# HG changeset patch # User wenzelm # Date 1331646256 -3600 # Node ID 73555abfa267fad331ced96bfa9d108a45c298b6 # Parent 58110c1e02bcd35412002ad319c0f60ee0dd9dc0 tuned proofs; diff -r 58110c1e02bc -r 73555abfa267 src/ZF/Induct/Binary_Trees.thy --- a/src/ZF/Induct/Binary_Trees.thy Tue Mar 13 14:17:42 2012 +0100 +++ b/src/ZF/Induct/Binary_Trees.thy Tue Mar 13 14:44:16 2012 +0100 @@ -123,10 +123,10 @@ *} lemma n_leaves_reflect: "t \ bt(A) ==> n_leaves(bt_reflect(t)) = n_leaves(t)" - by (induct set: bt) (simp_all add: add_commute n_leaves_type) + by (induct set: bt) (simp_all add: add_commute) lemma n_leaves_nodes: "t \ bt(A) ==> n_leaves(t) = succ(n_nodes(t))" - by (induct set: bt) (simp_all add: add_succ_right) + by (induct set: bt) simp_all text {* Theorems about @{term bt_reflect}. diff -r 58110c1e02bc -r 73555abfa267 src/ZF/Induct/Brouwer.thy --- a/src/ZF/Induct/Brouwer.thy Tue Mar 13 14:17:42 2012 +0100 +++ b/src/ZF/Induct/Brouwer.thy Tue Mar 13 14:44:16 2012 +0100 @@ -71,7 +71,7 @@ -- {* In fact it's isomorphic to @{text nat}, but we need a recursion operator *} -- {* for @{text Well} to prove this. *} apply (rule Well_unfold [THEN trans]) - apply (simp add: Sigma_bool Pi_empty1 succ_def) + apply (simp add: Sigma_bool succ_def) done end diff -r 58110c1e02bc -r 73555abfa267 src/ZF/Induct/Comb.thy --- a/src/ZF/Induct/Comb.thy Tue Mar 13 14:17:42 2012 +0100 +++ b/src/ZF/Induct/Comb.thy Tue Mar 13 14:44:16 2012 +0100 @@ -114,8 +114,6 @@ inductive_cases Ap_E [elim!]: "p\q \ comb" -declare comb.intros [intro!] - subsection {* Results about Contraction *} @@ -189,13 +187,13 @@ text {* Counterexample to the diamond property for @{text "-1->"}. *} lemma KIII_contract1: "K\I\(I\I) -1-> I" - by (blast intro: comb.intros contract.K comb_I) + by (blast intro: comb_I) lemma KIII_contract2: "K\I\(I\I) -1-> K\I\((K\I)\(K\I))" - by (unfold I_def) (blast intro: comb.intros contract.intros) + by (unfold I_def) (blast intro: contract.intros) lemma KIII_contract3: "K\I\((K\I)\(K\I)) -1-> I" - by (blast intro: comb.intros contract.K comb_I) + by (blast intro: comb_I) lemma not_diamond_contract: "\ diamond(contract)" apply (unfold diamond_def) diff -r 58110c1e02bc -r 73555abfa267 src/ZF/Induct/Term.thy --- a/src/ZF/Induct/Term.thy Tue Mar 13 14:17:42 2012 +0100 +++ b/src/ZF/Induct/Term.thy Tue Mar 13 14:44:16 2012 +0100 @@ -138,8 +138,7 @@ apply (subst term_rec) apply (assumption | rule a)+ apply (erule list.induct) - apply (simp add: term_rec) - apply (auto simp add: term_rec) + apply auto done lemma def_term_rec: