rat.one, ([], Rat.zero)) + val (q, j) = poly (rhs, Rat.one, ([], Rat.zero)) +in + case rel of + @{const_name HOL.less} => SOME (p, i, "<", q, j) + | @{const_name HOL.less_eq} => SOME (p, i, "<=", q, j) + | "op =" => SOME (p, i, "=", q, j) + | _ => NONE +end handle Zero => NONE; + +fun of_lin_arith_sort sg (U : typ) : bool = + Type.of_sort (Sign.tsig_of sg) (U, ["Ring_and_Field.ordered_idom"]) + +fun allows_lin_arith sg (discrete : string list) (U as Type (D, [])) : bool * bool = + if of_lin_arith_sort sg U then + (true, D mem discrete) + else (* special cases *) + if D mem discrete then (true, true) else (false, false) + | allows_lin_arith sg discrete U = + (of_lin_arith_sort sg U, false); + +fun decomp_typecheck (thy, discrete, inj_consts) (T : typ, xxx) : decompT option = + case T of + Type ("fun", [U, _]) => + (case allows_lin_arith thy discrete U of + (true, d) => + (case decomp0 inj_consts xxx of + NONE => NONE + | SOME (p, i, rel, q, j) => SOME (p, i, rel, q, j, d)) + | (false, _) => + NONE) + | _ => NONE; + +fun negate (SOME (x, i, rel, y, j, d)) = SOME (x, i, "~" ^ rel, y, j, d) + | negate NONE = NONE; + +fun decomp_negation data + ((Const ("Trueprop", _)) $ (Const (rel, T) $ lhs $ rhs)) : decompT option = + decomp_typecheck data (T, (rel, lhs, rhs)) + | decomp_negation data ((Const ("Trueprop", _)) $ + (Const ("Not", _) $ (Const (rel, T) $ lhs $ rhs))) = + negate (decomp_typecheck data (T, (rel, lhs, rhs))) + | decomp_negation data _ = + NONE; + +fun decomp ctxt : term -> decompT option = + let + val thy = ProofContext.theory_of ctxt + val {discrete, inj_consts, ...} = get_arith_data ctxt + in decomp_negation (thy, discrete, inj_consts) end; + +fun domain_is_nat (_ $ (Const (_, T) $ _ $ _)) = nT T + | domain_is_nat (_ $ (Const ("Not", _) $ (Const (_, T) $ _ $ _))) = nT T + | domain_is_nat _ = false; + +fun number_of (n, T) = HOLogic.mk_number T n; + +(*---------------------------------------------------------------------------*) +(* the following code performs splitting of certain constants (e.g. min, *) +(* max) in a linear arithmetic problem; similar to what split_tac later does *) +(* to the proof state *) +(*---------------------------------------------------------------------------*) + +(* checks if splitting with 'thm' is implemented *) + +fun is_split_thm (thm : thm) : bool = + case concl_of thm of _ $ (_ $ (_ $ lhs) $ _) => ( + (* Trueprop $ ((op =) $ (?P $ lhs) $ rhs) *) + case head_of lhs of + Const (a, _) => member (op =) [@{const_name Orderings.max}, + @{const_name Orderings.min}, + @{const_name HOL.abs}, + @{const_name HOL.minus}, + "IntDef.nat", + "Divides.div_class.mod", + "Divides.div_class.div"] a + | _ => (warning ("Lin. Arith.: wrong format for split rule " ^ + Display.string_of_thm thm); + false)) + | _ => (warning ("Lin. Arith.: wrong format for split rule " ^ + Display.string_of_thm thm); + false); + +(* substitute new for occurrences of old in a term, incrementing bound *) +(* variables as needed when substituting inside an abstraction *) + +fun subst_term ([] : (term * term) list) (t : term) = t + | subst_term pairs t = + (case AList.lookup (op aconv) pairs t of + SOME new => + new + | NONE => + (case t of Abs (a, T, body) => + let val pairs' = map (pairself (incr_boundvars 1)) pairs + in Abs (a, T, subst_term pairs' body) end + | t1 $ t2 => + subst_term pairs t1 $ subst_term pairs t2 + | _ => t)); + +(* approximates the effect of one application of split_tac (followed by NNF *) +(* normalization) on the subgoal represented by '(Ts, terms)'; returns a *) +(* list of new subgoals (each again represented by a typ list for bound *) +(* variables and a term list for premises), or NONE if split_tac would fail *) +(* on the subgoal *) + +(* FIXME: currently only the effect of certain split theorems is reproduced *) +(* (which is why we need 'is_split_thm'). A more canonical *) +(* implementation should analyze the right-hand side of the split *) +(* theorem that can be applied, and modify the subgoal accordingly. *) +(* Or even better, the splitter should be extended to provide *) +(* splitting on terms as well as splitting on theorems (where the *) +(* former can have a faster implementation as it does not need to be *) +(* proof-producing). *) + +fun split_once_items ctxt (Ts : typ list, terms : term list) : + (typ list * term list) list option = +let + val thy = ProofContext.theory_of ctxt + (* takes a list [t1, ..., tn] to the term *) + (* tn' --> ... --> t1' --> False , *) + (* where ti' = HOLogic.dest_Trueprop ti *) + fun REPEAT_DETERM_etac_rev_mp terms' = + fold (curry HOLogic.mk_imp) (map HOLogic.dest_Trueprop terms') HOLogic.false_const + val split_thms = filter is_split_thm (#splits (get_arith_data ctxt)) + val cmap = Splitter.cmap_of_split_thms split_thms + val splits = Splitter.split_posns cmap thy Ts (REPEAT_DETERM_etac_rev_mp terms) + val split_limit = ConfigOption.get ctxt fast_arith_split_limit +in + if length splits > split_limit then + (tracing ("fast_arith_split_limit exceeded (current value is " ^ + string_of_int split_limit ^ ")"); NONE) + else ( + case splits of [] => + (* split_tac would fail: no possible split *) + NONE + | ((_, _, _, split_type, split_term) :: _) => ( + (* ignore all but the first possible split *) + case strip_comb split_term of + (* ?P (max ?i ?j) = ((?i <= ?j --> ?P ?j) & (~ ?i <= ?j --> ?P ?i)) *) + (Const (@{const_name Orderings.max}, _), [t1, t2]) => + let + val rev_terms = rev terms + val terms1 = map (subst_term [(split_term, t1)]) rev_terms + val terms2 = map (subst_term [(split_term, t2)]) rev_terms + val t1_leq_t2 = Const (@{const_name HOL.less_eq}, + split_type --> split_type --> HOLogic.boolT) $ t1 $ t2 + val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2 + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop t1_leq_t2) :: terms2 @ [not_false] + val subgoal2 = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms1 @ [not_false] + in + SOME [(Ts, subgoal1), (Ts, subgoal2)] + end + (* ?P (min ?i ?j) = ((?i <= ?j --> ?P ?i) & (~ ?i <= ?j --> ?P ?j)) *) + | (Const (@{const_name Orderings.min}, _), [t1, t2]) => + let + val rev_terms = rev terms + val terms1 = map (subst_term [(split_term, t1)]) rev_terms + val terms2 = map (subst_term [(split_term, t2)]) rev_terms + val t1_leq_t2 = Const (@{const_name HOL.less_eq}, + split_type --> split_type --> HOLogic.boolT) $ t1 $ t2 + val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2 + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop t1_leq_t2) :: terms1 @ [not_false] + val subgoal2 = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms2 @ [not_false] + in + SOME [(Ts, subgoal1), (Ts, subgoal2)] + end + (* ?P (abs ?a) = ((0 <= ?a --> ?P ?a) & (?a < 0 --> ?P (- ?a))) *) + | (Const (@{const_name HOL.abs}, _), [t1]) => + let + val rev_terms = rev terms + val terms1 = map (subst_term [(split_term, t1)]) rev_terms + val terms2 = map (subst_term [(split_term, Const (@{const_name HOL.uminus}, + split_type --> split_type) $ t1)]) rev_terms + val zero = Const (@{const_name HOL.zero}, split_type) + val zero_leq_t1 = Const (@{const_name HOL.less_eq}, + split_type --> split_type --> HOLogic.boolT) $ zero $ t1 + val t1_lt_zero = Const (@{const_name HOL.less}, + split_type --> split_type --> HOLogic.boolT) $ t1 $ zero + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop zero_leq_t1) :: terms1 @ [not_false] + val subgoal2 = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false] + in + SOME [(Ts, subgoal1), (Ts, subgoal2)] + end + (* ?P (?a - ?b) = ((?a < ?b --> ?P 0) & (ALL d. ?a = ?b + d --> ?P d)) *) + | (Const (@{const_name HOL.minus}, _), [t1, t2]) => + let + (* "d" in the above theorem becomes a new bound variable after NNF *) + (* transformation, therefore some adjustment of indices is necessary *) + val rev_terms = rev terms + val zero = Const (@{const_name HOL.zero}, split_type) + val d = Bound 0 + val terms1 = map (subst_term [(split_term, zero)]) rev_terms + val terms2 = map (subst_term [(incr_boundvars 1 split_term, d)]) + (map (incr_boundvars 1) rev_terms) + val t1' = incr_boundvars 1 t1 + val t2' = incr_boundvars 1 t2 + val t1_lt_t2 = Const (@{const_name HOL.less}, + split_type --> split_type --> HOLogic.boolT) $ t1 $ t2 + val t1_eq_t2_plus_d = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $ + (Const (@{const_name HOL.plus}, + split_type --> split_type --> split_type) $ t2' $ d) + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop t1_lt_t2) :: terms1 @ [not_false] + val subgoal2 = (HOLogic.mk_Trueprop t1_eq_t2_plus_d) :: terms2 @ [not_false] + in + SOME [(Ts, subgoal1), (split_type :: Ts, subgoal2)] + end + (* ?P (nat ?i) = ((ALL n. ?i = int n --> ?P n) & (?i < 0 --> ?P 0)) *) + | (Const ("IntDef.nat", _), [t1]) => + let + val rev_terms = rev terms + val zero_int = Const (@{const_name HOL.zero}, HOLogic.intT) + val zero_nat = Const (@{const_name HOL.zero}, HOLogic.natT) + val n = Bound 0 + val terms1 = map (subst_term [(incr_boundvars 1 split_term, n)]) + (map (incr_boundvars 1) rev_terms) + val terms2 = map (subst_term [(split_term, zero_nat)]) rev_terms + val t1' = incr_boundvars 1 t1 + val t1_eq_int_n = Const ("op =", HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1' $ + (Const ("Nat.of_nat", HOLogic.natT --> HOLogic.intT) $ n) + val t1_lt_zero = Const (@{const_name HOL.less}, + HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1 $ zero_int + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop t1_eq_int_n) :: terms1 @ [not_false] + val subgoal2 = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false] + in + SOME [(HOLogic.natT :: Ts, subgoal1), (Ts, subgoal2)] + end + (* "?P ((?n::nat) mod (number_of ?k)) = + ((number_of ?k = 0 --> ?P ?n) & (~ (number_of ?k = 0) --> + (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P j))) *) + | (Const ("Divides.div_class.mod", Type ("fun", [Type ("nat", []), _])), [t1, t2]) => + let + val rev_terms = rev terms + val zero = Const (@{const_name HOL.zero}, split_type) + val i = Bound 1 + val j = Bound 0 + val terms1 = map (subst_term [(split_term, t1)]) rev_terms + val terms2 = map (subst_term [(incr_boundvars 2 split_term, j)]) + (map (incr_boundvars 2) rev_terms) + val t1' = incr_boundvars 2 t1 + val t2' = incr_boundvars 2 t2 + val t2_eq_zero = Const ("op =", + split_type --> split_type --> HOLogic.boolT) $ t2 $ zero + val t2_neq_zero = HOLogic.mk_not (Const ("op =", + split_type --> split_type --> HOLogic.boolT) $ t2' $ zero) + val j_lt_t2 = Const (@{const_name HOL.less}, + split_type --> split_type--> HOLogic.boolT) $ j $ t2' + val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $ + (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $ + (Const (@{const_name HOL.times}, + split_type --> split_type --> split_type) $ t2' $ i) $ j) + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false] + val subgoal2 = (map HOLogic.mk_Trueprop + [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j]) + @ terms2 @ [not_false] + in + SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)] + end + (* "?P ((?n::nat) div (number_of ?k)) = + ((number_of ?k = 0 --> ?P 0) & (~ (number_of ?k = 0) --> + (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P i))) *) + | (Const ("Divides.div_class.div", Type ("fun", [Type ("nat", []), _])), [t1, t2]) => + let + val rev_terms = rev terms + val zero = Const (@{const_name HOL.zero}, split_type) + val i = Bound 1 + val j = Bound 0 + val terms1 = map (subst_term [(split_term, zero)]) rev_terms + val terms2 = map (subst_term [(incr_boundvars 2 split_term, i)]) + (map (incr_boundvars 2) rev_terms) + val t1' = incr_boundvars 2 t1 + val t2' = incr_boundvars 2 t2 + val t2_eq_zero = Const ("op =", + split_type --> split_type --> HOLogic.boolT) $ t2 $ zero + val t2_neq_zero = HOLogic.mk_not (Const ("op =", + split_type --> split_type --> HOLogic.boolT) $ t2' $ zero) + val j_lt_t2 = Const (@{const_name HOL.less}, + split_type --> split_type--> HOLogic.boolT) $ j $ t2' + val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $ + (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $ + (Const (@{const_name HOL.times}, + split_type --> split_type --> split_type) $ t2' $ i) $ j) + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false] + val subgoal2 = (map HOLogic.mk_Trueprop + [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j]) + @ terms2 @ [not_false] + in + SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)] + end + (* "?P ((?n::int) mod (number_of ?k)) = + ((iszero (number_of ?k) --> ?P ?n) & + (neg (number_of (uminus ?k)) --> + (ALL i j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j --> ?P j)) & + (neg (number_of ?k) --> + (ALL i j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j --> ?P j))) *) + | (Const ("Divides.div_class.mod", + Type ("fun", [Type ("IntDef.int", []), _])), [t1, t2 as (number_of $ k)]) => + let + val rev_terms = rev terms + val zero = Const (@{const_name HOL.zero}, split_type) + val i = Bound 1 + val j = Bound 0 + val terms1 = map (subst_term [(split_term, t1)]) rev_terms + val terms2_3 = map (subst_term [(incr_boundvars 2 split_term, j)]) + (map (incr_boundvars 2) rev_terms) + val t1' = incr_boundvars 2 t1 + val (t2' as (_ $ k')) = incr_boundvars 2 t2 + val iszero_t2 = Const ("IntDef.iszero", split_type --> HOLogic.boolT) $ t2 + val neg_minus_k = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ + (number_of $ + (Const (@{const_name HOL.uminus}, + HOLogic.intT --> HOLogic.intT) $ k')) + val zero_leq_j = Const (@{const_name HOL.less_eq}, + split_type --> split_type --> HOLogic.boolT) $ zero $ j + val j_lt_t2 = Const (@{const_name HOL.less}, + split_type --> split_type--> HOLogic.boolT) $ j $ t2' + val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $ + (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $ + (Const (@{const_name HOL.times}, + split_type --> split_type --> split_type) $ t2' $ i) $ j) + val neg_t2 = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ t2' + val t2_lt_j = Const (@{const_name HOL.less}, + split_type --> split_type--> HOLogic.boolT) $ t2' $ j + val j_leq_zero = Const (@{const_name HOL.less_eq}, + split_type --> split_type --> HOLogic.boolT) $ j $ zero + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false] + val subgoal2 = (map HOLogic.mk_Trueprop [neg_minus_k, zero_leq_j]) + @ hd terms2_3 + :: (if tl terms2_3 = [] then [not_false] else []) + @ (map HOLogic.mk_Trueprop [j_lt_t2, t1_eq_t2_times_i_plus_j]) + @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false]) + val subgoal3 = (map HOLogic.mk_Trueprop [neg_t2, t2_lt_j]) + @ hd terms2_3 + :: (if tl terms2_3 = [] then [not_false] else []) + @ (map HOLogic.mk_Trueprop [j_leq_zero, t1_eq_t2_times_i_plus_j]) + @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false]) + val Ts' = split_type :: split_type :: Ts + in + SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)] + end + (* "?P ((?n::int) div (number_of ?k)) = + ((iszero (number_of ?k) --> ?P 0) & + (neg (number_of (uminus ?k)) --> + (ALL i. (EX j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j) --> ?P i)) & + (neg (number_of ?k) --> + (ALL i. (EX j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j) --> ?P i))) *) + | (Const ("Divides.div_class.div", + Type ("fun", [Type ("IntDef.int", []), _])), [t1, t2 as (number_of $ k)]) => + let + val rev_terms = rev terms + val zero = Const (@{const_name HOL.zero}, split_type) + val i = Bound 1 + val j = Bound 0 + val terms1 = map (subst_term [(split_term, zero)]) rev_terms + val terms2_3 = map (subst_term [(incr_boundvars 2 split_term, i)]) + (map (incr_boundvars 2) rev_terms) + val t1' = incr_boundvars 2 t1 + val (t2' as (_ $ k')) = incr_boundvars 2 t2 + val iszero_t2 = Const ("IntDef.iszero", split_type --> HOLogic.boolT) $ t2 + val neg_minus_k = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ + (number_of $ + (Const (@{const_name HOL.uminus}, + HOLogic.intT --> HOLogic.intT) $ k')) + val zero_leq_j = Const (@{const_name HOL.less_eq}, + split_type --> split_type --> HOLogic.boolT) $ zero $ j + val j_lt_t2 = Const (@{const_name HOL.less}, + split_type --> split_type--> HOLogic.boolT) $ j $ t2' + val t1_eq_t2_times_i_plus_j = Const ("op =", + split_type --> split_type --> HOLogic.boolT) $ t1' $ + (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $ + (Const (@{const_name HOL.times}, + split_type --> split_type --> split_type) $ t2' $ i) $ j) + val neg_t2 = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ t2' + val t2_lt_j = Const (@{const_name HOL.less}, + split_type --> split_type--> HOLogic.boolT) $ t2' $ j + val j_leq_zero = Const (@{const_name HOL.less_eq}, + split_type --> split_type --> HOLogic.boolT) $ j $ zero + val not_false = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const) + val subgoal1 = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false] + val subgoal2 = (HOLogic.mk_Trueprop neg_minus_k) + :: terms2_3 + @ not_false + :: (map HOLogic.mk_Trueprop + [zero_leq_j, j_lt_t2, t1_eq_t2_times_i_plus_j]) + val subgoal3 = (HOLogic.mk_Trueprop neg_t2) + :: terms2_3 + @ not_false + :: (map HOLogic.mk_Trueprop + [t2_lt_j, j_leq_zero, t1_eq_t2_times_i_plus_j]) + val Ts' = split_type :: split_type :: Ts + in + SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)] + end + (* this will only happen if a split theorem can be applied for which no *) + (* code exists above -- in which case either the split theorem should be *) + (* implemented above, or 'is_split_thm' should be modified to filter it *) + (* out *) + | (t, ts) => ( + warning ("Lin. Arith.: split rule for " ^ ProofContext.string_of_term ctxt t ^ + " (with " ^ string_of_int (length ts) ^ + " argument(s)) not implemented; proof reconstruction is likely to fail"); + NONE + )) + ) +end; + +(* remove terms that do not satisfy 'p'; change the order of the remaining *) +(* terms in the same way as filter_prems_tac does *) + +fun filter_prems_tac_items (p : term -> bool) (terms : term list) : term list = +let + fun filter_prems (t, (left, right)) = + if p t then (left, right @ [t]) else (left @ right, []) + val (left, right) = foldl filter_prems ([], []) terms +in + right @ left +end; + +(* return true iff TRY (etac notE) THEN eq_assume_tac would succeed on a *) +(* subgoal that has 'terms' as premises *) + +fun negated_term_occurs_positively (terms : term list) : bool = + List.exists + (fn (Trueprop $ (Const ("Not", _) $ t)) => member (op aconv) terms (Trueprop $ t) + | _ => false) + terms; + +fun pre_decomp ctxt (Ts : typ list, terms : term list) : (typ list * term list) list = +let + (* repeatedly split (including newly emerging subgoals) until no further *) + (* splitting is possible *) + fun split_loop ([] : (typ list * term list) list) = ([] : (typ list * term list) list) + | split_loop (subgoal::subgoals) = ( + case split_once_items ctxt subgoal of + SOME new_subgoals => split_loop (new_subgoals @ subgoals) + | NONE => subgoal :: split_loop subgoals + ) + fun is_relevant t = isSome (decomp ctxt t) + (* filter_prems_tac is_relevant: *) + val relevant_terms = filter_prems_tac_items is_relevant terms + (* split_tac, NNF normalization: *) + val split_goals = split_loop [(Ts, relevant_terms)] + (* necessary because split_once_tac may normalize terms: *) + val beta_eta_norm = map (apsnd (map (Envir.eta_contract o Envir.beta_norm))) split_goals + (* TRY (etac notE) THEN eq_assume_tac: *) + val result = List.filter (not o negated_term_occurs_positively o snd) beta_eta_norm +in + result +end; + +(* takes the i-th subgoal [| A1; ...; An |] ==> B to *) +(* An --> ... --> A1 --> B, performs splitting with the given 'split_thms' *) +(* (resulting in a different subgoal P), takes P to ~P ==> False, *) +(* performs NNF-normalization of ~P, and eliminates conjunctions, *) +(* disjunctions and existential quantifiers from the premises, possibly (in *) +(* the case of disjunctions) resulting in several new subgoals, each of the *) +(* general form [| Q1; ...; Qm |] ==> False. Fails if more than *) +(* !fast_arith_split_limit splits are possible. *) + +local + val nnf_simpset = + empty_ss setmkeqTrue mk_eq_True + setmksimps (mksimps mksimps_pairs) + addsimps [imp_conv_disj, iff_conv_conj_imp, de_Morgan_disj, de_Morgan_conj, + not_all, not_ex, not_not] + fun prem_nnf_tac i st = + full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st +in + +fun split_once_tac ctxt split_thms = + let + val thy = ProofContext.theory_of ctxt + val cond_split_tac = SUBGOAL (fn (subgoal, i) => + let + val Ts = rev (map snd (Logic.strip_params subgoal)) + val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl subgoal) + val cmap = Splitter.cmap_of_split_thms split_thms + val splits = Splitter.split_posns cmap thy Ts concl + val split_limit = ConfigOption.get ctxt fast_arith_split_limit + in + if length splits > split_limit then no_tac + else split_tac split_thms i + end) + in + EVERY' [ + REPEAT_DETERM o etac rev_mp, + cond_split_tac, + rtac ccontr, + prem_nnf_tac, + TRY o REPEAT_ALL_NEW (DETERM o (eresolve_tac [conjE, exE] ORELSE' etac disjE)) + ] + end; + +end; (* local *) + +(* remove irrelevant premises, then split the i-th subgoal (and all new *) +(* subgoals) by using 'split_once_tac' repeatedly. Beta-eta-normalize new *) +(* subgoals and finally attempt to solve them by finding an immediate *) +(* contradiction (i.e. a term and its negation) in their premises. *) + +fun pre_tac ctxt i = +let + val split_thms = filter is_split_thm (#splits (get_arith_data ctxt)) + fun is_relevant t = isSome (decomp ctxt t) +in + DETERM ( + TRY (filter_prems_tac is_relevant i) + THEN ( + (TRY o REPEAT_ALL_NEW (split_once_tac ctxt split_thms)) + THEN_ALL_NEW + (CONVERSION Drule.beta_eta_conversion + THEN' + (TRY o (etac notE THEN' eq_assume_tac))) + ) i + ) +end; + +end; (* LA_Data_Ref *) + + +val lin_arith_pre_tac = LA_Data_Ref.pre_tac; + +structure Fast_Arith = + Fast_Lin_Arith(structure LA_Logic=LA_Logic and LA_Data=LA_Data_Ref); + +val map_data = Fast_Arith.map_data; + +fun fast_arith_tac ctxt = Fast_Arith.lin_arith_tac ctxt false; +val fast_ex_arith_tac = Fast_Arith.lin_arith_tac; +val trace_arith = Fast_Arith.trace; + +(* reduce contradictory <= to False. + Most of the work is done by the cancel tactics. *) + +val init_arith_data = + Fast_Arith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, ...} => + {add_mono_thms = add_mono_thms @ + @{thms add_mono_thms_ordered_semiring} @ @{thms add_mono_thms_ordered_field}, + mult_mono_thms = mult_mono_thms, + inj_thms = inj_thms, + lessD = lessD @ [thm "Suc_leI"], + neqE = [@{thm linorder_neqE_nat}, @{thm linorder_neqE_ordered_idom}], + simpset = HOL_basic_ss + addsimps + [@{thm "monoid_add_class.zero_plus.add_0_left"}, + @{thm "monoid_add_class.zero_plus.add_0_right"}, + @{thm "Zero_not_Suc"}, @{thm "Suc_not_Zero"}, @{thm "le_0_eq"}, @{thm "One_nat_def"}, + @{thm "order_less_irrefl"}, @{thm "zero_neq_one"}, @{thm "zero_less_one"}, + @{thm "zero_le_one"}, @{thm "zero_neq_one"} RS not_sym, @{thm "not_one_le_zero"}, + @{thm "not_one_less_zero"}] + addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv] + (*abel_cancel helps it work in abstract algebraic domains*) + addsimprocs nat_cancel_sums_add}) #> + arith_discrete "nat"; + +val lin_arith_simproc = Fast_Arith.lin_arith_simproc; + +val fast_nat_arith_simproc = + Simplifier.simproc (the_context ()) "fast_nat_arith" + ["(m::nat) < n","(m::nat) <= n", "(m::nat) = n"] (K Fast_Arith.lin_arith_simproc); + +(* Because of fast_nat_arith_simproc, the arithmetic solver is really only +useful to detect inconsistencies among the premises for subgoals which are +*not* themselves (in)equalities, because the latter activate +fast_nat_arith_simproc anyway. However, it seems cheaper to activate the +solver all the time rather than add the additional check. *) + + +(* arith proof method *) + +local + +fun raw_arith_tac ctxt ex = + (* FIXME: K true should be replaced by a sensible test (perhaps "isSome o + decomp sg"? -- but note that the test is applied to terms already before + they are split/normalized) to speed things up in case there are lots of + irrelevant terms involved; elimination of min/max can be optimized: + (max m n + k <= r) = (m+k <= r & n+k <= r) + (l <= min m n + k) = (l <= m+k & l <= n+k) + *) + refute_tac (K true) + (* Splitting is also done inside fast_arith_tac, but not completely -- *) + (* split_tac may use split theorems that have not been implemented in *) + (* fast_arith_tac (cf. pre_decomp and split_once_items above), and *) + (* fast_arith_split_limit may trigger. *) + (* Therefore splitting outside of fast_arith_tac may allow us to prove *) + (* some goals that fast_arith_tac alone would fail on. *) + (REPEAT_DETERM o split_tac (#splits (get_arith_data ctxt))) + (fast_ex_arith_tac ctxt ex); + +fun more_arith_tacs ctxt = + let val tactics = #tactics (get_arith_data ctxt) + in FIRST' (map (fn ArithTactic {tactic, ...} => tactic ctxt) tactics) end; + +in + +fun simple_arith_tac ctxt = FIRST' [fast_arith_tac ctxt, + ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true]; + +fun arith_tac ctxt = FIRST' [fast_arith_tac ctxt, + ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true, + more_arith_tacs ctxt]; + +fun silent_arith_tac ctxt = FIRST' [fast_arith_tac ctxt, + ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt false, + more_arith_tacs ctxt]; + +fun arith_method src = + Method.syntax Args.bang_facts src + #> (fn (prems, ctxt) => Method.METHOD (fn facts => + HEADGOAL (Method.insert_tac (prems @ facts) THEN' arith_tac ctxt))); + +end; + + +(* context setup *) + +val setup = + init_arith_data #> + Simplifier.map_ss (fn ss => ss addsimprocs [fast_nat_arith_simproc] + addSolver (mk_solver' "lin_arith" Fast_Arith.cut_lin_arith_tac)) #> + Context.mapping + (setup_options #> + Method.add_methods + [("arith", arith_method, "decide linear arithmethic")] #> + Attrib.add_attributes [("arith_split", Attrib.no_args arith_split_add, + "declaration of split rules for arithmetic procedure")]) I; + +end; + +structure BasicLinArith: BASIC_LIN_ARITH = LinArith; +open BasicLinArith;