# HG changeset patch # User hoelzl # Date 1241029190 -7200 # Node ID 73dd67adf90a352ee0beb7a2599c9fe97fa9db99 # Parent a09767ab684d2c432ae5ee74202b5e8f73655d39 replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith diff -r a09767ab684d -r 73dd67adf90a src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Mon May 11 08:29:28 2009 -0700 +++ b/src/HOL/Decision_Procs/Approximation.thy Wed Apr 29 20:19:50 2009 +0200 @@ -10,7 +10,7 @@ subsection {* Define auxiliary helper @{text horner} function *} -fun horner :: "(nat \ nat) \ (nat \ nat \ nat) \ nat \ nat \ nat \ real \ real" where +primrec horner :: "(nat \ nat) \ (nat \ nat \ nat) \ nat \ nat \ nat \ real \ real" where "horner F G 0 i k x = 0" | "horner F G (Suc n) i k x = 1 / real k - x * horner F G n (F i) (G i k) x" @@ -33,32 +33,32 @@ qed auto lemma horner_bounds': - assumes "0 \ Ifloat x" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)" + assumes "0 \ real x" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)" and lb_0: "\ i k x. lb 0 i k x = 0" and lb_Suc: "\ n i k x. lb (Suc n) i k x = lapprox_rat prec 1 (int k) - x * (ub n (F i) (G i k) x)" and ub_0: "\ i k x. ub 0 i k x = 0" and ub_Suc: "\ n i k x. ub (Suc n) i k x = rapprox_rat prec 1 (int k) - x * (lb n (F i) (G i k) x)" - shows "Ifloat (lb n ((F ^^ j') s) (f j') x) \ horner F G n ((F ^^ j') s) (f j') (Ifloat x) \ - horner F G n ((F ^^ j') s) (f j') (Ifloat x) \ Ifloat (ub n ((F ^^ j') s) (f j') x)" + shows "real (lb n ((F ^^ j') s) (f j') x) \ horner F G n ((F ^^ j') s) (f j') (real x) \ + horner F G n ((F ^^ j') s) (f j') (real x) \ real (ub n ((F ^^ j') s) (f j') x)" (is "?lb n j' \ ?horner n j' \ ?horner n j' \ ?ub n j'") proof (induct n arbitrary: j') case 0 thus ?case unfolding lb_0 ub_0 horner.simps by auto next case (Suc n) - have "?lb (Suc n) j' \ ?horner (Suc n) j'" unfolding lb_Suc ub_Suc horner.simps Ifloat_sub diff_def + have "?lb (Suc n) j' \ ?horner (Suc n) j'" unfolding lb_Suc ub_Suc horner.simps real_of_float_sub diff_def proof (rule add_mono) - show "Ifloat (lapprox_rat prec 1 (int (f j'))) \ 1 / real (f j')" using lapprox_rat[of prec 1 "int (f j')"] by auto - from Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc, THEN conjunct2] `0 \ Ifloat x` - show "- Ifloat (x * ub n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) x) \ - (Ifloat x * horner F G n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) (Ifloat x))" - unfolding Ifloat_mult neg_le_iff_le by (rule mult_left_mono) + show "real (lapprox_rat prec 1 (int (f j'))) \ 1 / real (f j')" using lapprox_rat[of prec 1 "int (f j')"] by auto + from Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc, THEN conjunct2] `0 \ real x` + show "- real (x * ub n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) x) \ - (real x * horner F G n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) (real x))" + unfolding real_of_float_mult neg_le_iff_le by (rule mult_left_mono) qed - moreover have "?horner (Suc n) j' \ ?ub (Suc n) j'" unfolding ub_Suc ub_Suc horner.simps Ifloat_sub diff_def + moreover have "?horner (Suc n) j' \ ?ub (Suc n) j'" unfolding ub_Suc ub_Suc horner.simps real_of_float_sub diff_def proof (rule add_mono) - show "1 / real (f j') \ Ifloat (rapprox_rat prec 1 (int (f j')))" using rapprox_rat[of 1 "int (f j')" prec] by auto - from Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc, THEN conjunct1] `0 \ Ifloat x` - show "- (Ifloat x * horner F G n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) (Ifloat x)) \ - - Ifloat (x * lb n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) x)" - unfolding Ifloat_mult neg_le_iff_le by (rule mult_left_mono) + show "1 / real (f j') \ real (rapprox_rat prec 1 (int (f j')))" using rapprox_rat[of 1 "int (f j')" prec] by auto + from Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc, THEN conjunct1] `0 \ real x` + show "- (real x * horner F G n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) (real x)) \ + - real (x * lb n (F ((F ^^ j') s)) (G ((F ^^ j') s) (f j')) x)" + unfolding real_of_float_mult neg_le_iff_le by (rule mult_left_mono) qed ultimately show ?case by blast qed @@ -73,28 +73,28 @@ *} lemma horner_bounds: fixes F :: "nat \ nat" and G :: "nat \ nat \ nat" - assumes "0 \ Ifloat x" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)" + assumes "0 \ real x" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)" and lb_0: "\ i k x. lb 0 i k x = 0" and lb_Suc: "\ n i k x. lb (Suc n) i k x = lapprox_rat prec 1 (int k) - x * (ub n (F i) (G i k) x)" and ub_0: "\ i k x. ub 0 i k x = 0" and ub_Suc: "\ n i k x. ub (Suc n) i k x = rapprox_rat prec 1 (int k) - x * (lb n (F i) (G i k) x)" - shows "Ifloat (lb n ((F ^^ j') s) (f j') x) \ (\j=0..j=0.. Ifloat (ub n ((F ^^ j') s) (f j') x)" (is "?ub") + shows "real (lb n ((F ^^ j') s) (f j') x) \ (\j=0..j=0.. real (ub n ((F ^^ j') s) (f j') x)" (is "?ub") proof - have "?lb \ ?ub" - using horner_bounds'[where lb=lb, OF `0 \ Ifloat x` f_Suc lb_0 lb_Suc ub_0 ub_Suc] + using horner_bounds'[where lb=lb, OF `0 \ real x` f_Suc lb_0 lb_Suc ub_0 ub_Suc] unfolding horner_schema[where f=f, OF f_Suc] . thus "?lb" and "?ub" by auto qed lemma horner_bounds_nonpos: fixes F :: "nat \ nat" and G :: "nat \ nat \ nat" - assumes "Ifloat x \ 0" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)" + assumes "real x \ 0" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)" and lb_0: "\ i k x. lb 0 i k x = 0" and lb_Suc: "\ n i k x. lb (Suc n) i k x = lapprox_rat prec 1 (int k) + x * (ub n (F i) (G i k) x)" and ub_0: "\ i k x. ub 0 i k x = 0" and ub_Suc: "\ n i k x. ub (Suc n) i k x = rapprox_rat prec 1 (int k) + x * (lb n (F i) (G i k) x)" - shows "Ifloat (lb n ((F ^^ j') s) (f j') x) \ (\j=0..j=0.. Ifloat (ub n ((F ^^ j') s) (f j') x)" (is "?ub") + shows "real (lb n ((F ^^ j') s) (f j') x) \ (\j=0..j=0.. real (ub n ((F ^^ j') s) (f j') x)" (is "?ub") proof - { fix x y z :: float have "x - y * z = x + - y * z" by (cases x, cases y, cases z, simp add: plus_float.simps minus_float_def uminus_float.simps times_float.simps algebra_simps) @@ -102,19 +102,19 @@ { fix x :: float have "- (- x) = x" by (cases x, auto simp add: uminus_float.simps) } note minus_minus = this - have move_minus: "Ifloat (-x) = -1 * Ifloat x" by auto + have move_minus: "real (-x) = -1 * real x" by auto - have sum_eq: "(\j=0..j = 0..j=0..j = 0.. {0 ..< n}" - show "1 / real (f (j' + j)) * Ifloat x ^ j = -1 ^ j * (1 / real (f (j' + j))) * Ifloat (- x) ^ j" + show "1 / real (f (j' + j)) * real x ^ j = -1 ^ j * (1 / real (f (j' + j))) * real (- x) ^ j" unfolding move_minus power_mult_distrib real_mult_assoc[symmetric] unfolding real_mult_commute unfolding real_mult_assoc[of "-1 ^ j", symmetric] power_mult_distrib[symmetric] by auto qed - have "0 \ Ifloat (-x)" using assms by auto + have "0 \ real (-x)" using assms by auto from horner_bounds[where G=G and F=F and f=f and s=s and prec=prec and lb="\ n i k x. lb n i k (-x)" and ub="\ n i k x. ub n i k (-x)", unfolded lb_Suc ub_Suc diff_mult_minus, OF this f_Suc lb_0 refl ub_0 refl] @@ -159,34 +159,34 @@ else if u < 0 then (u ^ n, l ^ n) else (0, (max (-l) u) ^ n))" -lemma float_power_bnds: assumes "(l1, u1) = float_power_bnds n l u" and "x \ {Ifloat l .. Ifloat u}" - shows "x ^ n \ {Ifloat l1..Ifloat u1}" +lemma float_power_bnds: assumes "(l1, u1) = float_power_bnds n l u" and "x \ {real l .. real u}" + shows "x ^ n \ {real l1..real u1}" proof (cases "even n") case True show ?thesis proof (cases "0 < l") - case True hence "odd n \ 0 < l" and "0 \ Ifloat l" unfolding less_float_def by auto + case True hence "odd n \ 0 < l" and "0 \ real l" unfolding less_float_def by auto have u1: "u1 = u ^ n" and l1: "l1 = l ^ n" using assms unfolding float_power_bnds_def if_P[OF `odd n \ 0 < l`] by auto - have "Ifloat l ^ n \ x ^ n" and "x ^ n \ Ifloat u ^ n " using `0 \ Ifloat l` and assms unfolding atLeastAtMost_iff using power_mono[of "Ifloat l" x] power_mono[of x "Ifloat u"] by auto + have "real l ^ n \ x ^ n" and "x ^ n \ real u ^ n " using `0 \ real l` and assms unfolding atLeastAtMost_iff using power_mono[of "real l" x] power_mono[of x "real u"] by auto thus ?thesis using assms `0 < l` unfolding atLeastAtMost_iff l1 u1 float_power less_float_def by auto next case False hence P: "\ (odd n \ 0 < l)" using `even n` by auto show ?thesis proof (cases "u < 0") - case True hence "0 \ - Ifloat u" and "- Ifloat u \ - x" and "0 \ - x" and "-x \ - Ifloat l" using assms unfolding less_float_def by auto - hence "Ifloat u ^ n \ x ^ n" and "x ^ n \ Ifloat l ^ n" using power_mono[of "-x" "-Ifloat l" n] power_mono[of "-Ifloat u" "-x" n] + case True hence "0 \ - real u" and "- real u \ - x" and "0 \ - x" and "-x \ - real l" using assms unfolding less_float_def by auto + hence "real u ^ n \ x ^ n" and "x ^ n \ real l ^ n" using power_mono[of "-x" "-real l" n] power_mono[of "-real u" "-x" n] unfolding power_minus_even[OF `even n`] by auto moreover have u1: "u1 = l ^ n" and l1: "l1 = u ^ n" using assms unfolding float_power_bnds_def if_not_P[OF P] if_P[OF True] by auto ultimately show ?thesis using float_power by auto next case False - have "\x\ \ Ifloat (max (-l) u)" + have "\x\ \ real (max (-l) u)" proof (cases "-l \ u") case True thus ?thesis unfolding max_def if_P[OF True] using assms unfolding le_float_def by auto next case False thus ?thesis unfolding max_def if_not_P[OF False] using assms unfolding le_float_def by auto qed - hence x_abs: "\x\ \ \Ifloat (max (-l) u)\" by auto + hence x_abs: "\x\ \ \real (max (-l) u)\" by auto have u1: "u1 = (max (-l) u) ^ n" and l1: "l1 = 0" using assms unfolding float_power_bnds_def if_not_P[OF P] if_not_P[OF False] by auto show ?thesis unfolding atLeastAtMost_iff l1 u1 float_power using zero_le_even_power[OF `even n`] power_mono_even[OF `even n` x_abs] by auto qed @@ -194,11 +194,11 @@ next case False hence "odd n \ 0 < l" by auto have u1: "u1 = u ^ n" and l1: "l1 = l ^ n" using assms unfolding float_power_bnds_def if_P[OF `odd n \ 0 < l`] by auto - have "Ifloat l ^ n \ x ^ n" and "x ^ n \ Ifloat u ^ n " using assms unfolding atLeastAtMost_iff using power_mono_odd[OF False] by auto + have "real l ^ n \ x ^ n" and "x ^ n \ real u ^ n " using assms unfolding atLeastAtMost_iff using power_mono_odd[OF False] by auto thus ?thesis unfolding atLeastAtMost_iff l1 u1 float_power less_float_def by auto qed -lemma bnds_power: "\ x l u. (l1, u1) = float_power_bnds n l u \ x \ {Ifloat l .. Ifloat u} \ Ifloat l1 \ x ^ n \ x ^ n \ Ifloat u1" +lemma bnds_power: "\ x l u. (l1, u1) = float_power_bnds n l u \ x \ {real l .. real u} \ real l1 \ x ^ n \ x ^ n \ real u1" using float_power_bnds by auto section "Square root" @@ -234,8 +234,8 @@ thus ?thesis by (simp add: field_simps) qed -lemma sqrt_iteration_bound: assumes "0 < Ifloat x" - shows "sqrt (Ifloat x) < Ifloat (sqrt_iteration prec n x)" +lemma sqrt_iteration_bound: assumes "0 < real x" + shows "sqrt (real x) < real (sqrt_iteration prec n x)" proof (induct n) case 0 show ?case @@ -246,14 +246,14 @@ have int_nat_bl: "int (nat (bitlen m)) = bitlen m" using bitlen_ge0 by auto - have "Ifloat x = (real m / 2^nat (bitlen m)) * pow2 (e + int (nat (bitlen m)))" - unfolding pow2_add pow2_int Float Ifloat.simps by auto + have "real x = (real m / 2^nat (bitlen m)) * pow2 (e + int (nat (bitlen m)))" + unfolding pow2_add pow2_int Float real_of_float_simp by auto also have "\ < 1 * pow2 (e + int (nat (bitlen m)))" proof (rule mult_strict_right_mono, auto) show "real m < 2^nat (bitlen m)" using bitlen_bounds[OF `0 < m`, THEN conjunct2] unfolding real_of_int_less_iff[of m, symmetric] by auto qed - finally have "sqrt (Ifloat x) < sqrt (pow2 (e + bitlen m))" unfolding int_nat_bl by auto + finally have "sqrt (real x) < sqrt (pow2 (e + bitlen m))" unfolding int_nat_bl by auto also have "\ \ pow2 ((e + bitlen m) div 2 + 1)" proof - let ?E = "e + bitlen m" @@ -283,110 +283,110 @@ finally show ?thesis by auto qed finally show ?thesis - unfolding Float sqrt_iteration.simps Ifloat.simps by auto + unfolding Float sqrt_iteration.simps real_of_float_simp by auto qed next case (Suc n) let ?b = "sqrt_iteration prec n x" - have "0 < sqrt (Ifloat x)" using `0 < Ifloat x` by auto - also have "\ < Ifloat ?b" using Suc . - finally have "sqrt (Ifloat x) < (Ifloat ?b + Ifloat x / Ifloat ?b)/2" using sqrt_ub_pos_pos_1[OF Suc _ `0 < Ifloat x`] by auto - also have "\ \ (Ifloat ?b + Ifloat (float_divr prec x ?b))/2" by (rule divide_right_mono, auto simp add: float_divr) - also have "\ = Ifloat (Float 1 -1) * (Ifloat ?b + Ifloat (float_divr prec x ?b))" by auto - finally show ?case unfolding sqrt_iteration.simps Let_def Ifloat_mult Ifloat_add right_distrib . + have "0 < sqrt (real x)" using `0 < real x` by auto + also have "\ < real ?b" using Suc . + finally have "sqrt (real x) < (real ?b + real x / real ?b)/2" using sqrt_ub_pos_pos_1[OF Suc _ `0 < real x`] by auto + also have "\ \ (real ?b + real (float_divr prec x ?b))/2" by (rule divide_right_mono, auto simp add: float_divr) + also have "\ = real (Float 1 -1) * (real ?b + real (float_divr prec x ?b))" by auto + finally show ?case unfolding sqrt_iteration.simps Let_def real_of_float_mult real_of_float_add right_distrib . qed -lemma sqrt_iteration_lower_bound: assumes "0 < Ifloat x" - shows "0 < Ifloat (sqrt_iteration prec n x)" (is "0 < ?sqrt") +lemma sqrt_iteration_lower_bound: assumes "0 < real x" + shows "0 < real (sqrt_iteration prec n x)" (is "0 < ?sqrt") proof - - have "0 < sqrt (Ifloat x)" using assms by auto + have "0 < sqrt (real x)" using assms by auto also have "\ < ?sqrt" using sqrt_iteration_bound[OF assms] . finally show ?thesis . qed -lemma lb_sqrt_lower_bound: assumes "0 \ Ifloat x" - shows "0 \ Ifloat (the (lb_sqrt prec x))" +lemma lb_sqrt_lower_bound: assumes "0 \ real x" + shows "0 \ real (the (lb_sqrt prec x))" proof (cases "0 < x") - case True hence "0 < Ifloat x" and "0 \ x" using `0 \ Ifloat x` unfolding less_float_def le_float_def by auto + case True hence "0 < real x" and "0 \ x" using `0 \ real x` unfolding less_float_def le_float_def by auto hence "0 < sqrt_iteration prec prec x" unfolding less_float_def using sqrt_iteration_lower_bound by auto - hence "0 \ Ifloat (float_divl prec x (sqrt_iteration prec prec x))" using float_divl_lower_bound[OF `0 \ x`] unfolding le_float_def by auto + hence "0 \ real (float_divl prec x (sqrt_iteration prec prec x))" using float_divl_lower_bound[OF `0 \ x`] unfolding le_float_def by auto thus ?thesis unfolding lb_sqrt_def using True by auto next - case False with `0 \ Ifloat x` have "Ifloat x = 0" unfolding less_float_def by auto + case False with `0 \ real x` have "real x = 0" unfolding less_float_def by auto thus ?thesis unfolding lb_sqrt_def less_float_def by auto qed -lemma lb_sqrt_upper_bound: assumes "0 \ Ifloat x" - shows "Ifloat (the (lb_sqrt prec x)) \ sqrt (Ifloat x)" +lemma lb_sqrt_upper_bound: assumes "0 \ real x" + shows "real (the (lb_sqrt prec x)) \ sqrt (real x)" proof (cases "0 < x") - case True hence "0 < Ifloat x" and "0 \ Ifloat x" unfolding less_float_def by auto - hence sqrt_gt0: "0 < sqrt (Ifloat x)" by auto - hence sqrt_ub: "sqrt (Ifloat x) < Ifloat (sqrt_iteration prec prec x)" using sqrt_iteration_bound by auto + case True hence "0 < real x" and "0 \ real x" unfolding less_float_def by auto + hence sqrt_gt0: "0 < sqrt (real x)" by auto + hence sqrt_ub: "sqrt (real x) < real (sqrt_iteration prec prec x)" using sqrt_iteration_bound by auto - have "Ifloat (float_divl prec x (sqrt_iteration prec prec x)) \ Ifloat x / Ifloat (sqrt_iteration prec prec x)" by (rule float_divl) - also have "\ < Ifloat x / sqrt (Ifloat x)" - by (rule divide_strict_left_mono[OF sqrt_ub `0 < Ifloat x` mult_pos_pos[OF order_less_trans[OF sqrt_gt0 sqrt_ub] sqrt_gt0]]) - also have "\ = sqrt (Ifloat x)" unfolding inverse_eq_iff_eq[of _ "sqrt (Ifloat x)", symmetric] sqrt_divide_self_eq[OF `0 \ Ifloat x`, symmetric] by auto + have "real (float_divl prec x (sqrt_iteration prec prec x)) \ real x / real (sqrt_iteration prec prec x)" by (rule float_divl) + also have "\ < real x / sqrt (real x)" + by (rule divide_strict_left_mono[OF sqrt_ub `0 < real x` mult_pos_pos[OF order_less_trans[OF sqrt_gt0 sqrt_ub] sqrt_gt0]]) + also have "\ = sqrt (real x)" unfolding inverse_eq_iff_eq[of _ "sqrt (real x)", symmetric] sqrt_divide_self_eq[OF `0 \ real x`, symmetric] by auto finally show ?thesis unfolding lb_sqrt_def if_P[OF `0 < x`] by auto next - case False with `0 \ Ifloat x` + case False with `0 \ real x` have "\ x < 0" unfolding less_float_def le_float_def by auto show ?thesis unfolding lb_sqrt_def if_not_P[OF False] if_not_P[OF `\ x < 0`] using assms by auto qed lemma lb_sqrt: assumes "Some y = lb_sqrt prec x" - shows "Ifloat y \ sqrt (Ifloat x)" and "0 \ Ifloat x" + shows "real y \ sqrt (real x)" and "0 \ real x" proof - - show "0 \ Ifloat x" + show "0 \ real x" proof (rule ccontr) - assume "\ 0 \ Ifloat x" + assume "\ 0 \ real x" hence "lb_sqrt prec x = None" unfolding lb_sqrt_def less_float_def by auto thus False using assms by auto qed from lb_sqrt_upper_bound[OF this, of prec] - show "Ifloat y \ sqrt (Ifloat x)" unfolding assms[symmetric] by auto + show "real y \ sqrt (real x)" unfolding assms[symmetric] by auto qed -lemma ub_sqrt_lower_bound: assumes "0 \ Ifloat x" - shows "sqrt (Ifloat x) \ Ifloat (the (ub_sqrt prec x))" +lemma ub_sqrt_lower_bound: assumes "0 \ real x" + shows "sqrt (real x) \ real (the (ub_sqrt prec x))" proof (cases "0 < x") - case True hence "0 < Ifloat x" unfolding less_float_def by auto - hence "0 < sqrt (Ifloat x)" by auto - hence "sqrt (Ifloat x) < Ifloat (sqrt_iteration prec prec x)" using sqrt_iteration_bound by auto + case True hence "0 < real x" unfolding less_float_def by auto + hence "0 < sqrt (real x)" by auto + hence "sqrt (real x) < real (sqrt_iteration prec prec x)" using sqrt_iteration_bound by auto thus ?thesis unfolding ub_sqrt_def if_P[OF `0 < x`] by auto next - case False with `0 \ Ifloat x` - have "Ifloat x = 0" unfolding less_float_def le_float_def by auto + case False with `0 \ real x` + have "real x = 0" unfolding less_float_def le_float_def by auto thus ?thesis unfolding ub_sqrt_def less_float_def le_float_def by auto qed lemma ub_sqrt: assumes "Some y = ub_sqrt prec x" - shows "sqrt (Ifloat x) \ Ifloat y" and "0 \ Ifloat x" + shows "sqrt (real x) \ real y" and "0 \ real x" proof - - show "0 \ Ifloat x" + show "0 \ real x" proof (rule ccontr) - assume "\ 0 \ Ifloat x" + assume "\ 0 \ real x" hence "ub_sqrt prec x = None" unfolding ub_sqrt_def less_float_def by auto thus False using assms by auto qed from ub_sqrt_lower_bound[OF this, of prec] - show "sqrt (Ifloat x) \ Ifloat y" unfolding assms[symmetric] by auto + show "sqrt (real x) \ real y" unfolding assms[symmetric] by auto qed -lemma bnds_sqrt: "\ x lx ux. (Some l, Some u) = (lb_sqrt prec lx, ub_sqrt prec ux) \ x \ {Ifloat lx .. Ifloat ux} \ Ifloat l \ sqrt x \ sqrt x \ Ifloat u" +lemma bnds_sqrt: "\ x lx ux. (Some l, Some u) = (lb_sqrt prec lx, ub_sqrt prec ux) \ x \ {real lx .. real ux} \ real l \ sqrt x \ sqrt x \ real u" proof (rule allI, rule allI, rule allI, rule impI) fix x lx ux - assume "(Some l, Some u) = (lb_sqrt prec lx, ub_sqrt prec ux) \ x \ {Ifloat lx .. Ifloat ux}" - hence l: "Some l = lb_sqrt prec lx " and u: "Some u = ub_sqrt prec ux" and x: "x \ {Ifloat lx .. Ifloat ux}" by auto + assume "(Some l, Some u) = (lb_sqrt prec lx, ub_sqrt prec ux) \ x \ {real lx .. real ux}" + hence l: "Some l = lb_sqrt prec lx " and u: "Some u = ub_sqrt prec ux" and x: "x \ {real lx .. real ux}" by auto - have "Ifloat lx \ x" and "x \ Ifloat ux" using x by auto + have "real lx \ x" and "x \ real ux" using x by auto - from lb_sqrt(1)[OF l] real_sqrt_le_mono[OF `Ifloat lx \ x`] - have "Ifloat l \ sqrt x" by (rule order_trans) + from lb_sqrt(1)[OF l] real_sqrt_le_mono[OF `real lx \ x`] + have "real l \ sqrt x" by (rule order_trans) moreover - from real_sqrt_le_mono[OF `x \ Ifloat ux`] ub_sqrt(1)[OF u] - have "sqrt x \ Ifloat u" by (rule order_trans) - ultimately show "Ifloat l \ sqrt x \ sqrt x \ Ifloat u" .. + from real_sqrt_le_mono[OF `x \ real ux`] ub_sqrt(1)[OF u] + have "sqrt x \ real u" by (rule order_trans) + ultimately show "real l \ sqrt x \ sqrt x \ real u" .. qed section "Arcus tangens and \" @@ -409,24 +409,24 @@ | "lb_arctan_horner prec (Suc n) k x = (lapprox_rat prec 1 (int k)) - x * (ub_arctan_horner prec n (k + 2) x)" -lemma arctan_0_1_bounds': assumes "0 \ Ifloat x" "Ifloat x \ 1" and "even n" - shows "arctan (Ifloat x) \ {Ifloat (x * lb_arctan_horner prec n 1 (x * x)) .. Ifloat (x * ub_arctan_horner prec (Suc n) 1 (x * x))}" +lemma arctan_0_1_bounds': assumes "0 \ real x" "real x \ 1" and "even n" + shows "arctan (real x) \ {real (x * lb_arctan_horner prec n 1 (x * x)) .. real (x * ub_arctan_horner prec (Suc n) 1 (x * x))}" proof - - let "?c i" = "-1^i * (1 / real (i * 2 + 1) * Ifloat x ^ (i * 2 + 1))" + let "?c i" = "-1^i * (1 / real (i * 2 + 1) * real x ^ (i * 2 + 1))" let "?S n" = "\ i=0.. Ifloat (x * x)" by auto + have "0 \ real (x * x)" by auto from `even n` obtain m where "2 * m = n" unfolding even_mult_two_ex by auto - have "arctan (Ifloat x) \ { ?S n .. ?S (Suc n) }" - proof (cases "Ifloat x = 0") + have "arctan (real x) \ { ?S n .. ?S (Suc n) }" + proof (cases "real x = 0") case False - hence "0 < Ifloat x" using `0 \ Ifloat x` by auto - hence prem: "0 < 1 / real (0 * 2 + (1::nat)) * Ifloat x ^ (0 * 2 + 1)" by auto + hence "0 < real x" using `0 \ real x` by auto + hence prem: "0 < 1 / real (0 * 2 + (1::nat)) * real x ^ (0 * 2 + 1)" by auto - have "\ Ifloat x \ \ 1" using `0 \ Ifloat x` `Ifloat x \ 1` by auto + have "\ real x \ \ 1" using `0 \ real x` `real x \ 1` by auto from mp[OF summable_Leibniz(2)[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]] prem, THEN spec, of m, unfolded `2 * m = n`] - show ?thesis unfolding arctan_series[OF `\ Ifloat x \ \ 1`] Suc_plus1 . + show ?thesis unfolding arctan_series[OF `\ real x \ \ 1`] Suc_plus1 . qed auto note arctan_bounds = this[unfolded atLeastAtMost_iff] @@ -435,37 +435,37 @@ note bounds = horner_bounds[where s=1 and f="\i. 2 * i + 1" and j'=0 and lb="\n i k x. lb_arctan_horner prec n k x" and ub="\n i k x. ub_arctan_horner prec n k x", - OF `0 \ Ifloat (x*x)` F lb_arctan_horner.simps ub_arctan_horner.simps] + OF `0 \ real (x*x)` F lb_arctan_horner.simps ub_arctan_horner.simps] - { have "Ifloat (x * lb_arctan_horner prec n 1 (x*x)) \ ?S n" - using bounds(1) `0 \ Ifloat x` - unfolding Ifloat_mult power_add power_one_right real_mult_assoc[symmetric] setsum_left_distrib[symmetric] - unfolding real_mult_commute mult_commute[of _ "2::nat"] power_mult power2_eq_square[of "Ifloat x"] + { have "real (x * lb_arctan_horner prec n 1 (x*x)) \ ?S n" + using bounds(1) `0 \ real x` + unfolding real_of_float_mult power_add power_one_right real_mult_assoc[symmetric] setsum_left_distrib[symmetric] + unfolding real_mult_commute mult_commute[of _ "2::nat"] power_mult power2_eq_square[of "real x"] by (auto intro!: mult_left_mono) - also have "\ \ arctan (Ifloat x)" using arctan_bounds .. - finally have "Ifloat (x * lb_arctan_horner prec n 1 (x*x)) \ arctan (Ifloat x)" . } + also have "\ \ arctan (real x)" using arctan_bounds .. + finally have "real (x * lb_arctan_horner prec n 1 (x*x)) \ arctan (real x)" . } moreover - { have "arctan (Ifloat x) \ ?S (Suc n)" using arctan_bounds .. - also have "\ \ Ifloat (x * ub_arctan_horner prec (Suc n) 1 (x*x))" - using bounds(2)[of "Suc n"] `0 \ Ifloat x` - unfolding Ifloat_mult power_add power_one_right real_mult_assoc[symmetric] setsum_left_distrib[symmetric] - unfolding real_mult_commute mult_commute[of _ "2::nat"] power_mult power2_eq_square[of "Ifloat x"] + { have "arctan (real x) \ ?S (Suc n)" using arctan_bounds .. + also have "\ \ real (x * ub_arctan_horner prec (Suc n) 1 (x*x))" + using bounds(2)[of "Suc n"] `0 \ real x` + unfolding real_of_float_mult power_add power_one_right real_mult_assoc[symmetric] setsum_left_distrib[symmetric] + unfolding real_mult_commute mult_commute[of _ "2::nat"] power_mult power2_eq_square[of "real x"] by (auto intro!: mult_left_mono) - finally have "arctan (Ifloat x) \ Ifloat (x * ub_arctan_horner prec (Suc n) 1 (x*x))" . } + finally have "arctan (real x) \ real (x * ub_arctan_horner prec (Suc n) 1 (x*x))" . } ultimately show ?thesis by auto qed -lemma arctan_0_1_bounds: assumes "0 \ Ifloat x" "Ifloat x \ 1" - shows "arctan (Ifloat x) \ {Ifloat (x * lb_arctan_horner prec (get_even n) 1 (x * x)) .. Ifloat (x * ub_arctan_horner prec (get_odd n) 1 (x * x))}" +lemma arctan_0_1_bounds: assumes "0 \ real x" "real x \ 1" + shows "arctan (real x) \ {real (x * lb_arctan_horner prec (get_even n) 1 (x * x)) .. real (x * ub_arctan_horner prec (get_odd n) 1 (x * x))}" proof (cases "even n") case True obtain n' where "Suc n' = get_odd n" and "odd (Suc n')" using get_odd_ex by auto hence "even n'" unfolding even_nat_Suc by auto - have "arctan (Ifloat x) \ Ifloat (x * ub_arctan_horner prec (get_odd n) 1 (x * x))" - unfolding `Suc n' = get_odd n`[symmetric] using arctan_0_1_bounds'[OF `0 \ Ifloat x` `Ifloat x \ 1` `even n'`] by auto + have "arctan (real x) \ real (x * ub_arctan_horner prec (get_odd n) 1 (x * x))" + unfolding `Suc n' = get_odd n`[symmetric] using arctan_0_1_bounds'[OF `0 \ real x` `real x \ 1` `even n'`] by auto moreover - have "Ifloat (x * lb_arctan_horner prec (get_even n) 1 (x * x)) \ arctan (Ifloat x)" - unfolding get_even_def if_P[OF True] using arctan_0_1_bounds'[OF `0 \ Ifloat x` `Ifloat x \ 1` `even n`] by auto + have "real (x * lb_arctan_horner prec (get_even n) 1 (x * x)) \ arctan (real x)" + unfolding get_even_def if_P[OF True] using arctan_0_1_bounds'[OF `0 \ real x` `real x \ 1` `even n`] by auto ultimately show ?thesis by auto next case False hence "0 < n" by (rule odd_pos) @@ -474,11 +474,11 @@ have "even n'" and "even (Suc (Suc n'))" by auto have "get_odd n = Suc n'" unfolding get_odd_def if_P[OF False] using `n = Suc n'` . - have "arctan (Ifloat x) \ Ifloat (x * ub_arctan_horner prec (get_odd n) 1 (x * x))" - unfolding `get_odd n = Suc n'` using arctan_0_1_bounds'[OF `0 \ Ifloat x` `Ifloat x \ 1` `even n'`] by auto + have "arctan (real x) \ real (x * ub_arctan_horner prec (get_odd n) 1 (x * x))" + unfolding `get_odd n = Suc n'` using arctan_0_1_bounds'[OF `0 \ real x` `real x \ 1` `even n'`] by auto moreover - have "Ifloat (x * lb_arctan_horner prec (get_even n) 1 (x * x)) \ arctan (Ifloat x)" - unfolding get_even_def if_not_P[OF False] unfolding `n = Suc n'` using arctan_0_1_bounds'[OF `0 \ Ifloat x` `Ifloat x \ 1` `even (Suc (Suc n'))`] by auto + have "real (x * lb_arctan_horner prec (get_even n) 1 (x * x)) \ arctan (real x)" + unfolding get_even_def if_not_P[OF False] unfolding `n = Suc n'` using arctan_0_1_bounds'[OF `0 \ real x` `real x \ 1` `even (Suc (Suc n'))`] by auto ultimately show ?thesis by auto qed @@ -496,7 +496,7 @@ in ((Float 1 2) * ((Float 1 2) * A * (lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (A * A)) - B * (ub_arctan_horner prec (get_odd (prec div 14 + 1)) 1 (B * B)))))" -lemma pi_boundaries: "pi \ {Ifloat (lb_pi n) .. Ifloat (ub_pi n)}" +lemma pi_boundaries: "pi \ {real (lb_pi n) .. real (ub_pi n)}" proof - have machin_pi: "pi = 4 * (4 * arctan (1 / 5) - arctan (1 / 239))" unfolding machin[symmetric] by auto @@ -504,15 +504,15 @@ let ?k = "rapprox_rat prec 1 k" have "1 div k = 0" using div_pos_pos_trivial[OF _ `1 < k`] by auto - have "0 \ Ifloat ?k" by (rule order_trans[OF _ rapprox_rat], auto simp add: `0 \ k`) - have "Ifloat ?k \ 1" unfolding rapprox_rat.simps(2)[OF zero_le_one `0 < k`] + have "0 \ real ?k" by (rule order_trans[OF _ rapprox_rat], auto simp add: `0 \ k`) + have "real ?k \ 1" unfolding rapprox_rat.simps(2)[OF zero_le_one `0 < k`] by (rule rapprox_posrat_le1, auto simp add: `0 < k` `1 \ k`) - have "1 / real k \ Ifloat ?k" using rapprox_rat[where x=1 and y=k] by auto - hence "arctan (1 / real k) \ arctan (Ifloat ?k)" by (rule arctan_monotone') - also have "\ \ Ifloat (?k * ub_arctan_horner prec (get_odd n) 1 (?k * ?k))" - using arctan_0_1_bounds[OF `0 \ Ifloat ?k` `Ifloat ?k \ 1`] by auto - finally have "arctan (1 / (real k)) \ Ifloat (?k * ub_arctan_horner prec (get_odd n) 1 (?k * ?k))" . + have "1 / real k \ real ?k" using rapprox_rat[where x=1 and y=k] by auto + hence "arctan (1 / real k) \ arctan (real ?k)" by (rule arctan_monotone') + also have "\ \ real (?k * ub_arctan_horner prec (get_odd n) 1 (?k * ?k))" + using arctan_0_1_bounds[OF `0 \ real ?k` `real ?k \ 1`] by auto + finally have "arctan (1 / (real k)) \ real (?k * ub_arctan_horner prec (get_odd n) 1 (?k * ?k))" . } note ub_arctan = this { fix prec n :: nat fix k :: int assume "1 < k" hence "0 \ k" and "0 < k" by auto @@ -520,24 +520,24 @@ have "1 div k = 0" using div_pos_pos_trivial[OF _ `1 < k`] by auto have "1 / real k \ 1" using `1 < k` by auto - have "\n. 0 \ Ifloat ?k" using lapprox_rat_bottom[where x=1 and y=k, OF zero_le_one `0 < k`] by (auto simp add: `1 div k = 0`) - have "\n. Ifloat ?k \ 1" using lapprox_rat by (rule order_trans, auto simp add: `1 / real k \ 1`) + have "\n. 0 \ real ?k" using lapprox_rat_bottom[where x=1 and y=k, OF zero_le_one `0 < k`] by (auto simp add: `1 div k = 0`) + have "\n. real ?k \ 1" using lapprox_rat by (rule order_trans, auto simp add: `1 / real k \ 1`) - have "Ifloat ?k \ 1 / real k" using lapprox_rat[where x=1 and y=k] by auto + have "real ?k \ 1 / real k" using lapprox_rat[where x=1 and y=k] by auto - have "Ifloat (?k * lb_arctan_horner prec (get_even n) 1 (?k * ?k)) \ arctan (Ifloat ?k)" - using arctan_0_1_bounds[OF `0 \ Ifloat ?k` `Ifloat ?k \ 1`] by auto - also have "\ \ arctan (1 / real k)" using `Ifloat ?k \ 1 / real k` by (rule arctan_monotone') - finally have "Ifloat (?k * lb_arctan_horner prec (get_even n) 1 (?k * ?k)) \ arctan (1 / (real k))" . + have "real (?k * lb_arctan_horner prec (get_even n) 1 (?k * ?k)) \ arctan (real ?k)" + using arctan_0_1_bounds[OF `0 \ real ?k` `real ?k \ 1`] by auto + also have "\ \ arctan (1 / real k)" using `real ?k \ 1 / real k` by (rule arctan_monotone') + finally have "real (?k * lb_arctan_horner prec (get_even n) 1 (?k * ?k)) \ arctan (1 / (real k))" . } note lb_arctan = this - have "pi \ Ifloat (ub_pi n)" - unfolding ub_pi_def machin_pi Let_def Ifloat_mult Ifloat_sub unfolding Float_num + have "pi \ real (ub_pi n)" + unfolding ub_pi_def machin_pi Let_def real_of_float_mult real_of_float_sub unfolding Float_num using lb_arctan[of 239] ub_arctan[of 5] by (auto intro!: mult_left_mono add_mono simp add: diff_minus simp del: lapprox_rat.simps rapprox_rat.simps) moreover - have "Ifloat (lb_pi n) \ pi" - unfolding lb_pi_def machin_pi Let_def Ifloat_mult Ifloat_sub Float_num + have "real (lb_pi n) \ pi" + unfolding lb_pi_def machin_pi Let_def real_of_float_mult real_of_float_sub Float_num using lb_arctan[of 5] ub_arctan[of 239] by (auto intro!: mult_left_mono add_mono simp add: diff_minus simp del: lapprox_rat.simps rapprox_rat.simps) ultimately show ?thesis by auto @@ -569,35 +569,35 @@ declare ub_arctan_horner.simps[simp del] declare lb_arctan_horner.simps[simp del] -lemma lb_arctan_bound': assumes "0 \ Ifloat x" - shows "Ifloat (lb_arctan prec x) \ arctan (Ifloat x)" +lemma lb_arctan_bound': assumes "0 \ real x" + shows "real (lb_arctan prec x) \ arctan (real x)" proof - - have "\ x < 0" and "0 \ x" unfolding less_float_def le_float_def using `0 \ Ifloat x` by auto + have "\ x < 0" and "0 \ x" unfolding less_float_def le_float_def using `0 \ real x` by auto let "?ub_horner x" = "x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (x * x)" and "?lb_horner x" = "x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (x * x)" show ?thesis proof (cases "x \ Float 1 -1") - case True hence "Ifloat x \ 1" unfolding le_float_def Float_num by auto + case True hence "real x \ 1" unfolding le_float_def Float_num by auto show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_P[OF True] - using arctan_0_1_bounds[OF `0 \ Ifloat x` `Ifloat x \ 1`] by auto + using arctan_0_1_bounds[OF `0 \ real x` `real x \ 1`] by auto next - case False hence "0 < Ifloat x" unfolding le_float_def Float_num by auto - let ?R = "1 + sqrt (1 + Ifloat x * Ifloat x)" + case False hence "0 < real x" unfolding le_float_def Float_num by auto + let ?R = "1 + sqrt (1 + real x * real x)" let ?fR = "1 + the (ub_sqrt prec (1 + x * x))" let ?DIV = "float_divl prec x ?fR" - have sqr_ge0: "0 \ 1 + Ifloat x * Ifloat x" using sum_power2_ge_zero[of 1 "Ifloat x", unfolded numeral_2_eq_2] by auto + have sqr_ge0: "0 \ 1 + real x * real x" using sum_power2_ge_zero[of 1 "real x", unfolded numeral_2_eq_2] by auto hence divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg) - have "sqrt (Ifloat (1 + x * x)) \ Ifloat (the (ub_sqrt prec (1 + x * x)))" by (rule ub_sqrt_lower_bound, auto simp add: sqr_ge0) - hence "?R \ Ifloat ?fR" by auto - hence "0 < ?fR" and "0 < Ifloat ?fR" unfolding less_float_def using `0 < ?R` by auto + have "sqrt (real (1 + x * x)) \ real (the (ub_sqrt prec (1 + x * x)))" by (rule ub_sqrt_lower_bound, auto simp add: sqr_ge0) + hence "?R \ real ?fR" by auto + hence "0 < ?fR" and "0 < real ?fR" unfolding less_float_def using `0 < ?R` by auto - have monotone: "Ifloat (float_divl prec x ?fR) \ Ifloat x / ?R" + have monotone: "real (float_divl prec x ?fR) \ real x / ?R" proof - - have "Ifloat ?DIV \ Ifloat x / Ifloat ?fR" by (rule float_divl) - also have "\ \ Ifloat x / ?R" by (rule divide_left_mono[OF `?R \ Ifloat ?fR` `0 \ Ifloat x` mult_pos_pos[OF order_less_le_trans[OF divisor_gt0 `?R \ Ifloat ?fR`] divisor_gt0]]) + have "real ?DIV \ real x / real ?fR" by (rule float_divl) + also have "\ \ real x / ?R" by (rule divide_left_mono[OF `?R \ real ?fR` `0 \ real x` mult_pos_pos[OF order_less_le_trans[OF divisor_gt0 `?R \ real ?fR`] divisor_gt0]]) finally show ?thesis . qed @@ -605,47 +605,47 @@ proof (cases "x \ Float 1 1") case True - have "Ifloat x \ sqrt (Ifloat (1 + x * x))" using real_sqrt_sum_squares_ge2[where x=1, unfolded numeral_2_eq_2] by auto - also have "\ \ Ifloat (the (ub_sqrt prec (1 + x * x)))" by (rule ub_sqrt_lower_bound, auto simp add: sqr_ge0) - finally have "Ifloat x \ Ifloat ?fR" by auto - moreover have "Ifloat ?DIV \ Ifloat x / Ifloat ?fR" by (rule float_divl) - ultimately have "Ifloat ?DIV \ 1" unfolding divide_le_eq_1_pos[OF `0 < Ifloat ?fR`, symmetric] by auto + have "real x \ sqrt (real (1 + x * x))" using real_sqrt_sum_squares_ge2[where x=1, unfolded numeral_2_eq_2] by auto + also have "\ \ real (the (ub_sqrt prec (1 + x * x)))" by (rule ub_sqrt_lower_bound, auto simp add: sqr_ge0) + finally have "real x \ real ?fR" by auto + moreover have "real ?DIV \ real x / real ?fR" by (rule float_divl) + ultimately have "real ?DIV \ 1" unfolding divide_le_eq_1_pos[OF `0 < real ?fR`, symmetric] by auto - have "0 \ Ifloat ?DIV" using float_divl_lower_bound[OF `0 \ x` `0 < ?fR`] unfolding le_float_def by auto + have "0 \ real ?DIV" using float_divl_lower_bound[OF `0 \ x` `0 < ?fR`] unfolding le_float_def by auto - have "Ifloat (Float 1 1 * ?lb_horner ?DIV) \ 2 * arctan (Ifloat (float_divl prec x ?fR))" unfolding Ifloat_mult[of "Float 1 1"] Float_num - using arctan_0_1_bounds[OF `0 \ Ifloat ?DIV` `Ifloat ?DIV \ 1`] by auto - also have "\ \ 2 * arctan (Ifloat x / ?R)" + have "real (Float 1 1 * ?lb_horner ?DIV) \ 2 * arctan (real (float_divl prec x ?fR))" unfolding real_of_float_mult[of "Float 1 1"] Float_num + using arctan_0_1_bounds[OF `0 \ real ?DIV` `real ?DIV \ 1`] by auto + also have "\ \ 2 * arctan (real x / ?R)" using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono) - also have "2 * arctan (Ifloat x / ?R) = arctan (Ifloat x)" using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 . + also have "2 * arctan (real x / ?R) = arctan (real x)" using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 . finally show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_not_P[OF `\ x \ Float 1 -1`] if_P[OF True] . next case False - hence "2 < Ifloat x" unfolding le_float_def Float_num by auto - hence "1 \ Ifloat x" by auto + hence "2 < real x" unfolding le_float_def Float_num by auto + hence "1 \ real x" by auto let "?invx" = "float_divr prec 1 x" - have "0 \ arctan (Ifloat x)" using arctan_monotone'[OF `0 \ Ifloat x`] using arctan_tan[of 0, unfolded tan_zero] by auto + have "0 \ arctan (real x)" using arctan_monotone'[OF `0 \ real x`] using arctan_tan[of 0, unfolded tan_zero] by auto show ?thesis proof (cases "1 < ?invx") case True show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_not_P[OF `\ x \ Float 1 -1`] if_not_P[OF False] if_P[OF True] - using `0 \ arctan (Ifloat x)` by auto + using `0 \ arctan (real x)` by auto next case False - hence "Ifloat ?invx \ 1" unfolding less_float_def by auto - have "0 \ Ifloat ?invx" by (rule order_trans[OF _ float_divr], auto simp add: `0 \ Ifloat x`) + hence "real ?invx \ 1" unfolding less_float_def by auto + have "0 \ real ?invx" by (rule order_trans[OF _ float_divr], auto simp add: `0 \ real x`) - have "1 / Ifloat x \ 0" and "0 < 1 / Ifloat x" using `0 < Ifloat x` by auto + have "1 / real x \ 0" and "0 < 1 / real x" using `0 < real x` by auto - have "arctan (1 / Ifloat x) \ arctan (Ifloat ?invx)" unfolding Ifloat_1[symmetric] by (rule arctan_monotone', rule float_divr) - also have "\ \ Ifloat (?ub_horner ?invx)" using arctan_0_1_bounds[OF `0 \ Ifloat ?invx` `Ifloat ?invx \ 1`] by auto - finally have "pi / 2 - Ifloat (?ub_horner ?invx) \ arctan (Ifloat x)" - using `0 \ arctan (Ifloat x)` arctan_inverse[OF `1 / Ifloat x \ 0`] - unfolding real_sgn_pos[OF `0 < 1 / Ifloat x`] le_diff_eq by auto + have "arctan (1 / real x) \ arctan (real ?invx)" unfolding real_of_float_1[symmetric] by (rule arctan_monotone', rule float_divr) + also have "\ \ real (?ub_horner ?invx)" using arctan_0_1_bounds[OF `0 \ real ?invx` `real ?invx \ 1`] by auto + finally have "pi / 2 - real (?ub_horner ?invx) \ arctan (real x)" + using `0 \ arctan (real x)` arctan_inverse[OF `1 / real x \ 0`] + unfolding real_sgn_pos[OF `0 < 1 / real x`] le_diff_eq by auto moreover - have "Ifloat (lb_pi prec * Float 1 -1) \ pi / 2" unfolding Ifloat_mult Float_num times_divide_eq_right real_mult_1 using pi_boundaries by auto + have "real (lb_pi prec * Float 1 -1) \ pi / 2" unfolding real_of_float_mult Float_num times_divide_eq_right real_mult_1 using pi_boundaries by auto ultimately show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_not_P[OF `\ x \ Float 1 -1`] if_not_P[OF `\ x \ Float 1 1`] if_not_P[OF False] by auto @@ -654,39 +654,39 @@ qed qed -lemma ub_arctan_bound': assumes "0 \ Ifloat x" - shows "arctan (Ifloat x) \ Ifloat (ub_arctan prec x)" +lemma ub_arctan_bound': assumes "0 \ real x" + shows "arctan (real x) \ real (ub_arctan prec x)" proof - - have "\ x < 0" and "0 \ x" unfolding less_float_def le_float_def using `0 \ Ifloat x` by auto + have "\ x < 0" and "0 \ x" unfolding less_float_def le_float_def using `0 \ real x` by auto let "?ub_horner x" = "x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (x * x)" and "?lb_horner x" = "x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (x * x)" show ?thesis proof (cases "x \ Float 1 -1") - case True hence "Ifloat x \ 1" unfolding le_float_def Float_num by auto + case True hence "real x \ 1" unfolding le_float_def Float_num by auto show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_P[OF True] - using arctan_0_1_bounds[OF `0 \ Ifloat x` `Ifloat x \ 1`] by auto + using arctan_0_1_bounds[OF `0 \ real x` `real x \ 1`] by auto next - case False hence "0 < Ifloat x" unfolding le_float_def Float_num by auto - let ?R = "1 + sqrt (1 + Ifloat x * Ifloat x)" + case False hence "0 < real x" unfolding le_float_def Float_num by auto + let ?R = "1 + sqrt (1 + real x * real x)" let ?fR = "1 + the (lb_sqrt prec (1 + x * x))" let ?DIV = "float_divr prec x ?fR" - have sqr_ge0: "0 \ 1 + Ifloat x * Ifloat x" using sum_power2_ge_zero[of 1 "Ifloat x", unfolded numeral_2_eq_2] by auto - hence "0 \ Ifloat (1 + x*x)" by auto + have sqr_ge0: "0 \ 1 + real x * real x" using sum_power2_ge_zero[of 1 "real x", unfolded numeral_2_eq_2] by auto + hence "0 \ real (1 + x*x)" by auto hence divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg) - have "Ifloat (the (lb_sqrt prec (1 + x * x))) \ sqrt (Ifloat (1 + x * x))" by (rule lb_sqrt_upper_bound, auto simp add: sqr_ge0) - hence "Ifloat ?fR \ ?R" by auto - have "0 < Ifloat ?fR" unfolding Ifloat_add Ifloat_1 by (rule order_less_le_trans[OF zero_less_one], auto simp add: lb_sqrt_lower_bound[OF `0 \ Ifloat (1 + x*x)`]) + have "real (the (lb_sqrt prec (1 + x * x))) \ sqrt (real (1 + x * x))" by (rule lb_sqrt_upper_bound, auto simp add: sqr_ge0) + hence "real ?fR \ ?R" by auto + have "0 < real ?fR" unfolding real_of_float_add real_of_float_1 by (rule order_less_le_trans[OF zero_less_one], auto simp add: lb_sqrt_lower_bound[OF `0 \ real (1 + x*x)`]) - have monotone: "Ifloat x / ?R \ Ifloat (float_divr prec x ?fR)" + have monotone: "real x / ?R \ real (float_divr prec x ?fR)" proof - - from divide_left_mono[OF `Ifloat ?fR \ ?R` `0 \ Ifloat x` mult_pos_pos[OF divisor_gt0 `0 < Ifloat ?fR`]] - have "Ifloat x / ?R \ Ifloat x / Ifloat ?fR" . - also have "\ \ Ifloat ?DIV" by (rule float_divr) + from divide_left_mono[OF `real ?fR \ ?R` `0 \ real x` mult_pos_pos[OF divisor_gt0 `0 < real ?fR`]] + have "real x / ?R \ real x / real ?fR" . + also have "\ \ real ?DIV" by (rule float_divr) finally show ?thesis . qed @@ -696,45 +696,45 @@ show ?thesis proof (cases "?DIV > 1") case True - have "pi / 2 \ Ifloat (ub_pi prec * Float 1 -1)" unfolding Ifloat_mult Float_num times_divide_eq_right real_mult_1 using pi_boundaries by auto + have "pi / 2 \ real (ub_pi prec * Float 1 -1)" unfolding real_of_float_mult Float_num times_divide_eq_right real_mult_1 using pi_boundaries by auto from order_less_le_trans[OF arctan_ubound this, THEN less_imp_le] show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_not_P[OF `\ x \ Float 1 -1`] if_P[OF `x \ Float 1 1`] if_P[OF True] . next case False - hence "Ifloat ?DIV \ 1" unfolding less_float_def by auto + hence "real ?DIV \ 1" unfolding less_float_def by auto - have "0 \ Ifloat x / ?R" using `0 \ Ifloat x` `0 < ?R` unfolding real_0_le_divide_iff by auto - hence "0 \ Ifloat ?DIV" using monotone by (rule order_trans) + have "0 \ real x / ?R" using `0 \ real x` `0 < ?R` unfolding real_0_le_divide_iff by auto + hence "0 \ real ?DIV" using monotone by (rule order_trans) - have "arctan (Ifloat x) = 2 * arctan (Ifloat x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 . - also have "\ \ 2 * arctan (Ifloat ?DIV)" + have "arctan (real x) = 2 * arctan (real x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 . + also have "\ \ 2 * arctan (real ?DIV)" using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono) - also have "\ \ Ifloat (Float 1 1 * ?ub_horner ?DIV)" unfolding Ifloat_mult[of "Float 1 1"] Float_num - using arctan_0_1_bounds[OF `0 \ Ifloat ?DIV` `Ifloat ?DIV \ 1`] by auto + also have "\ \ real (Float 1 1 * ?ub_horner ?DIV)" unfolding real_of_float_mult[of "Float 1 1"] Float_num + using arctan_0_1_bounds[OF `0 \ real ?DIV` `real ?DIV \ 1`] by auto finally show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_not_P[OF `\ x \ Float 1 -1`] if_P[OF `x \ Float 1 1`] if_not_P[OF False] . qed next case False - hence "2 < Ifloat x" unfolding le_float_def Float_num by auto - hence "1 \ Ifloat x" by auto - hence "0 < Ifloat x" by auto + hence "2 < real x" unfolding le_float_def Float_num by auto + hence "1 \ real x" by auto + hence "0 < real x" by auto hence "0 < x" unfolding less_float_def by auto let "?invx" = "float_divl prec 1 x" - have "0 \ arctan (Ifloat x)" using arctan_monotone'[OF `0 \ Ifloat x`] using arctan_tan[of 0, unfolded tan_zero] by auto + have "0 \ arctan (real x)" using arctan_monotone'[OF `0 \ real x`] using arctan_tan[of 0, unfolded tan_zero] by auto - have "Ifloat ?invx \ 1" unfolding less_float_def by (rule order_trans[OF float_divl], auto simp add: `1 \ Ifloat x` divide_le_eq_1_pos[OF `0 < Ifloat x`]) - have "0 \ Ifloat ?invx" unfolding Ifloat_0[symmetric] by (rule float_divl_lower_bound[unfolded le_float_def], auto simp add: `0 < x`) + have "real ?invx \ 1" unfolding less_float_def by (rule order_trans[OF float_divl], auto simp add: `1 \ real x` divide_le_eq_1_pos[OF `0 < real x`]) + have "0 \ real ?invx" unfolding real_of_float_0[symmetric] by (rule float_divl_lower_bound[unfolded le_float_def], auto simp add: `0 < x`) - have "1 / Ifloat x \ 0" and "0 < 1 / Ifloat x" using `0 < Ifloat x` by auto + have "1 / real x \ 0" and "0 < 1 / real x" using `0 < real x` by auto - have "Ifloat (?lb_horner ?invx) \ arctan (Ifloat ?invx)" using arctan_0_1_bounds[OF `0 \ Ifloat ?invx` `Ifloat ?invx \ 1`] by auto - also have "\ \ arctan (1 / Ifloat x)" unfolding Ifloat_1[symmetric] by (rule arctan_monotone', rule float_divl) - finally have "arctan (Ifloat x) \ pi / 2 - Ifloat (?lb_horner ?invx)" - using `0 \ arctan (Ifloat x)` arctan_inverse[OF `1 / Ifloat x \ 0`] - unfolding real_sgn_pos[OF `0 < 1 / Ifloat x`] le_diff_eq by auto + have "real (?lb_horner ?invx) \ arctan (real ?invx)" using arctan_0_1_bounds[OF `0 \ real ?invx` `real ?invx \ 1`] by auto + also have "\ \ arctan (1 / real x)" unfolding real_of_float_1[symmetric] by (rule arctan_monotone', rule float_divl) + finally have "arctan (real x) \ pi / 2 - real (?lb_horner ?invx)" + using `0 \ arctan (real x)` arctan_inverse[OF `1 / real x \ 0`] + unfolding real_sgn_pos[OF `0 < 1 / real x`] le_diff_eq by auto moreover - have "pi / 2 \ Ifloat (ub_pi prec * Float 1 -1)" unfolding Ifloat_mult Float_num times_divide_eq_right mult_1_right using pi_boundaries by auto + have "pi / 2 \ real (ub_pi prec * Float 1 -1)" unfolding real_of_float_mult Float_num times_divide_eq_right mult_1_right using pi_boundaries by auto ultimately show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\ x < 0`] if_not_P[OF `\ x \ Float 1 -1`] if_not_P[OF `\ x \ Float 1 1`] if_not_P[OF False] by auto @@ -743,34 +743,34 @@ qed lemma arctan_boundaries: - "arctan (Ifloat x) \ {Ifloat (lb_arctan prec x) .. Ifloat (ub_arctan prec x)}" + "arctan (real x) \ {real (lb_arctan prec x) .. real (ub_arctan prec x)}" proof (cases "0 \ x") - case True hence "0 \ Ifloat x" unfolding le_float_def by auto - show ?thesis using ub_arctan_bound'[OF `0 \ Ifloat x`] lb_arctan_bound'[OF `0 \ Ifloat x`] unfolding atLeastAtMost_iff by auto + case True hence "0 \ real x" unfolding le_float_def by auto + show ?thesis using ub_arctan_bound'[OF `0 \ real x`] lb_arctan_bound'[OF `0 \ real x`] unfolding atLeastAtMost_iff by auto next let ?mx = "-x" - case False hence "x < 0" and "0 \ Ifloat ?mx" unfolding le_float_def less_float_def by auto - hence bounds: "Ifloat (lb_arctan prec ?mx) \ arctan (Ifloat ?mx) \ arctan (Ifloat ?mx) \ Ifloat (ub_arctan prec ?mx)" - using ub_arctan_bound'[OF `0 \ Ifloat ?mx`] lb_arctan_bound'[OF `0 \ Ifloat ?mx`] by auto - show ?thesis unfolding Ifloat_minus arctan_minus lb_arctan.simps[where x=x] ub_arctan.simps[where x=x] Let_def if_P[OF `x < 0`] - unfolding atLeastAtMost_iff using bounds[unfolded Ifloat_minus arctan_minus] by auto + case False hence "x < 0" and "0 \ real ?mx" unfolding le_float_def less_float_def by auto + hence bounds: "real (lb_arctan prec ?mx) \ arctan (real ?mx) \ arctan (real ?mx) \ real (ub_arctan prec ?mx)" + using ub_arctan_bound'[OF `0 \ real ?mx`] lb_arctan_bound'[OF `0 \ real ?mx`] by auto + show ?thesis unfolding real_of_float_minus arctan_minus lb_arctan.simps[where x=x] ub_arctan.simps[where x=x] Let_def if_P[OF `x < 0`] + unfolding atLeastAtMost_iff using bounds[unfolded real_of_float_minus arctan_minus] by auto qed -lemma bnds_arctan: "\ x lx ux. (l, u) = (lb_arctan prec lx, ub_arctan prec ux) \ x \ {Ifloat lx .. Ifloat ux} \ Ifloat l \ arctan x \ arctan x \ Ifloat u" +lemma bnds_arctan: "\ x lx ux. (l, u) = (lb_arctan prec lx, ub_arctan prec ux) \ x \ {real lx .. real ux} \ real l \ arctan x \ arctan x \ real u" proof (rule allI, rule allI, rule allI, rule impI) fix x lx ux - assume "(l, u) = (lb_arctan prec lx, ub_arctan prec ux) \ x \ {Ifloat lx .. Ifloat ux}" - hence l: "lb_arctan prec lx = l " and u: "ub_arctan prec ux = u" and x: "x \ {Ifloat lx .. Ifloat ux}" by auto + assume "(l, u) = (lb_arctan prec lx, ub_arctan prec ux) \ x \ {real lx .. real ux}" + hence l: "lb_arctan prec lx = l " and u: "ub_arctan prec ux = u" and x: "x \ {real lx .. real ux}" by auto { from arctan_boundaries[of lx prec, unfolded l] - have "Ifloat l \ arctan (Ifloat lx)" by (auto simp del: lb_arctan.simps) + have "real l \ arctan (real lx)" by (auto simp del: lb_arctan.simps) also have "\ \ arctan x" using x by (auto intro: arctan_monotone') - finally have "Ifloat l \ arctan x" . + finally have "real l \ arctan x" . } moreover - { have "arctan x \ arctan (Ifloat ux)" using x by (auto intro: arctan_monotone') - also have "\ \ Ifloat u" using arctan_boundaries[of ux prec, unfolded u] by (auto simp del: ub_arctan.simps) - finally have "arctan x \ Ifloat u" . - } ultimately show "Ifloat l \ arctan x \ arctan x \ Ifloat u" .. + { have "arctan x \ arctan (real ux)" using x by (auto intro: arctan_monotone') + also have "\ \ real u" using arctan_boundaries[of ux prec, unfolded u] by (auto simp del: ub_arctan.simps) + finally have "arctan x \ real u" . + } ultimately show "real l \ arctan x \ arctan x \ real u" .. qed section "Sinus and Cosinus" @@ -787,10 +787,10 @@ (lapprox_rat prec 1 (int k)) - x * (ub_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)" lemma cos_aux: - shows "Ifloat (lb_sin_cos_aux prec n 1 1 (x * x)) \ (\ i=0.. i=0.. Ifloat (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub") + shows "real (lb_sin_cos_aux prec n 1 1 (x * x)) \ (\ i=0.. i=0.. real (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub") proof - - have "0 \ Ifloat (x * x)" unfolding Ifloat_mult by auto + have "0 \ real (x * x)" unfolding real_of_float_mult by auto let "?f n" = "fact (2 * n)" { fix n @@ -799,17 +799,17 @@ unfolding F by auto } note f_eq = this from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0, - OF `0 \ Ifloat (x * x)` f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps] - show "?lb" and "?ub" by (auto simp add: power_mult power2_eq_square[of "Ifloat x"]) + OF `0 \ real (x * x)` f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps] + show "?lb" and "?ub" by (auto simp add: power_mult power2_eq_square[of "real x"]) qed -lemma cos_boundaries: assumes "0 \ Ifloat x" and "Ifloat x \ pi / 2" - shows "cos (Ifloat x) \ {Ifloat (lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) .. Ifloat (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))}" -proof (cases "Ifloat x = 0") - case False hence "Ifloat x \ 0" by auto - hence "0 < x" and "0 < Ifloat x" using `0 \ Ifloat x` unfolding less_float_def by auto - have "0 < x * x" using `0 < x` unfolding less_float_def Ifloat_mult Ifloat_0 - using mult_pos_pos[where a="Ifloat x" and b="Ifloat x"] by auto +lemma cos_boundaries: assumes "0 \ real x" and "real x \ pi / 2" + shows "cos (real x) \ {real (lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) .. real (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))}" +proof (cases "real x = 0") + case False hence "real x \ 0" by auto + hence "0 < x" and "0 < real x" using `0 \ real x` unfolding less_float_def by auto + have "0 < x * x" using `0 < x` unfolding less_float_def real_of_float_mult real_of_float_0 + using mult_pos_pos[where a="real x" and b="real x"] by auto { fix x n have "(\ i=0.. i = 0 ..< 2 * n. (if even(i) then (-1 ^ (i div 2))/(real (fact i)) else 0) * x ^ i)" (is "?sum = ?ifsum") @@ -827,62 +827,62 @@ { fix n :: nat assume "0 < n" hence "0 < 2 * n" by auto - obtain t where "0 < t" and "t < Ifloat x" and - cos_eq: "cos (Ifloat x) = (\ i = 0 ..< 2 * n. (if even(i) then (-1 ^ (i div 2))/(real (fact i)) else 0) * (Ifloat x) ^ i) - + (cos (t + 1/2 * real (2 * n) * pi) / real (fact (2*n))) * (Ifloat x)^(2*n)" + obtain t where "0 < t" and "t < real x" and + cos_eq: "cos (real x) = (\ i = 0 ..< 2 * n. (if even(i) then (-1 ^ (i div 2))/(real (fact i)) else 0) * (real x) ^ i) + + (cos (t + 1/2 * real (2 * n) * pi) / real (fact (2*n))) * (real x)^(2*n)" (is "_ = ?SUM + ?rest / ?fact * ?pow") - using Maclaurin_cos_expansion2[OF `0 < Ifloat x` `0 < 2 * n`] by auto + using Maclaurin_cos_expansion2[OF `0 < real x` `0 < 2 * n`] by auto have "cos t * -1^n = cos t * cos (real n * pi) + sin t * sin (real n * pi)" by auto also have "\ = cos (t + real n * pi)" using cos_add by auto also have "\ = ?rest" by auto finally have "cos t * -1^n = ?rest" . moreover - have "t \ pi / 2" using `t < Ifloat x` and `Ifloat x \ pi / 2` by auto + have "t \ pi / 2" using `t < real x` and `real x \ pi / 2` by auto hence "0 \ cos t" using `0 < t` and cos_ge_zero by auto ultimately have even: "even n \ 0 \ ?rest" and odd: "odd n \ 0 \ - ?rest " by auto have "0 < ?fact" by auto - have "0 < ?pow" using `0 < Ifloat x` by auto + have "0 < ?pow" using `0 < real x` by auto { assume "even n" - have "Ifloat (lb_sin_cos_aux prec n 1 1 (x * x)) \ ?SUM" + have "real (lb_sin_cos_aux prec n 1 1 (x * x)) \ ?SUM" unfolding morph_to_if_power[symmetric] using cos_aux by auto - also have "\ \ cos (Ifloat x)" + also have "\ \ cos (real x)" proof - from even[OF `even n`] `0 < ?fact` `0 < ?pow` have "0 \ (?rest / ?fact) * ?pow" by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le) thus ?thesis unfolding cos_eq by auto qed - finally have "Ifloat (lb_sin_cos_aux prec n 1 1 (x * x)) \ cos (Ifloat x)" . + finally have "real (lb_sin_cos_aux prec n 1 1 (x * x)) \ cos (real x)" . } note lb = this { assume "odd n" - have "cos (Ifloat x) \ ?SUM" + have "cos (real x) \ ?SUM" proof - from `0 < ?fact` and `0 < ?pow` and odd[OF `odd n`] have "0 \ (- ?rest) / ?fact * ?pow" by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le) thus ?thesis unfolding cos_eq by auto qed - also have "\ \ Ifloat (ub_sin_cos_aux prec n 1 1 (x * x))" + also have "\ \ real (ub_sin_cos_aux prec n 1 1 (x * x))" unfolding morph_to_if_power[symmetric] using cos_aux by auto - finally have "cos (Ifloat x) \ Ifloat (ub_sin_cos_aux prec n 1 1 (x * x))" . + finally have "cos (real x) \ real (ub_sin_cos_aux prec n 1 1 (x * x))" . } note ub = this and lb } note ub = this(1) and lb = this(2) - have "cos (Ifloat x) \ Ifloat (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))" using ub[OF odd_pos[OF get_odd] get_odd] . - moreover have "Ifloat (lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) \ cos (Ifloat x)" + have "cos (real x) \ real (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))" using ub[OF odd_pos[OF get_odd] get_odd] . + moreover have "real (lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) \ cos (real x)" proof (cases "0 < get_even n") case True show ?thesis using lb[OF True get_even] . next case False hence "get_even n = 0" by auto - have "- (pi / 2) \ Ifloat x" by (rule order_trans[OF _ `0 < Ifloat x`[THEN less_imp_le]], auto) - with `Ifloat x \ pi / 2` - show ?thesis unfolding `get_even n = 0` lb_sin_cos_aux.simps Ifloat_minus Ifloat_0 using cos_ge_zero by auto + have "- (pi / 2) \ real x" by (rule order_trans[OF _ `0 < real x`[THEN less_imp_le]], auto) + with `real x \ pi / 2` + show ?thesis unfolding `get_even n = 0` lb_sin_cos_aux.simps real_of_float_minus real_of_float_0 using cos_ge_zero by auto qed ultimately show ?thesis by auto next @@ -890,18 +890,18 @@ show ?thesis proof (cases "n = 0") case True - thus ?thesis unfolding `n = 0` get_even_def get_odd_def using `Ifloat x = 0` lapprox_rat[where x="-1" and y=1] by auto + thus ?thesis unfolding `n = 0` get_even_def get_odd_def using `real x = 0` lapprox_rat[where x="-1" and y=1] by auto next case False with not0_implies_Suc obtain m where "n = Suc m" by blast - thus ?thesis unfolding `n = Suc m` get_even_def get_odd_def using `Ifloat x = 0` rapprox_rat[where x=1 and y=1] lapprox_rat[where x=1 and y=1] by (cases "even (Suc m)", auto) + thus ?thesis unfolding `n = Suc m` get_even_def get_odd_def using `real x = 0` rapprox_rat[where x=1 and y=1] lapprox_rat[where x=1 and y=1] by (cases "even (Suc m)", auto) qed qed -lemma sin_aux: assumes "0 \ Ifloat x" - shows "Ifloat (x * lb_sin_cos_aux prec n 2 1 (x * x)) \ (\ i=0.. i=0.. Ifloat (x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub") +lemma sin_aux: assumes "0 \ real x" + shows "real (x * lb_sin_cos_aux prec n 2 1 (x * x)) \ (\ i=0.. i=0.. real (x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub") proof - - have "0 \ Ifloat (x * x)" unfolding Ifloat_mult by auto + have "0 \ real (x * x)" unfolding real_of_float_mult by auto let "?f n" = "fact (2 * n + 1)" { fix n @@ -910,20 +910,20 @@ unfolding F by auto } note f_eq = this from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0, - OF `0 \ Ifloat (x * x)` f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps] - show "?lb" and "?ub" using `0 \ Ifloat x` unfolding Ifloat_mult + OF `0 \ real (x * x)` f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps] + show "?lb" and "?ub" using `0 \ real x` unfolding real_of_float_mult unfolding power_add power_one_right real_mult_assoc[symmetric] setsum_left_distrib[symmetric] unfolding real_mult_commute - by (auto intro!: mult_left_mono simp add: power_mult power2_eq_square[of "Ifloat x"]) + by (auto intro!: mult_left_mono simp add: power_mult power2_eq_square[of "real x"]) qed -lemma sin_boundaries: assumes "0 \ Ifloat x" and "Ifloat x \ pi / 2" - shows "sin (Ifloat x) \ {Ifloat (x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) .. Ifloat (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))}" -proof (cases "Ifloat x = 0") - case False hence "Ifloat x \ 0" by auto - hence "0 < x" and "0 < Ifloat x" using `0 \ Ifloat x` unfolding less_float_def by auto - have "0 < x * x" using `0 < x` unfolding less_float_def Ifloat_mult Ifloat_0 - using mult_pos_pos[where a="Ifloat x" and b="Ifloat x"] by auto +lemma sin_boundaries: assumes "0 \ real x" and "real x \ pi / 2" + shows "sin (real x) \ {real (x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) .. real (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))}" +proof (cases "real x = 0") + case False hence "real x \ 0" by auto + hence "0 < x" and "0 < real x" using `0 \ real x` unfolding less_float_def by auto + have "0 < x * x" using `0 < x` unfolding less_float_def real_of_float_mult real_of_float_0 + using mult_pos_pos[where a="real x" and b="real x"] by auto { fix x n have "(\ j = 0 ..< n. -1 ^ (((2 * j + 1) - Suc 0) div 2) / (real (fact (2 * j + 1))) * x ^(2 * j + 1)) = (\ i = 0 ..< 2 * n. (if even(i) then 0 else (-1 ^ ((i - Suc 0) div 2))/(real (fact i))) * x ^ i)" (is "?SUM = _") @@ -939,62 +939,62 @@ { fix n :: nat assume "0 < n" hence "0 < 2 * n + 1" by auto - obtain t where "0 < t" and "t < Ifloat x" and - sin_eq: "sin (Ifloat x) = (\ i = 0 ..< 2 * n + 1. (if even(i) then 0 else (-1 ^ ((i - Suc 0) div 2))/(real (fact i))) * (Ifloat x) ^ i) - + (sin (t + 1/2 * real (2 * n + 1) * pi) / real (fact (2*n + 1))) * (Ifloat x)^(2*n + 1)" + obtain t where "0 < t" and "t < real x" and + sin_eq: "sin (real x) = (\ i = 0 ..< 2 * n + 1. (if even(i) then 0 else (-1 ^ ((i - Suc 0) div 2))/(real (fact i))) * (real x) ^ i) + + (sin (t + 1/2 * real (2 * n + 1) * pi) / real (fact (2*n + 1))) * (real x)^(2*n + 1)" (is "_ = ?SUM + ?rest / ?fact * ?pow") - using Maclaurin_sin_expansion3[OF `0 < 2 * n + 1` `0 < Ifloat x`] by auto + using Maclaurin_sin_expansion3[OF `0 < 2 * n + 1` `0 < real x`] by auto have "?rest = cos t * -1^n" unfolding sin_add cos_add real_of_nat_add left_distrib right_distrib by auto moreover - have "t \ pi / 2" using `t < Ifloat x` and `Ifloat x \ pi / 2` by auto + have "t \ pi / 2" using `t < real x` and `real x \ pi / 2` by auto hence "0 \ cos t" using `0 < t` and cos_ge_zero by auto ultimately have even: "even n \ 0 \ ?rest" and odd: "odd n \ 0 \ - ?rest " by auto have "0 < ?fact" by (rule real_of_nat_fact_gt_zero) - have "0 < ?pow" using `0 < Ifloat x` by (rule zero_less_power) + have "0 < ?pow" using `0 < real x` by (rule zero_less_power) { assume "even n" - have "Ifloat (x * lb_sin_cos_aux prec n 2 1 (x * x)) \ - (\ i = 0 ..< 2 * n. (if even(i) then 0 else (-1 ^ ((i - Suc 0) div 2))/(real (fact i))) * (Ifloat x) ^ i)" - using sin_aux[OF `0 \ Ifloat x`] unfolding setsum_morph[symmetric] by auto + have "real (x * lb_sin_cos_aux prec n 2 1 (x * x)) \ + (\ i = 0 ..< 2 * n. (if even(i) then 0 else (-1 ^ ((i - Suc 0) div 2))/(real (fact i))) * (real x) ^ i)" + using sin_aux[OF `0 \ real x`] unfolding setsum_morph[symmetric] by auto also have "\ \ ?SUM" by auto - also have "\ \ sin (Ifloat x)" + also have "\ \ sin (real x)" proof - from even[OF `even n`] `0 < ?fact` `0 < ?pow` have "0 \ (?rest / ?fact) * ?pow" by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le) thus ?thesis unfolding sin_eq by auto qed - finally have "Ifloat (x * lb_sin_cos_aux prec n 2 1 (x * x)) \ sin (Ifloat x)" . + finally have "real (x * lb_sin_cos_aux prec n 2 1 (x * x)) \ sin (real x)" . } note lb = this { assume "odd n" - have "sin (Ifloat x) \ ?SUM" + have "sin (real x) \ ?SUM" proof - from `0 < ?fact` and `0 < ?pow` and odd[OF `odd n`] have "0 \ (- ?rest) / ?fact * ?pow" by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le) thus ?thesis unfolding sin_eq by auto qed - also have "\ \ (\ i = 0 ..< 2 * n. (if even(i) then 0 else (-1 ^ ((i - Suc 0) div 2))/(real (fact i))) * (Ifloat x) ^ i)" + also have "\ \ (\ i = 0 ..< 2 * n. (if even(i) then 0 else (-1 ^ ((i - Suc 0) div 2))/(real (fact i))) * (real x) ^ i)" by auto - also have "\ \ Ifloat (x * ub_sin_cos_aux prec n 2 1 (x * x))" - using sin_aux[OF `0 \ Ifloat x`] unfolding setsum_morph[symmetric] by auto - finally have "sin (Ifloat x) \ Ifloat (x * ub_sin_cos_aux prec n 2 1 (x * x))" . + also have "\ \ real (x * ub_sin_cos_aux prec n 2 1 (x * x))" + using sin_aux[OF `0 \ real x`] unfolding setsum_morph[symmetric] by auto + finally have "sin (real x) \ real (x * ub_sin_cos_aux prec n 2 1 (x * x))" . } note ub = this and lb } note ub = this(1) and lb = this(2) - have "sin (Ifloat x) \ Ifloat (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))" using ub[OF odd_pos[OF get_odd] get_odd] . - moreover have "Ifloat (x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) \ sin (Ifloat x)" + have "sin (real x) \ real (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))" using ub[OF odd_pos[OF get_odd] get_odd] . + moreover have "real (x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) \ sin (real x)" proof (cases "0 < get_even n") case True show ?thesis using lb[OF True get_even] . next case False hence "get_even n = 0" by auto - with `Ifloat x \ pi / 2` `0 \ Ifloat x` - show ?thesis unfolding `get_even n = 0` ub_sin_cos_aux.simps Ifloat_minus Ifloat_0 using sin_ge_zero by auto + with `real x \ pi / 2` `0 \ real x` + show ?thesis unfolding `get_even n = 0` ub_sin_cos_aux.simps real_of_float_minus real_of_float_0 using sin_ge_zero by auto qed ultimately show ?thesis by auto next @@ -1002,10 +1002,10 @@ show ?thesis proof (cases "n = 0") case True - thus ?thesis unfolding `n = 0` get_even_def get_odd_def using `Ifloat x = 0` lapprox_rat[where x="-1" and y=1] by auto + thus ?thesis unfolding `n = 0` get_even_def get_odd_def using `real x = 0` lapprox_rat[where x="-1" and y=1] by auto next case False with not0_implies_Suc obtain m where "n = Suc m" by blast - thus ?thesis unfolding `n = Suc m` get_even_def get_odd_def using `Ifloat x = 0` rapprox_rat[where x=1 and y=1] lapprox_rat[where x=1 and y=1] by (cases "even (Suc m)", auto) + thus ?thesis unfolding `n = Suc m` get_even_def get_odd_def using `real x = 0` rapprox_rat[where x=1 and y=1] lapprox_rat[where x=1 and y=1] by (cases "even (Suc m)", auto) qed qed @@ -1034,8 +1034,8 @@ else if 0 \ lx then (lb_cos prec ux, ub_cos prec lx) else (min (lb_cos prec (-lx)) (lb_cos prec ux), Float 1 0))" -lemma lb_cos: assumes "0 \ Ifloat x" and "Ifloat x \ pi" - shows "cos (Ifloat x) \ {Ifloat (lb_cos prec x) .. Ifloat (ub_cos prec x)}" (is "?cos x \ { Ifloat (?lb x) .. Ifloat (?ub x) }") +lemma lb_cos: assumes "0 \ real x" and "real x \ pi" + shows "cos (real x) \ {real (lb_cos prec x) .. real (ub_cos prec x)}" (is "?cos x \ { real (?lb x) .. real (?ub x) }") proof - { fix x :: real have "cos x = cos (x / 2 + x / 2)" by auto @@ -1045,7 +1045,7 @@ finally have "cos x = 2 * cos (x / 2) * cos (x / 2) - 1" . } note x_half = this[symmetric] - have "\ x < 0" using `0 \ Ifloat x` unfolding less_float_def by auto + have "\ x < 0" using `0 \ real x` unfolding less_float_def by auto let "?ub_horner x" = "ub_sin_cos_aux prec (get_odd (prec div 4 + 1)) 1 1 (x * x)" let "?lb_horner x" = "lb_sin_cos_aux prec (get_even (prec div 4 + 1)) 1 1 (x * x)" let "?ub_half x" = "Float 1 1 * x * x - 1" @@ -1053,88 +1053,88 @@ show ?thesis proof (cases "x < Float 1 -1") - case True hence "Ifloat x \ pi / 2" unfolding less_float_def using pi_ge_two by auto + case True hence "real x \ pi / 2" unfolding less_float_def using pi_ge_two by auto show ?thesis unfolding lb_cos_def[where x=x] ub_cos_def[where x=x] if_not_P[OF `\ x < 0`] if_P[OF `x < Float 1 -1`] Let_def - using cos_boundaries[OF `0 \ Ifloat x` `Ifloat x \ pi / 2`] . + using cos_boundaries[OF `0 \ real x` `real x \ pi / 2`] . next case False - { fix y x :: float let ?x2 = "Ifloat (x * Float 1 -1)" - assume "Ifloat y \ cos ?x2" and "-pi \ Ifloat x" and "Ifloat x \ pi" - hence "- (pi / 2) \ ?x2" and "?x2 \ pi / 2" using pi_ge_two unfolding Ifloat_mult Float_num by auto + { fix y x :: float let ?x2 = "real (x * Float 1 -1)" + assume "real y \ cos ?x2" and "-pi \ real x" and "real x \ pi" + hence "- (pi / 2) \ ?x2" and "?x2 \ pi / 2" using pi_ge_two unfolding real_of_float_mult Float_num by auto hence "0 \ cos ?x2" by (rule cos_ge_zero) - have "Ifloat (?lb_half y) \ cos (Ifloat x)" + have "real (?lb_half y) \ cos (real x)" proof (cases "y < 0") case True show ?thesis using cos_ge_minus_one unfolding if_P[OF True] by auto next case False - hence "0 \ Ifloat y" unfolding less_float_def by auto - from mult_mono[OF `Ifloat y \ cos ?x2` `Ifloat y \ cos ?x2` `0 \ cos ?x2` this] - have "Ifloat y * Ifloat y \ cos ?x2 * cos ?x2" . - hence "2 * Ifloat y * Ifloat y \ 2 * cos ?x2 * cos ?x2" by auto - hence "2 * Ifloat y * Ifloat y - 1 \ 2 * cos (Ifloat x / 2) * cos (Ifloat x / 2) - 1" unfolding Float_num Ifloat_mult by auto - thus ?thesis unfolding if_not_P[OF False] x_half Float_num Ifloat_mult Ifloat_sub by auto + hence "0 \ real y" unfolding less_float_def by auto + from mult_mono[OF `real y \ cos ?x2` `real y \ cos ?x2` `0 \ cos ?x2` this] + have "real y * real y \ cos ?x2 * cos ?x2" . + hence "2 * real y * real y \ 2 * cos ?x2 * cos ?x2" by auto + hence "2 * real y * real y - 1 \ 2 * cos (real x / 2) * cos (real x / 2) - 1" unfolding Float_num real_of_float_mult by auto + thus ?thesis unfolding if_not_P[OF False] x_half Float_num real_of_float_mult real_of_float_sub by auto qed } note lb_half = this - { fix y x :: float let ?x2 = "Ifloat (x * Float 1 -1)" - assume ub: "cos ?x2 \ Ifloat y" and "- pi \ Ifloat x" and "Ifloat x \ pi" - hence "- (pi / 2) \ ?x2" and "?x2 \ pi / 2" using pi_ge_two unfolding Ifloat_mult Float_num by auto + { fix y x :: float let ?x2 = "real (x * Float 1 -1)" + assume ub: "cos ?x2 \ real y" and "- pi \ real x" and "real x \ pi" + hence "- (pi / 2) \ ?x2" and "?x2 \ pi / 2" using pi_ge_two unfolding real_of_float_mult Float_num by auto hence "0 \ cos ?x2" by (rule cos_ge_zero) - have "cos (Ifloat x) \ Ifloat (?ub_half y)" + have "cos (real x) \ real (?ub_half y)" proof - - have "0 \ Ifloat y" using `0 \ cos ?x2` ub by (rule order_trans) + have "0 \ real y" using `0 \ cos ?x2` ub by (rule order_trans) from mult_mono[OF ub ub this `0 \ cos ?x2`] - have "cos ?x2 * cos ?x2 \ Ifloat y * Ifloat y" . - hence "2 * cos ?x2 * cos ?x2 \ 2 * Ifloat y * Ifloat y" by auto - hence "2 * cos (Ifloat x / 2) * cos (Ifloat x / 2) - 1 \ 2 * Ifloat y * Ifloat y - 1" unfolding Float_num Ifloat_mult by auto - thus ?thesis unfolding x_half Ifloat_mult Float_num Ifloat_sub by auto + have "cos ?x2 * cos ?x2 \ real y * real y" . + hence "2 * cos ?x2 * cos ?x2 \ 2 * real y * real y" by auto + hence "2 * cos (real x / 2) * cos (real x / 2) - 1 \ 2 * real y * real y - 1" unfolding Float_num real_of_float_mult by auto + thus ?thesis unfolding x_half real_of_float_mult Float_num real_of_float_sub by auto qed } note ub_half = this let ?x2 = "x * Float 1 -1" let ?x4 = "x * Float 1 -1 * Float 1 -1" - have "-pi \ Ifloat x" using pi_ge_zero[THEN le_imp_neg_le, unfolded minus_zero] `0 \ Ifloat x` by (rule order_trans) + have "-pi \ real x" using pi_ge_zero[THEN le_imp_neg_le, unfolded minus_zero] `0 \ real x` by (rule order_trans) show ?thesis proof (cases "x < 1") - case True hence "Ifloat x \ 1" unfolding less_float_def by auto - have "0 \ Ifloat ?x2" and "Ifloat ?x2 \ pi / 2" using pi_ge_two `0 \ Ifloat x` unfolding Ifloat_mult Float_num using assms by auto + case True hence "real x \ 1" unfolding less_float_def by auto + have "0 \ real ?x2" and "real ?x2 \ pi / 2" using pi_ge_two `0 \ real x` unfolding real_of_float_mult Float_num using assms by auto from cos_boundaries[OF this] - have lb: "Ifloat (?lb_horner ?x2) \ ?cos ?x2" and ub: "?cos ?x2 \ Ifloat (?ub_horner ?x2)" by auto + have lb: "real (?lb_horner ?x2) \ ?cos ?x2" and ub: "?cos ?x2 \ real (?ub_horner ?x2)" by auto - have "Ifloat (?lb x) \ ?cos x" + have "real (?lb x) \ ?cos x" proof - - from lb_half[OF lb `-pi \ Ifloat x` `Ifloat x \ pi`] + from lb_half[OF lb `-pi \ real x` `real x \ pi`] show ?thesis unfolding lb_cos_def[where x=x] Let_def using `\ x < 0` `\ x < Float 1 -1` `x < 1` by auto qed - moreover have "?cos x \ Ifloat (?ub x)" + moreover have "?cos x \ real (?ub x)" proof - - from ub_half[OF ub `-pi \ Ifloat x` `Ifloat x \ pi`] + from ub_half[OF ub `-pi \ real x` `real x \ pi`] show ?thesis unfolding ub_cos_def[where x=x] Let_def using `\ x < 0` `\ x < Float 1 -1` `x < 1` by auto qed ultimately show ?thesis by auto next case False - have "0 \ Ifloat ?x4" and "Ifloat ?x4 \ pi / 2" using pi_ge_two `0 \ Ifloat x` `Ifloat x \ pi` unfolding Ifloat_mult Float_num by auto + have "0 \ real ?x4" and "real ?x4 \ pi / 2" using pi_ge_two `0 \ real x` `real x \ pi` unfolding real_of_float_mult Float_num by auto from cos_boundaries[OF this] - have lb: "Ifloat (?lb_horner ?x4) \ ?cos ?x4" and ub: "?cos ?x4 \ Ifloat (?ub_horner ?x4)" by auto + have lb: "real (?lb_horner ?x4) \ ?cos ?x4" and ub: "?cos ?x4 \ real (?ub_horner ?x4)" by auto have eq_4: "?x2 * Float 1 -1 = x * Float 1 -2" by (cases x, auto simp add: times_float.simps) - have "Ifloat (?lb x) \ ?cos x" + have "real (?lb x) \ ?cos x" proof - - have "-pi \ Ifloat ?x2" and "Ifloat ?x2 \ pi" unfolding Ifloat_mult Float_num using pi_ge_two `0 \ Ifloat x` `Ifloat x \ pi` by auto - from lb_half[OF lb_half[OF lb this] `-pi \ Ifloat x` `Ifloat x \ pi`, unfolded eq_4] + have "-pi \ real ?x2" and "real ?x2 \ pi" unfolding real_of_float_mult Float_num using pi_ge_two `0 \ real x` `real x \ pi` by auto + from lb_half[OF lb_half[OF lb this] `-pi \ real x` `real x \ pi`, unfolded eq_4] show ?thesis unfolding lb_cos_def[where x=x] if_not_P[OF `\ x < 0`] if_not_P[OF `\ x < Float 1 -1`] if_not_P[OF `\ x < 1`] Let_def . qed - moreover have "?cos x \ Ifloat (?ub x)" + moreover have "?cos x \ real (?ub x)" proof - - have "-pi \ Ifloat ?x2" and "Ifloat ?x2 \ pi" unfolding Ifloat_mult Float_num using pi_ge_two `0 \ Ifloat x` `Ifloat x \ pi` by auto - from ub_half[OF ub_half[OF ub this] `-pi \ Ifloat x` `Ifloat x \ pi`, unfolded eq_4] + have "-pi \ real ?x2" and "real ?x2 \ pi" unfolding real_of_float_mult Float_num using pi_ge_two `0 \ real x` `real x \ pi` by auto + from ub_half[OF ub_half[OF ub this] `-pi \ real x` `real x \ pi`, unfolded eq_4] show ?thesis unfolding ub_cos_def[where x=x] if_not_P[OF `\ x < 0`] if_not_P[OF `\ x < Float 1 -1`] if_not_P[OF `\ x < 1`] Let_def . qed ultimately show ?thesis by auto @@ -1142,38 +1142,38 @@ qed qed -lemma lb_cos_minus: assumes "-pi \ Ifloat x" and "Ifloat x \ 0" - shows "cos (Ifloat (-x)) \ {Ifloat (lb_cos prec (-x)) .. Ifloat (ub_cos prec (-x))}" +lemma lb_cos_minus: assumes "-pi \ real x" and "real x \ 0" + shows "cos (real (-x)) \ {real (lb_cos prec (-x)) .. real (ub_cos prec (-x))}" proof - - have "0 \ Ifloat (-x)" and "Ifloat (-x) \ pi" using `-pi \ Ifloat x` `Ifloat x \ 0` by auto + have "0 \ real (-x)" and "real (-x) \ pi" using `-pi \ real x` `real x \ 0` by auto from lb_cos[OF this] show ?thesis . qed -lemma bnds_cos: "\ x lx ux. (l, u) = bnds_cos prec lx ux \ x \ {Ifloat lx .. Ifloat ux} \ Ifloat l \ cos x \ cos x \ Ifloat u" +lemma bnds_cos: "\ x lx ux. (l, u) = bnds_cos prec lx ux \ x \ {real lx .. real ux} \ real l \ cos x \ cos x \ real u" proof (rule allI, rule allI, rule allI, rule impI) fix x lx ux - assume "(l, u) = bnds_cos prec lx ux \ x \ {Ifloat lx .. Ifloat ux}" - hence bnds: "(l, u) = bnds_cos prec lx ux" and x: "x \ {Ifloat lx .. Ifloat ux}" by auto + assume "(l, u) = bnds_cos prec lx ux \ x \ {real lx .. real ux}" + hence bnds: "(l, u) = bnds_cos prec lx ux" and x: "x \ {real lx .. real ux}" by auto let ?lpi = "lb_pi prec" - have [intro!]: "Ifloat lx \ Ifloat ux" using x by auto + have [intro!]: "real lx \ real ux" using x by auto hence "lx \ ux" unfolding le_float_def . - show "Ifloat l \ cos x \ cos x \ Ifloat u" + show "real l \ cos x \ cos x \ real u" proof (cases "lx < -?lpi \ ux > ?lpi") case True show ?thesis using bnds unfolding bnds_cos_def if_P[OF True] Let_def using cos_le_one cos_ge_minus_one by auto next case False note not_out = this - hence lpi_lx: "- Ifloat ?lpi \ Ifloat lx" and lpi_ux: "Ifloat ux \ Ifloat ?lpi" unfolding le_float_def less_float_def by auto + hence lpi_lx: "- real ?lpi \ real lx" and lpi_ux: "real ux \ real ?lpi" unfolding le_float_def less_float_def by auto from pi_boundaries[unfolded atLeastAtMost_iff, THEN conjunct1, THEN le_imp_neg_le] lpi_lx - have "- pi \ Ifloat lx" by (rule order_trans) - hence "- pi \ x" and "- pi \ Ifloat ux" and "x \ Ifloat ux" using x by auto + have "- pi \ real lx" by (rule order_trans) + hence "- pi \ x" and "- pi \ real ux" and "x \ real ux" using x by auto from lpi_ux pi_boundaries[unfolded atLeastAtMost_iff, THEN conjunct1] - have "Ifloat ux \ pi" by (rule order_trans) - hence "x \ pi" and "Ifloat lx \ pi" and "Ifloat lx \ x" using x by auto + have "real ux \ pi" by (rule order_trans) + hence "x \ pi" and "real lx \ pi" and "real lx \ x" using x by auto note lb_cos_minus_bottom = lb_cos_minus[unfolded atLeastAtMost_iff, THEN conjunct1] note lb_cos_minus_top = lb_cos_minus[unfolded atLeastAtMost_iff, THEN conjunct2] @@ -1182,50 +1182,50 @@ show ?thesis proof (cases "ux \ 0") - case True hence "Ifloat ux \ 0" unfolding le_float_def by auto - hence "x \ 0" and "Ifloat lx \ 0" using x by auto + case True hence "real ux \ 0" unfolding le_float_def by auto + hence "x \ 0" and "real lx \ 0" using x by auto - { have "Ifloat (lb_cos prec (-lx)) \ cos (Ifloat (-lx))" using lb_cos_minus_bottom[OF `-pi \ Ifloat lx` `Ifloat lx \ 0`] . - also have "\ \ cos x" unfolding Ifloat_minus cos_minus using cos_monotone_minus_pi_0'[OF `- pi \ Ifloat lx` `Ifloat lx \ x` `x \ 0`] . - finally have "Ifloat (lb_cos prec (-lx)) \ cos x" . } + { have "real (lb_cos prec (-lx)) \ cos (real (-lx))" using lb_cos_minus_bottom[OF `-pi \ real lx` `real lx \ 0`] . + also have "\ \ cos x" unfolding real_of_float_minus cos_minus using cos_monotone_minus_pi_0'[OF `- pi \ real lx` `real lx \ x` `x \ 0`] . + finally have "real (lb_cos prec (-lx)) \ cos x" . } moreover - { have "cos x \ cos (Ifloat (-ux))" unfolding Ifloat_minus cos_minus using cos_monotone_minus_pi_0'[OF `- pi \ x` `x \ Ifloat ux` `Ifloat ux \ 0`] . - also have "\ \ Ifloat (ub_cos prec (-ux))" using lb_cos_minus_top[OF `-pi \ Ifloat ux` `Ifloat ux \ 0`] . - finally have "cos x \ Ifloat (ub_cos prec (-ux))" . } + { have "cos x \ cos (real (-ux))" unfolding real_of_float_minus cos_minus using cos_monotone_minus_pi_0'[OF `- pi \ x` `x \ real ux` `real ux \ 0`] . + also have "\ \ real (ub_cos prec (-ux))" using lb_cos_minus_top[OF `-pi \ real ux` `real ux \ 0`] . + finally have "cos x \ real (ub_cos prec (-ux))" . } ultimately show ?thesis using bnds unfolding bnds_cos_def Let_def if_not_P[OF not_out] if_P[OF True] by auto next case False note not_ux = this show ?thesis proof (cases "0 \ lx") - case True hence "0 \ Ifloat lx" unfolding le_float_def by auto - hence "0 \ x" and "0 \ Ifloat ux" using x by auto + case True hence "0 \ real lx" unfolding le_float_def by auto + hence "0 \ x" and "0 \ real ux" using x by auto - { have "Ifloat (lb_cos prec ux) \ cos (Ifloat ux)" using lb_cos_bottom[OF `0 \ Ifloat ux` `Ifloat ux \ pi`] . - also have "\ \ cos x" using cos_monotone_0_pi'[OF `0 \ x` `x \ Ifloat ux` `Ifloat ux \ pi`] . - finally have "Ifloat (lb_cos prec ux) \ cos x" . } + { have "real (lb_cos prec ux) \ cos (real ux)" using lb_cos_bottom[OF `0 \ real ux` `real ux \ pi`] . + also have "\ \ cos x" using cos_monotone_0_pi'[OF `0 \ x` `x \ real ux` `real ux \ pi`] . + finally have "real (lb_cos prec ux) \ cos x" . } moreover - { have "cos x \ cos (Ifloat lx)" using cos_monotone_0_pi'[OF `0 \ Ifloat lx` `Ifloat lx \ x` `x \ pi`] . - also have "\ \ Ifloat (ub_cos prec lx)" using lb_cos_top[OF `0 \ Ifloat lx` `Ifloat lx \ pi`] . - finally have "cos x \ Ifloat (ub_cos prec lx)" . } + { have "cos x \ cos (real lx)" using cos_monotone_0_pi'[OF `0 \ real lx` `real lx \ x` `x \ pi`] . + also have "\ \ real (ub_cos prec lx)" using lb_cos_top[OF `0 \ real lx` `real lx \ pi`] . + finally have "cos x \ real (ub_cos prec lx)" . } ultimately show ?thesis using bnds unfolding bnds_cos_def Let_def if_not_P[OF not_out] if_not_P[OF not_ux] if_P[OF True] by auto next case False with not_ux - have "Ifloat lx \ 0" and "0 \ Ifloat ux" unfolding le_float_def by auto + have "real lx \ 0" and "0 \ real ux" unfolding le_float_def by auto - have "Ifloat (min (lb_cos prec (-lx)) (lb_cos prec ux)) \ cos x" + have "real (min (lb_cos prec (-lx)) (lb_cos prec ux)) \ cos x" proof (cases "x \ 0") case True - have "Ifloat (lb_cos prec (-lx)) \ cos (Ifloat (-lx))" using lb_cos_minus_bottom[OF `-pi \ Ifloat lx` `Ifloat lx \ 0`] . - also have "\ \ cos x" unfolding Ifloat_minus cos_minus using cos_monotone_minus_pi_0'[OF `- pi \ Ifloat lx` `Ifloat lx \ x` `x \ 0`] . - finally show ?thesis unfolding Ifloat_min by auto + have "real (lb_cos prec (-lx)) \ cos (real (-lx))" using lb_cos_minus_bottom[OF `-pi \ real lx` `real lx \ 0`] . + also have "\ \ cos x" unfolding real_of_float_minus cos_minus using cos_monotone_minus_pi_0'[OF `- pi \ real lx` `real lx \ x` `x \ 0`] . + finally show ?thesis unfolding real_of_float_min by auto next case False hence "0 \ x" by auto - have "Ifloat (lb_cos prec ux) \ cos (Ifloat ux)" using lb_cos_bottom[OF `0 \ Ifloat ux` `Ifloat ux \ pi`] . - also have "\ \ cos x" using cos_monotone_0_pi'[OF `0 \ x` `x \ Ifloat ux` `Ifloat ux \ pi`] . - finally show ?thesis unfolding Ifloat_min by auto + have "real (lb_cos prec ux) \ cos (real ux)" using lb_cos_bottom[OF `0 \ real ux` `real ux \ pi`] . + also have "\ \ cos x" using cos_monotone_0_pi'[OF `0 \ x` `x \ real ux` `real ux \ pi`] . + finally show ?thesis unfolding real_of_float_min by auto qed - moreover have "cos x \ Ifloat (Float 1 0)" by auto + moreover have "cos x \ real (Float 1 0)" by auto ultimately show ?thesis using bnds unfolding bnds_cos_def Let_def if_not_P[OF not_out] if_not_P[OF not_ux] if_not_P[OF False] by auto qed qed @@ -1254,45 +1254,45 @@ in if lx \ - half_pi \ half_pi \ ux then (Float -1 0, Float 1 0) else (lb_sin prec lx, ub_sin prec ux))" -lemma lb_sin: assumes "- (pi / 2) \ Ifloat x" and "Ifloat x \ pi / 2" - shows "sin (Ifloat x) \ { Ifloat (lb_sin prec x) .. Ifloat (ub_sin prec x) }" (is "?sin x \ { ?lb x .. ?ub x}") +lemma lb_sin: assumes "- (pi / 2) \ real x" and "real x \ pi / 2" + shows "sin (real x) \ { real (lb_sin prec x) .. real (ub_sin prec x) }" (is "?sin x \ { ?lb x .. ?ub x}") proof - - { fix x :: float assume "0 \ Ifloat x" and "Ifloat x \ pi / 2" - hence "\ (x < 0)" and "- (pi / 2) \ Ifloat x" unfolding less_float_def using pi_ge_two by auto + { fix x :: float assume "0 \ real x" and "real x \ pi / 2" + hence "\ (x < 0)" and "- (pi / 2) \ real x" unfolding less_float_def using pi_ge_two by auto - have "Ifloat x \ pi" using `Ifloat x \ pi / 2` using pi_ge_two by auto + have "real x \ pi" using `real x \ pi / 2` using pi_ge_two by auto have "?sin x \ { ?lb x .. ?ub x}" proof (cases "x \ Float 1 -1") - case True from sin_boundaries[OF `0 \ Ifloat x` `Ifloat x \ pi / 2`] + case True from sin_boundaries[OF `0 \ real x` `real x \ pi / 2`] show ?thesis unfolding lb_sin.simps[of prec x] ub_sin.simps[of prec x] if_not_P[OF `\ (x < 0)`] if_P[OF True] Let_def . next case False - have "0 \ cos (Ifloat x)" using cos_ge_zero[OF _ `Ifloat x \ pi /2`] `0 \ Ifloat x` pi_ge_two by auto - have "0 \ sin (Ifloat x)" using `0 \ Ifloat x` and `Ifloat x \ pi / 2` using sin_ge_zero by auto + have "0 \ cos (real x)" using cos_ge_zero[OF _ `real x \ pi /2`] `0 \ real x` pi_ge_two by auto + have "0 \ sin (real x)" using `0 \ real x` and `real x \ pi / 2` using sin_ge_zero by auto have "?sin x \ ?ub x" proof (cases "lb_cos prec x < 0") case True have "?sin x \ 1" using sin_le_one . - also have "\ \ Ifloat (the (ub_sqrt prec 1))" using ub_sqrt_lower_bound[where prec=prec and x=1] unfolding Ifloat_1 by auto + also have "\ \ real (the (ub_sqrt prec 1))" using ub_sqrt_lower_bound[where prec=prec and x=1] unfolding real_of_float_1 by auto finally show ?thesis unfolding ub_sin.simps if_not_P[OF `\ (x < 0)`] if_not_P[OF `\ x \ Float 1 -1`] if_P[OF True] Let_def . next - case False hence "0 \ Ifloat (lb_cos prec x)" unfolding less_float_def by auto + case False hence "0 \ real (lb_cos prec x)" unfolding less_float_def by auto - have "sin (Ifloat x) = sqrt (1 - cos (Ifloat x) ^ 2)" unfolding sin_squared_eq[symmetric] real_sqrt_abs using `0 \ sin (Ifloat x)` by auto - also have "\ \ sqrt (Ifloat (1 - lb_cos prec x * lb_cos prec x))" + have "sin (real x) = sqrt (1 - cos (real x) ^ 2)" unfolding sin_squared_eq[symmetric] real_sqrt_abs using `0 \ sin (real x)` by auto + also have "\ \ sqrt (real (1 - lb_cos prec x * lb_cos prec x))" proof (rule real_sqrt_le_mono) - have "Ifloat (lb_cos prec x * lb_cos prec x) \ cos (Ifloat x) ^ 2" unfolding numeral_2_eq_2 power_Suc2 power_0 Ifloat_mult - using `0 \ Ifloat (lb_cos prec x)` lb_cos[OF `0 \ Ifloat x` `Ifloat x \ pi`] `0 \ cos (Ifloat x)` by(auto intro!: mult_mono) - thus "1 - cos (Ifloat x) ^ 2 \ Ifloat (1 - lb_cos prec x * lb_cos prec x)" unfolding Ifloat_sub Ifloat_1 by auto + have "real (lb_cos prec x * lb_cos prec x) \ cos (real x) ^ 2" unfolding numeral_2_eq_2 power_Suc2 power_0 real_of_float_mult + using `0 \ real (lb_cos prec x)` lb_cos[OF `0 \ real x` `real x \ pi`] `0 \ cos (real x)` by(auto intro!: mult_mono) + thus "1 - cos (real x) ^ 2 \ real (1 - lb_cos prec x * lb_cos prec x)" unfolding real_of_float_sub real_of_float_1 by auto qed - also have "\ \ Ifloat (the (ub_sqrt prec (1 - lb_cos prec x * lb_cos prec x)))" + also have "\ \ real (the (ub_sqrt prec (1 - lb_cos prec x * lb_cos prec x)))" proof (rule ub_sqrt_lower_bound) - have "Ifloat (lb_cos prec x) \ cos (Ifloat x)" using lb_cos[OF `0 \ Ifloat x` `Ifloat x \ pi`] by auto + have "real (lb_cos prec x) \ cos (real x)" using lb_cos[OF `0 \ real x` `real x \ pi`] by auto from mult_mono[OF order_trans[OF this cos_le_one] order_trans[OF this cos_le_one]] - have "Ifloat (lb_cos prec x) * Ifloat (lb_cos prec x) \ 1" using `0 \ Ifloat (lb_cos prec x)` by auto - thus "0 \ Ifloat (1 - lb_cos prec x * lb_cos prec x)" by auto + have "real (lb_cos prec x) * real (lb_cos prec x) \ 1" using `0 \ real (lb_cos prec x)` by auto + thus "0 \ real (1 - lb_cos prec x * lb_cos prec x)" by auto qed finally show ?thesis unfolding ub_sin.simps if_not_P[OF `\ (x < 0)`] if_not_P[OF `\ x \ Float 1 -1`] if_not_P[OF False] Let_def . qed @@ -1301,25 +1301,25 @@ proof (cases "1 < ub_cos prec x") case True show ?thesis unfolding lb_sin.simps if_not_P[OF `\ (x < 0)`] if_not_P[OF `\ x \ Float 1 -1`] if_P[OF True] Let_def - by (rule order_trans[OF _ sin_ge_zero[OF `0 \ Ifloat x` `Ifloat x \ pi`]]) - (auto simp add: lb_sqrt_upper_bound[where prec=prec and x=0, unfolded Ifloat_0 real_sqrt_zero]) + by (rule order_trans[OF _ sin_ge_zero[OF `0 \ real x` `real x \ pi`]]) + (auto simp add: lb_sqrt_upper_bound[where prec=prec and x=0, unfolded real_of_float_0 real_sqrt_zero]) next - case False hence "Ifloat (ub_cos prec x) \ 1" unfolding less_float_def by auto - have "0 \ Ifloat (ub_cos prec x)" using order_trans[OF `0 \ cos (Ifloat x)`] lb_cos `0 \ Ifloat x` `Ifloat x \ pi` by auto + case False hence "real (ub_cos prec x) \ 1" unfolding less_float_def by auto + have "0 \ real (ub_cos prec x)" using order_trans[OF `0 \ cos (real x)`] lb_cos `0 \ real x` `real x \ pi` by auto - have "Ifloat (the (lb_sqrt prec (1 - ub_cos prec x * ub_cos prec x))) \ sqrt (Ifloat (1 - ub_cos prec x * ub_cos prec x))" + have "real (the (lb_sqrt prec (1 - ub_cos prec x * ub_cos prec x))) \ sqrt (real (1 - ub_cos prec x * ub_cos prec x))" proof (rule lb_sqrt_upper_bound) - from mult_mono[OF `Ifloat (ub_cos prec x) \ 1` `Ifloat (ub_cos prec x) \ 1`] `0 \ Ifloat (ub_cos prec x)` - have "Ifloat (ub_cos prec x) * Ifloat (ub_cos prec x) \ 1" by auto - thus "0 \ Ifloat (1 - ub_cos prec x * ub_cos prec x)" by auto + from mult_mono[OF `real (ub_cos prec x) \ 1` `real (ub_cos prec x) \ 1`] `0 \ real (ub_cos prec x)` + have "real (ub_cos prec x) * real (ub_cos prec x) \ 1" by auto + thus "0 \ real (1 - ub_cos prec x * ub_cos prec x)" by auto qed - also have "\ \ sqrt (1 - cos (Ifloat x) ^ 2)" + also have "\ \ sqrt (1 - cos (real x) ^ 2)" proof (rule real_sqrt_le_mono) - have "cos (Ifloat x) ^ 2 \ Ifloat (ub_cos prec x * ub_cos prec x)" unfolding numeral_2_eq_2 power_Suc2 power_0 Ifloat_mult - using `0 \ Ifloat (ub_cos prec x)` lb_cos[OF `0 \ Ifloat x` `Ifloat x \ pi`] `0 \ cos (Ifloat x)` by(auto intro!: mult_mono) - thus "Ifloat (1 - ub_cos prec x * ub_cos prec x) \ 1 - cos (Ifloat x) ^ 2" unfolding Ifloat_sub Ifloat_1 by auto + have "cos (real x) ^ 2 \ real (ub_cos prec x * ub_cos prec x)" unfolding numeral_2_eq_2 power_Suc2 power_0 real_of_float_mult + using `0 \ real (ub_cos prec x)` lb_cos[OF `0 \ real x` `real x \ pi`] `0 \ cos (real x)` by(auto intro!: mult_mono) + thus "real (1 - ub_cos prec x * ub_cos prec x) \ 1 - cos (real x) ^ 2" unfolding real_of_float_sub real_of_float_1 by auto qed - also have "\ = sin (Ifloat x)" unfolding sin_squared_eq[symmetric] real_sqrt_abs using `0 \ sin (Ifloat x)` by auto + also have "\ = sin (real x)" unfolding sin_squared_eq[symmetric] real_sqrt_abs using `0 \ sin (real x)` by auto finally show ?thesis unfolding lb_sin.simps if_not_P[OF `\ (x < 0)`] if_not_P[OF `\ x \ Float 1 -1`] if_not_P[OF False] Let_def . qed ultimately show ?thesis by auto @@ -1329,40 +1329,40 @@ show ?thesis proof (cases "x < 0") case True - hence "0 \ Ifloat (-x)" and "Ifloat (- x) \ pi / 2" using `-(pi/2) \ Ifloat x` unfolding less_float_def by auto + hence "0 \ real (-x)" and "real (- x) \ pi / 2" using `-(pi/2) \ real x` unfolding less_float_def by auto from for_pos[OF this] - show ?thesis unfolding Ifloat_minus sin_minus lb_sin.simps[of prec x] ub_sin.simps[of prec x] if_P[OF True] Let_def atLeastAtMost_iff by auto + show ?thesis unfolding real_of_float_minus sin_minus lb_sin.simps[of prec x] ub_sin.simps[of prec x] if_P[OF True] Let_def atLeastAtMost_iff by auto next - case False hence "0 \ Ifloat x" unfolding less_float_def by auto - from for_pos[OF this `Ifloat x \ pi /2`] + case False hence "0 \ real x" unfolding less_float_def by auto + from for_pos[OF this `real x \ pi /2`] show ?thesis . qed qed -lemma bnds_sin: "\ x lx ux. (l, u) = bnds_sin prec lx ux \ x \ {Ifloat lx .. Ifloat ux} \ Ifloat l \ sin x \ sin x \ Ifloat u" +lemma bnds_sin: "\ x lx ux. (l, u) = bnds_sin prec lx ux \ x \ {real lx .. real ux} \ real l \ sin x \ sin x \ real u" proof (rule allI, rule allI, rule allI, rule impI) fix x lx ux - assume "(l, u) = bnds_sin prec lx ux \ x \ {Ifloat lx .. Ifloat ux}" - hence bnds: "(l, u) = bnds_sin prec lx ux" and x: "x \ {Ifloat lx .. Ifloat ux}" by auto - show "Ifloat l \ sin x \ sin x \ Ifloat u" + assume "(l, u) = bnds_sin prec lx ux \ x \ {real lx .. real ux}" + hence bnds: "(l, u) = bnds_sin prec lx ux" and x: "x \ {real lx .. real ux}" by auto + show "real l \ sin x \ sin x \ real u" proof (cases "lx \ - (lb_pi prec * Float 1 -1) \ lb_pi prec * Float 1 -1 \ ux") case True show ?thesis using bnds unfolding bnds_sin_def if_P[OF True] Let_def by auto next case False hence "- lb_pi prec * Float 1 -1 \ lx" and "ux \ lb_pi prec * Float 1 -1" unfolding le_float_def by auto - moreover have "Ifloat (lb_pi prec * Float 1 -1) \ pi / 2" unfolding Ifloat_mult using pi_boundaries by auto - ultimately have "- (pi / 2) \ Ifloat lx" and "Ifloat ux \ pi / 2" and "Ifloat lx \ Ifloat ux" unfolding le_float_def using x by auto - hence "- (pi / 2) \ Ifloat ux" and "Ifloat lx \ pi / 2" by auto + moreover have "real (lb_pi prec * Float 1 -1) \ pi / 2" unfolding real_of_float_mult using pi_boundaries by auto + ultimately have "- (pi / 2) \ real lx" and "real ux \ pi / 2" and "real lx \ real ux" unfolding le_float_def using x by auto + hence "- (pi / 2) \ real ux" and "real lx \ pi / 2" by auto - have "- (pi / 2) \ x""x \ pi / 2" using `Ifloat ux \ pi / 2` `- (pi /2) \ Ifloat lx` x by auto + have "- (pi / 2) \ x""x \ pi / 2" using `real ux \ pi / 2` `- (pi /2) \ real lx` x by auto - { have "Ifloat (lb_sin prec lx) \ sin (Ifloat lx)" using lb_sin[OF `- (pi / 2) \ Ifloat lx` `Ifloat lx \ pi / 2`] unfolding atLeastAtMost_iff by auto - also have "\ \ sin x" using sin_monotone_2pi' `- (pi / 2) \ Ifloat lx` x `x \ pi / 2` by auto - finally have "Ifloat (lb_sin prec lx) \ sin x" . } + { have "real (lb_sin prec lx) \ sin (real lx)" using lb_sin[OF `- (pi / 2) \ real lx` `real lx \ pi / 2`] unfolding atLeastAtMost_iff by auto + also have "\ \ sin x" using sin_monotone_2pi' `- (pi / 2) \ real lx` x `x \ pi / 2` by auto + finally have "real (lb_sin prec lx) \ sin x" . } moreover - { have "sin x \ sin (Ifloat ux)" using sin_monotone_2pi' `- (pi / 2) \ x` x `Ifloat ux \ pi / 2` by auto - also have "\ \ Ifloat (ub_sin prec ux)" using lb_sin[OF `- (pi / 2) \ Ifloat ux` `Ifloat ux \ pi / 2`] unfolding atLeastAtMost_iff by auto - finally have "sin x \ Ifloat (ub_sin prec ux)" . } + { have "sin x \ sin (real ux)" using sin_monotone_2pi' `- (pi / 2) \ x` x `real ux \ pi / 2` by auto + also have "\ \ real (ub_sin prec ux)" using lb_sin[OF `- (pi / 2) \ real ux` `real ux \ pi / 2`] unfolding atLeastAtMost_iff by auto + finally have "sin x \ real (ub_sin prec ux)" . } ultimately show ?thesis using bnds unfolding bnds_sin_def if_not_P[OF False] Let_def by auto qed @@ -1378,8 +1378,8 @@ "lb_exp_horner prec 0 i k x = 0" | "lb_exp_horner prec (Suc n) i k x = lapprox_rat prec 1 (int k) + x * ub_exp_horner prec n (i + 1) (k * i) x" -lemma bnds_exp_horner: assumes "Ifloat x \ 0" - shows "exp (Ifloat x) \ { Ifloat (lb_exp_horner prec (get_even n) 1 1 x) .. Ifloat (ub_exp_horner prec (get_odd n) 1 1 x) }" +lemma bnds_exp_horner: assumes "real x \ 0" + shows "exp (real x) \ { real (lb_exp_horner prec (get_even n) 1 1 x) .. real (ub_exp_horner prec (get_odd n) 1 1 x) }" proof - { fix n have F: "\ m. ((\i. i + 1) ^^ n) m = n + m" by (induct n, auto) @@ -1388,39 +1388,39 @@ note bounds = horner_bounds_nonpos[where f="fact" and lb="lb_exp_horner prec" and ub="ub_exp_horner prec" and j'=0 and s=1, OF assms f_eq lb_exp_horner.simps ub_exp_horner.simps] - { have "Ifloat (lb_exp_horner prec (get_even n) 1 1 x) \ (\j = 0.. (\j = 0.. \ exp (Ifloat x)" + also have "\ \ exp (real x)" proof - - obtain t where "\t\ \ \Ifloat x\" and "exp (Ifloat x) = (\m = 0..t\ \ \real x\" and "exp (real x) = (\m = 0.. exp t / real (fact (get_even n)) * (Ifloat x) ^ (get_even n)" + moreover have "0 \ exp t / real (fact (get_even n)) * (real x) ^ (get_even n)" by (auto intro!: mult_nonneg_nonneg divide_nonneg_pos simp add: get_even zero_le_even_power exp_gt_zero) ultimately show ?thesis using get_odd exp_gt_zero by (auto intro!: pordered_cancel_semiring_class.mult_nonneg_nonneg) qed - finally have "Ifloat (lb_exp_horner prec (get_even n) 1 1 x) \ exp (Ifloat x)" . + finally have "real (lb_exp_horner prec (get_even n) 1 1 x) \ exp (real x)" . } moreover { - have x_less_zero: "Ifloat x ^ get_odd n \ 0" - proof (cases "Ifloat x = 0") + have x_less_zero: "real x ^ get_odd n \ 0" + proof (cases "real x = 0") case True have "(get_odd n) \ 0" using get_odd[THEN odd_pos] by auto thus ?thesis unfolding True power_0_left by auto next - case False hence "Ifloat x < 0" using `Ifloat x \ 0` by auto - show ?thesis by (rule less_imp_le, auto simp add: power_less_zero_eq get_odd `Ifloat x < 0`) + case False hence "real x < 0" using `real x \ 0` by auto + show ?thesis by (rule less_imp_le, auto simp add: power_less_zero_eq get_odd `real x < 0`) qed - obtain t where "\t\ \ \Ifloat x\" and "exp (Ifloat x) = (\m = 0..t\ \ \real x\" and "exp (real x) = (\m = 0.. 0" + moreover have "exp t / real (fact (get_odd n)) * (real x) ^ (get_odd n) \ 0" by (auto intro!: mult_nonneg_nonpos divide_nonpos_pos simp add: x_less_zero exp_gt_zero) - ultimately have "exp (Ifloat x) \ (\j = 0.. (\j = 0.. \ Ifloat (ub_exp_horner prec (get_odd n) 1 1 x)" + also have "\ \ real (ub_exp_horner prec (get_odd n) 1 1 x)" using bounds(2) by auto - finally have "exp (Ifloat x) \ Ifloat (ub_exp_horner prec (get_odd n) 1 1 x)" . + finally have "exp (real x) \ real (ub_exp_horner prec (get_odd n) 1 1 x)" . } ultimately show ?thesis by auto qed @@ -1443,12 +1443,12 @@ proof - have eq4: "4 = Suc (Suc (Suc (Suc 0)))" by auto - have "1 / 4 = Ifloat (Float 1 -2)" unfolding Float_num by auto - also have "\ \ Ifloat (lb_exp_horner 1 (get_even 4) 1 1 (- 1))" + have "1 / 4 = real (Float 1 -2)" unfolding Float_num by auto + also have "\ \ real (lb_exp_horner 1 (get_even 4) 1 1 (- 1))" unfolding get_even_def eq4 by (auto simp add: lapprox_posrat_def rapprox_posrat_def normfloat.simps) - also have "\ \ exp (Ifloat (- 1))" using bnds_exp_horner[where x="- 1"] by auto - finally show ?thesis unfolding Ifloat_minus Ifloat_1 . + also have "\ \ exp (real (- 1 :: float))" using bnds_exp_horner[where x="- 1"] by auto + finally show ?thesis unfolding real_of_float_minus real_of_float_1 . qed lemma lb_exp_pos: assumes "\ 0 < x" shows "0 < lb_exp prec x" @@ -1457,9 +1457,9 @@ let "?horner x" = "let y = ?lb_horner x in if y \ 0 then Float 1 -2 else y" have pos_horner: "\ x. 0 < ?horner x" unfolding Let_def by (cases "?lb_horner x \ 0", auto simp add: le_float_def less_float_def) moreover { fix x :: float fix num :: nat - have "0 < Ifloat (?horner x) ^ num" using `0 < ?horner x`[unfolded less_float_def Ifloat_0] by (rule zero_less_power) - also have "\ = Ifloat ((?horner x) ^ num)" using float_power by auto - finally have "0 < Ifloat ((?horner x) ^ num)" . + have "0 < real (?horner x) ^ num" using `0 < ?horner x`[unfolded less_float_def real_of_float_0] by (rule zero_less_power) + also have "\ = real ((?horner x) ^ num)" using float_power by auto + finally have "0 < real ((?horner x) ^ num)" . } ultimately show ?thesis unfolding lb_exp.simps if_not_P[OF `\ 0 < x`] Let_def @@ -1467,25 +1467,25 @@ qed lemma exp_boundaries': assumes "x \ 0" - shows "exp (Ifloat x) \ { Ifloat (lb_exp prec x) .. Ifloat (ub_exp prec x)}" + shows "exp (real x) \ { real (lb_exp prec x) .. real (ub_exp prec x)}" proof - let "?lb_exp_horner x" = "lb_exp_horner prec (get_even (prec + 2)) 1 1 x" let "?ub_exp_horner x" = "ub_exp_horner prec (get_odd (prec + 2)) 1 1 x" - have "Ifloat x \ 0" and "\ x > 0" using `x \ 0` unfolding le_float_def less_float_def by auto + have "real x \ 0" and "\ x > 0" using `x \ 0` unfolding le_float_def less_float_def by auto show ?thesis proof (cases "x < - 1") - case False hence "- 1 \ Ifloat x" unfolding less_float_def by auto + case False hence "- 1 \ real x" unfolding less_float_def by auto show ?thesis proof (cases "?lb_exp_horner x \ 0") - from `\ x < - 1` have "- 1 \ Ifloat x" unfolding less_float_def by auto - hence "exp (- 1) \ exp (Ifloat x)" unfolding exp_le_cancel_iff . + from `\ x < - 1` have "- 1 \ real x" unfolding less_float_def by auto + hence "exp (- 1) \ exp (real x)" unfolding exp_le_cancel_iff . from order_trans[OF exp_m1_ge_quarter this] - have "Ifloat (Float 1 -2) \ exp (Ifloat x)" unfolding Float_num . + have "real (Float 1 -2) \ exp (real x)" unfolding Float_num . moreover case True - ultimately show ?thesis using bnds_exp_horner `Ifloat x \ 0` `\ x > 0` `\ x < - 1` by auto + ultimately show ?thesis using bnds_exp_horner `real x \ 0` `\ x > 0` `\ x < - 1` by auto next - case False thus ?thesis using bnds_exp_horner `Ifloat x \ 0` `\ x > 0` `\ x < - 1` by (auto simp add: Let_def) + case False thus ?thesis using bnds_exp_horner `real x \ 0` `\ x > 0` `\ x < - 1` by (auto simp add: Let_def) qed next case True @@ -1493,10 +1493,10 @@ obtain m e where Float_floor: "floor_fl x = Float m e" by (cases "floor_fl x", auto) let ?num = "nat (- m) * 2 ^ nat e" - have "Ifloat (floor_fl x) < - 1" using floor_fl `x < - 1` unfolding le_float_def less_float_def Ifloat_minus Ifloat_1 by (rule order_le_less_trans) - hence "Ifloat (floor_fl x) < 0" unfolding Float_floor Ifloat.simps using zero_less_pow2[of xe] by auto + have "real (floor_fl x) < - 1" using floor_fl `x < - 1` unfolding le_float_def less_float_def real_of_float_minus real_of_float_1 by (rule order_le_less_trans) + hence "real (floor_fl x) < 0" unfolding Float_floor real_of_float_simp using zero_less_pow2[of xe] by auto hence "m < 0" - unfolding less_float_def Ifloat_0 Float_floor Ifloat.simps + unfolding less_float_def real_of_float_0 Float_floor real_of_float_simp unfolding pos_prod_lt[OF zero_less_pow2[of e], unfolded real_mult_commute] by auto hence "1 \ - m" by auto hence "0 < nat (- m)" by auto @@ -1506,56 +1506,56 @@ ultimately have "0 < ?num" by auto hence "real ?num \ 0" by auto have e_nat: "int (nat e) = e" using `0 \ e` by auto - have num_eq: "real ?num = Ifloat (- floor_fl x)" using `0 < nat (- m)` - unfolding Float_floor Ifloat_minus Ifloat.simps real_of_nat_mult pow2_int[of "nat e", unfolded e_nat] realpow_real_of_nat[symmetric] by auto - have "0 < - floor_fl x" using `0 < ?num`[unfolded real_of_nat_less_iff[symmetric]] unfolding