# HG changeset patch # User nipkow # Date 1283853858 -7200 # Node ID 720112792ba0361ad85ad4c0667cc1ca51c46f53 # Parent f967a16dfcdda658afa03943d43bfd377f658012 renamed expand_*_eq in HOLCF as well diff -r f967a16dfcdd -r 720112792ba0 NEWS --- a/NEWS Tue Sep 07 10:05:19 2010 +0200 +++ b/NEWS Tue Sep 07 12:04:18 2010 +0200 @@ -68,6 +68,8 @@ *** HOL *** +* Renamed lemmas: expand_fun_eq -> ext_iff, expand_set_eq -> set_ext_iff + * Renamed class eq and constant eq (for code generation) to class equal and constant equal, plus renaming of related facts and various tuning. INCOMPATIBILITY. diff -r f967a16dfcdd -r 720112792ba0 src/HOLCF/Algebraic.thy --- a/src/HOLCF/Algebraic.thy Tue Sep 07 10:05:19 2010 +0200 +++ b/src/HOLCF/Algebraic.thy Tue Sep 07 12:04:18 2010 +0200 @@ -446,7 +446,7 @@ apply (clarify, simp add: fd_take_fixed_iff) apply (simp add: finite_fixes_approx) apply (rule inj_onI, clarify) -apply (simp add: expand_set_eq fin_defl_eqI) +apply (simp add: set_ext_iff fin_defl_eqI) done lemma fd_take_covers: "\n. fd_take n a = a" diff -r f967a16dfcdd -r 720112792ba0 src/HOLCF/Cfun.thy --- a/src/HOLCF/Cfun.thy Tue Sep 07 10:05:19 2010 +0200 +++ b/src/HOLCF/Cfun.thy Tue Sep 07 12:04:18 2010 +0200 @@ -178,7 +178,7 @@ text {* Extensionality for continuous functions *} lemma expand_cfun_eq: "(f = g) = (\x. f\x = g\x)" -by (simp add: Rep_CFun_inject [symmetric] expand_fun_eq) +by (simp add: Rep_CFun_inject [symmetric] ext_iff) lemma ext_cfun: "(\x. f\x = g\x) \ f = g" by (simp add: expand_cfun_eq) diff -r f967a16dfcdd -r 720112792ba0 src/HOLCF/Ffun.thy --- a/src/HOLCF/Ffun.thy Tue Sep 07 10:05:19 2010 +0200 +++ b/src/HOLCF/Ffun.thy Tue Sep 07 12:04:18 2010 +0200 @@ -27,7 +27,7 @@ next fix f g :: "'a \ 'b" assume "f \ g" and "g \ f" thus "f = g" - by (simp add: below_fun_def expand_fun_eq below_antisym) + by (simp add: below_fun_def ext_iff below_antisym) next fix f g h :: "'a \ 'b" assume "f \ g" and "g \ h" thus "f \ h" @@ -103,7 +103,7 @@ proof fix f g :: "'a \ 'b" show "f \ g \ f = g" - unfolding expand_fun_below expand_fun_eq + unfolding expand_fun_below ext_iff by simp qed @@ -111,7 +111,7 @@ lemma maxinch2maxinch_lambda: "(\x. max_in_chain n (\i. S i x)) \ max_in_chain n S" -unfolding max_in_chain_def expand_fun_eq by simp +unfolding max_in_chain_def ext_iff by simp lemma maxinch_mono: "\max_in_chain i Y; i \ j\ \ max_in_chain j Y" diff -r f967a16dfcdd -r 720112792ba0 src/HOLCF/Library/List_Cpo.thy --- a/src/HOLCF/Library/List_Cpo.thy Tue Sep 07 10:05:19 2010 +0200 +++ b/src/HOLCF/Library/List_Cpo.thy Tue Sep 07 12:04:18 2010 +0200 @@ -115,7 +115,7 @@ apply (induct n arbitrary: S) apply (subgoal_tac "S = (\i. [])") apply (fast intro: lub_const) - apply (simp add: expand_fun_eq) + apply (simp add: ext_iff) apply (drule_tac x="\i. tl (S i)" in meta_spec, clarsimp) apply (rule_tac x="(\i. hd (S i)) # x" in exI) apply (subgoal_tac "range (\i. hd (S i) # tl (S i)) = range S") diff -r f967a16dfcdd -r 720112792ba0 src/HOLCF/Pcpo.thy --- a/src/HOLCF/Pcpo.thy Tue Sep 07 10:05:19 2010 +0200 +++ b/src/HOLCF/Pcpo.thy Tue Sep 07 12:04:18 2010 +0200 @@ -89,7 +89,7 @@ lemma lub_equal: "\chain X; chain Y; \k. X k = Y k\ \ (\i. X i) = (\i. Y i)" - by (simp only: expand_fun_eq [symmetric]) + by (simp only: ext_iff [symmetric]) lemma lub_eq: "(\i. X i = Y i) \ (\i. X i) = (\i. Y i)" diff -r f967a16dfcdd -r 720112792ba0 src/HOLCF/Up.thy --- a/src/HOLCF/Up.thy Tue Sep 07 10:05:19 2010 +0200 +++ b/src/HOLCF/Up.thy Tue Sep 07 12:04:18 2010 +0200 @@ -135,7 +135,7 @@ (\A. chain A \ (\i. Y i) = Iup (\i. A i) \ (\j. \i. Y (i + j) = Iup (A i))) \ (Y = (\i. Ibottom))" apply (rule disjCI) -apply (simp add: expand_fun_eq) +apply (simp add: ext_iff) apply (erule exE, rename_tac j) apply (rule_tac x="\i. THE a. Iup a = Y (i + j)" in exI) apply (simp add: up_lemma4)