# HG changeset patch # User nipkow # Date 1041183091 -3600 # Node ID 731171c27be9ac904153f11153e56bbb9aea79e4 # Parent fb78ee03c391cd376e5d7dd57572a439085179f3 *** empty log message *** diff -r fb78ee03c391 -r 731171c27be9 doc-src/TutorialI/IsarOverview/Isar/Induction.thy --- a/doc-src/TutorialI/IsarOverview/Isar/Induction.thy Sun Dec 29 08:56:24 2002 +0100 +++ b/doc-src/TutorialI/IsarOverview/Isar/Induction.thy Sun Dec 29 18:31:31 2002 +0100 @@ -47,7 +47,7 @@ The same game can be played with other datatypes, for example lists, where @{term tl} is the tail of a list, and @{text length} returns a -natual number: +natural number: \Tweakskip *} (*<*)declare length_tl[simp del](*>*) @@ -132,7 +132,7 @@ automatically: for example in case @{text"(Suc n)"}, @{text ?case} is only @{prop"Q' x"} whereas the assumptions (named @{term Suc}!) contain both the usual induction hypothesis \emph{and} @{prop"P' x"}. -It should be clear how this generalizes to more complex formulae. +It should be clear how this generalises to more complex formulae. As an example we will now prove complete induction via structural induction. *} diff -r fb78ee03c391 -r 731171c27be9 doc-src/TutorialI/IsarOverview/Isar/Logic.thy --- a/doc-src/TutorialI/IsarOverview/Isar/Logic.thy Sun Dec 29 08:56:24 2002 +0100 +++ b/doc-src/TutorialI/IsarOverview/Isar/Logic.thy Sun Dec 29 18:31:31 2002 +0100 @@ -373,7 +373,7 @@ qed text{*\noindent Explicit $\exists$-elimination as seen above can become cumbersome in practice. The derived Isar language element -\isakeyword{obtain} provides a more appealing form of generalized +\isakeyword{obtain} provides a more appealing form of generalised existence reasoning: *} lemma assumes Pf: "\x. P(f x)" shows "\y. P y" @@ -536,7 +536,7 @@ important in Isar and distinguishes it from tactic-style proofs: \begin{quote}\em Do not manipulate the proof state into a particular form by applying -tactics but state the desired form explictly and let the tactic verify +tactics but state the desired form explicitly and let the tactic verify that from this form the original goal follows. \end{quote} This yields more readable and also more robust proofs. *}