less_float_def num_eq[symmetric] Ifloat_0 real_of_nat_zero . - hence "Ifloat (floor_fl x) < 0" unfolding less_float_def by auto + have num_eq: "real ?num = real (- floor_fl x)" using `0 < nat (- m)` + unfolding Float_floor real_of_float_minus real_of_float_simp real_of_nat_mult pow2_int[of "nat e", unfolded e_nat] realpow_real_of_nat[symmetric] by auto + have "0 < - floor_fl x" using `0 < ?num`[unfolded real_of_nat_less_iff[symmetric]] unfolding less_float_def num_eq[symmetric] real_of_float_0 real_of_nat_zero . + hence "real (floor_fl x) < 0" unfolding less_float_def by auto - have "exp (Ifloat x) \ Ifloat (ub_exp prec x)" + have "exp (real x) \ real (ub_exp prec x)" proof - - have div_less_zero: "Ifloat (float_divr prec x (- floor_fl x)) \ 0" - using float_divr_nonpos_pos_upper_bound[OF `x \ 0` `0 < - floor_fl x`] unfolding le_float_def Ifloat_0 . + have div_less_zero: "real (float_divr prec x (- floor_fl x)) \ 0" + using float_divr_nonpos_pos_upper_bound[OF `x \ 0` `0 < - floor_fl x`] unfolding le_float_def real_of_float_0 . - have "exp (Ifloat x) = exp (real ?num * (Ifloat x / real ?num))" using `real ?num \ 0` by auto - also have "\ = exp (Ifloat x / real ?num) ^ ?num" unfolding exp_real_of_nat_mult .. - also have "\ \ exp (Ifloat (float_divr prec x (- floor_fl x))) ^ ?num" unfolding num_eq + have "exp (real x) = exp (real ?num * (real x / real ?num))" using `real ?num \ 0` by auto + also have "\ = exp (real x / real ?num) ^ ?num" unfolding exp_real_of_nat_mult .. + also have "\ \ exp (real (float_divr prec x (- floor_fl x))) ^ ?num" unfolding num_eq by (rule power_mono, rule exp_le_cancel_iff[THEN iffD2], rule float_divr) auto - also have "\ \ Ifloat ((?ub_exp_horner (float_divr prec x (- floor_fl x))) ^ ?num)" unfolding float_power + also have "\ \ real ((?ub_exp_horner (float_divr prec x (- floor_fl x))) ^ ?num)" unfolding float_power by (rule power_mono, rule bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct2], auto) finally show ?thesis unfolding ub_exp.simps if_not_P[OF `\ 0 < x`] if_P[OF `x < - 1`] float.cases Float_floor Let_def . qed moreover - have "Ifloat (lb_exp prec x) \ exp (Ifloat x)" + have "real (lb_exp prec x) \ exp (real x)" proof - let ?divl = "float_divl prec x (- Float m e)" let ?horner = "?lb_exp_horner ?divl" show ?thesis proof (cases "?horner \ 0") - case False hence "0 \ Ifloat ?horner" unfolding le_float_def by auto + case False hence "0 \ real ?horner" unfolding le_float_def by auto - have div_less_zero: "Ifloat (float_divl prec x (- floor_fl x)) \ 0" - using `Ifloat (floor_fl x) < 0` `Ifloat x \ 0` by (auto intro!: order_trans[OF float_divl] divide_nonpos_neg) + have div_less_zero: "real (float_divl prec x (- floor_fl x)) \ 0" + using `real (floor_fl x) < 0` `real x \ 0` by (auto intro!: order_trans[OF float_divl] divide_nonpos_neg) - have "Ifloat ((?lb_exp_horner (float_divl prec x (- floor_fl x))) ^ ?num) \ - exp (Ifloat (float_divl prec x (- floor_fl x))) ^ ?num" unfolding float_power - using `0 \ Ifloat ?horner`[unfolded Float_floor[symmetric]] bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct1] by (auto intro!: power_mono) - also have "\ \ exp (Ifloat x / real ?num) ^ ?num" unfolding num_eq - using float_divl by (auto intro!: power_mono simp del: Ifloat_minus) - also have "\ = exp (real ?num * (Ifloat x / real ?num))" unfolding exp_real_of_nat_mult .. - also have "\ = exp (Ifloat x)" using `real ?num \ 0` by auto + have "real ((?lb_exp_horner (float_divl prec x (- floor_fl x))) ^ ?num) \ + exp (real (float_divl prec x (- floor_fl x))) ^ ?num" unfolding float_power + using `0 \ real ?horner`[unfolded Float_floor[symmetric]] bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct1] by (auto intro!: power_mono) + also have "\ \ exp (real x / real ?num) ^ ?num" unfolding num_eq + using float_divl by (auto intro!: power_mono simp del: real_of_float_minus) + also have "\ = exp (real ?num * (real x / real ?num))" unfolding exp_real_of_nat_mult .. + also have "\ = exp (real x)" using `real ?num \ 0` by auto finally show ?thesis unfolding lb_exp.simps if_not_P[OF `\ 0 < x`] if_P[OF `x < - 1`] float.cases Float_floor Let_def if_not_P[OF False] by auto next case True - have "Ifloat (floor_fl x) \ 0" and "Ifloat (floor_fl x) \ 0" using `Ifloat (floor_fl x) < 0` by auto - from divide_right_mono_neg[OF floor_fl[of x] `Ifloat (floor_fl x) \ 0`, unfolded divide_self[OF `Ifloat (floor_fl x) \ 0`]] - have "- 1 \ Ifloat x / Ifloat (- floor_fl x)" unfolding Ifloat_minus by auto + have "real (floor_fl x) \ 0" and "real (floor_fl x) \ 0" using `real (floor_fl x) < 0` by auto + from divide_right_mono_neg[OF floor_fl[of x] `real (floor_fl x) \ 0`, unfolded divide_self[OF `real (floor_fl x) \ 0`]] + have "- 1 \ real x / real (- floor_fl x)" unfolding real_of_float_minus by auto from order_trans[OF exp_m1_ge_quarter this[unfolded exp_le_cancel_iff[where x="- 1", symmetric]]] - have "Ifloat (Float 1 -2) \ exp (Ifloat x / Ifloat (- floor_fl x))" unfolding Float_num . - hence "Ifloat (Float 1 -2) ^ ?num \ exp (Ifloat x / Ifloat (- floor_fl x)) ^ ?num" + have "real (Float 1 -2) \ exp (real x / real (- floor_fl x))" unfolding Float_num . + hence "real (Float 1 -2) ^ ?num \ exp (real x / real (- floor_fl x)) ^ ?num" by (auto intro!: power_mono simp add: Float_num) - also have "\ = exp (Ifloat x)" unfolding num_eq exp_real_of_nat_mult[symmetric] using `Ifloat (floor_fl x) \ 0` by auto + also have "\ = exp (real x)" unfolding num_eq exp_real_of_nat_mult[symmetric] using `real (floor_fl x) \ 0` by auto finally show ?thesis unfolding lb_exp.simps if_not_P[OF `\ 0 < x`] if_P[OF `x < - 1`] float.cases Float_floor Let_def if_P[OF True] float_power . qed @@ -1564,7 +1564,7 @@ qed qed -lemma exp_boundaries: "exp (Ifloat x) \ { Ifloat (lb_exp prec x) .. Ifloat (ub_exp prec x)}" +lemma exp_boundaries: "exp (real x) \ { real (lb_exp prec x) .. real (ub_exp prec x)}" proof - show ?thesis proof (cases "0 < x") @@ -1573,50 +1573,51 @@ next case True hence "-x \ 0" unfolding less_float_def le_float_def by auto - have "Ifloat (lb_exp prec x) \ exp (Ifloat x)" + have "real (lb_exp prec x) \ exp (real x)" proof - from exp_boundaries'[OF `-x \ 0`] - have ub_exp: "exp (- Ifloat x) \ Ifloat (ub_exp prec (-x))" unfolding atLeastAtMost_iff Ifloat_minus by auto + have ub_exp: "exp (- real x) \ real (ub_exp prec (-x))" unfolding atLeastAtMost_iff real_of_float_minus by auto - have "Ifloat (float_divl prec 1 (ub_exp prec (-x))) \ Ifloat 1 / Ifloat (ub_exp prec (-x))" using float_divl . - also have "Ifloat 1 / Ifloat (ub_exp prec (-x)) \ exp (Ifloat x)" + have "real (float_divl prec 1 (ub_exp prec (-x))) \ 1 / real (ub_exp prec (-x))" using float_divl[where x=1] by auto + also have "\ \ exp (real x)" using ub_exp[unfolded inverse_le_iff_le[OF order_less_le_trans[OF exp_gt_zero ub_exp] exp_gt_zero, symmetric]] unfolding exp_minus nonzero_inverse_inverse_eq[OF exp_not_eq_zero] inverse_eq_divide by auto finally show ?thesis unfolding lb_exp.simps if_P[OF True] . qed moreover - have "exp (Ifloat x) \ Ifloat (ub_exp prec x)" + have "exp (real x) \ real (ub_exp prec x)" proof - have "\ 0 < -x" using `0 < x` unfolding less_float_def by auto from exp_boundaries'[OF `-x \ 0`] - have lb_exp: "Ifloat (lb_exp prec (-x)) \ exp (- Ifloat x)" unfolding atLeastAtMost_iff Ifloat_minus by auto + have lb_exp: "real (lb_exp prec (-x)) \ exp (- real x)" unfolding atLeastAtMost_iff real_of_float_minus by auto - have "exp (Ifloat x) \ Ifloat 1 / Ifloat (lb_exp prec (-x))" - using lb_exp[unfolded inverse_le_iff_le[OF exp_gt_zero lb_exp_pos[OF `\ 0 < -x`, unfolded less_float_def Ifloat_0], symmetric]] - unfolding exp_minus nonzero_inverse_inverse_eq[OF exp_not_eq_zero] inverse_eq_divide Ifloat_1 by auto - also have "\ \ Ifloat (float_divr prec 1 (lb_exp prec (-x)))" using float_divr . + have "exp (real x) \ real (1 :: float) / real (lb_exp prec (-x))" + using lb_exp[unfolded inverse_le_iff_le[OF exp_gt_zero lb_exp_pos[OF `\ 0 < -x`, unfolded less_float_def real_of_float_0], + symmetric]] + unfolding exp_minus nonzero_inverse_inverse_eq[OF exp_not_eq_zero] inverse_eq_divide real_of_float_1 by auto + also have "\ \ real (float_divr prec 1 (lb_exp prec (-x)))" using float_divr . finally show ?thesis unfolding ub_exp.simps if_P[OF True] . qed ultimately show ?thesis by auto qed qed -lemma bnds_exp: "\ x lx ux. (l, u) = (lb_exp prec lx, ub_exp prec ux) \ x \ {Ifloat lx .. Ifloat ux} \ Ifloat l \ exp x \ exp x \ Ifloat u" +lemma bnds_exp: "\ x lx ux. (l, u) = (lb_exp prec lx, ub_exp prec ux) \ x \ {real lx .. real ux} \ real l \ exp x \ exp x \ real u" proof (rule allI, rule allI, rule allI, rule impI) fix x lx ux - assume "(l, u) = (lb_exp prec lx, ub_exp prec ux) \ x \ {Ifloat lx .. Ifloat ux}" - hence l: "lb_exp prec lx = l " and u: "ub_exp prec ux = u" and x: "x \ {Ifloat lx .. Ifloat ux}" by auto + assume "(l, u) = (lb_exp prec lx, ub_exp prec ux) \ x \ {real lx .. real ux}" + hence l: "lb_exp prec lx = l " and u: "ub_exp prec ux = u" and x: "x \ {real lx .. real ux}" by auto { from exp_boundaries[of lx prec, unfolded l] - have "Ifloat l \ exp (Ifloat lx)" by (auto simp del: lb_exp.simps) + have "real l \ exp (real lx)" by (auto simp del: lb_exp.simps) also have "\ \ exp x" using x by auto - finally have "Ifloat l \ exp x" . + finally have "real l \ exp x" . } moreover - { have "exp x \ exp (Ifloat ux)" using x by auto - also have "\ \ Ifloat u" using exp_boundaries[of ux prec, unfolded u] by (auto simp del: ub_exp.simps) - finally have "exp x \ Ifloat u" . - } ultimately show "Ifloat l \ exp x \ exp x \ Ifloat u" .. + { have "exp x \ exp (real ux)" using x by auto + also have "\ \ real u" using exp_boundaries[of ux prec, unfolded u] by (auto simp del: ub_exp.simps) + finally have "exp x \ real u" . + } ultimately show "real l \ exp x \ exp x \ real u" .. qed section "Logarithm" @@ -1656,26 +1657,26 @@ qed lemma ln_float_bounds: - assumes "0 \ Ifloat x" and "Ifloat x < 1" - shows "Ifloat (x * lb_ln_horner prec (get_even n) 1 x) \ ln (Ifloat x + 1)" (is "?lb \ ?ln") - and "ln (Ifloat x + 1) \ Ifloat (x * ub_ln_horner prec (get_odd n) 1 x)" (is "?ln \ ?ub") + assumes "0 \ real x" and "real x < 1" + shows "real (x * lb_ln_horner prec (get_even n) 1 x) \ ln (real x + 1)" (is "?lb \ ?ln") + and "ln (real x + 1) \ real (x * ub_ln_horner prec (get_odd n) 1 x)" (is "?ln \ ?ub") proof - obtain ev where ev: "get_even n = 2 * ev" using get_even_double .. obtain od where od: "get_odd n = 2 * od + 1" using get_odd_double .. - let "?s n" = "-1^n * (1 / real (1 + n)) * (Ifloat x)^(Suc n)" + let "?s n" = "-1^n * (1 / real (1 + n)) * (real x)^(Suc n)" - have "?lb \ setsum ?s {0 ..< 2 * ev}" unfolding power_Suc2 real_mult_assoc[symmetric] Ifloat_mult setsum_left_distrib[symmetric] unfolding real_mult_commute[of "Ifloat x"] ev + have "?lb \ setsum ?s {0 ..< 2 * ev}" unfolding power_Suc2 real_mult_assoc[symmetric] real_of_float_mult setsum_left_distrib[symmetric] unfolding real_mult_commute[of "real x"] ev using horner_bounds(1)[where G="\ i k. Suc k" and F="\x. x" and f="\x. x" and lb="\n i k x. lb_ln_horner prec n k x" and ub="\n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*ev", - OF `0 \ Ifloat x` refl lb_ln_horner.simps ub_ln_horner.simps] `0 \ Ifloat x` + OF `0 \ real x` refl lb_ln_horner.simps ub_ln_horner.simps] `0 \ real x` by (rule mult_right_mono) - also have "\ \ ?ln" using ln_bounds(1)[OF `0 \ Ifloat x` `Ifloat x < 1`] by auto + also have "\ \ ?ln" using ln_bounds(1)[OF `0 \ real x` `real x < 1`] by auto finally show "?lb \ ?ln" . - have "?ln \ setsum ?s {0 ..< 2 * od + 1}" using ln_bounds(2)[OF `0 \ Ifloat x` `Ifloat x < 1`] by auto - also have "\ \ ?ub" unfolding power_Suc2 real_mult_assoc[symmetric] Ifloat_mult setsum_left_distrib[symmetric] unfolding real_mult_commute[of "Ifloat x"] od + have "?ln \ setsum ?s {0 ..< 2 * od + 1}" using ln_bounds(2)[OF `0 \ real x` `real x < 1`] by auto + also have "\ \ ?ub" unfolding power_Suc2 real_mult_assoc[symmetric] real_of_float_mult setsum_left_distrib[symmetric] unfolding real_mult_commute[of "real x"] od using horner_bounds(2)[where G="\ i k. Suc k" and F="\x. x" and f="\x. x" and lb="\n i k x. lb_ln_horner prec n k x" and ub="\n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*od+1", - OF `0 \ Ifloat x` refl lb_ln_horner.simps ub_ln_horner.simps] `0 \ Ifloat x` + OF `0 \ real x` refl lb_ln_horner.simps ub_ln_horner.simps] `0 \ real x` by (rule mult_right_mono) finally show "?ln \ ?ub" . qed @@ -1699,43 +1700,43 @@ in (Float 1 -1 * lb_ln_horner prec (get_even prec) 1 (Float 1 -1)) + (third * lb_ln_horner prec (get_even prec) 1 third))" -lemma ub_ln2: "ln 2 \ Ifloat (ub_ln2 prec)" (is "?ub_ln2") - and lb_ln2: "Ifloat (lb_ln2 prec) \ ln 2" (is "?lb_ln2") +lemma ub_ln2: "ln 2 \ real (ub_ln2 prec)" (is "?ub_ln2") + and lb_ln2: "real (lb_ln2 prec) \ ln 2" (is "?lb_ln2") proof - let ?uthird = "rapprox_rat (max prec 1) 1 3" let ?lthird = "lapprox_rat prec 1 3" have ln2_sum: "ln 2 = ln (1/2 + 1) + ln (1 / 3 + 1)" using ln_add[of "3 / 2" "1 / 2"] by auto - have lb3: "Ifloat ?lthird \ 1 / 3" using lapprox_rat[of prec 1 3] by auto - hence lb3_ub: "Ifloat ?lthird < 1" by auto - have lb3_lb: "0 \ Ifloat ?lthird" using lapprox_rat_bottom[of 1 3] by auto - have ub3: "1 / 3 \ Ifloat ?uthird" using rapprox_rat[of 1 3] by auto - hence ub3_lb: "0 \ Ifloat ?uthird" by auto + have lb3: "real ?lthird \ 1 / 3" using lapprox_rat[of prec 1 3] by auto + hence lb3_ub: "real ?lthird < 1" by auto + have lb3_lb: "0 \ real ?lthird" using lapprox_rat_bottom[of 1 3] by auto + have ub3: "1 / 3 \ real ?uthird" using rapprox_rat[of 1 3] by auto + hence ub3_lb: "0 \ real ?uthird" by auto - have lb2: "0 \ Ifloat (Float 1 -1)" and ub2: "Ifloat (Float 1 -1) < 1" unfolding Float_num by auto + have lb2: "0 \ real (Float 1 -1)" and ub2: "real (Float 1 -1) < 1" unfolding Float_num by auto have "0 \ (1::int)" and "0 < (3::int)" by auto - have ub3_ub: "Ifloat ?uthird < 1" unfolding rapprox_rat.simps(2)[OF `0 \ 1` `0 < 3`] + have ub3_ub: "real ?uthird < 1" unfolding rapprox_rat.simps(2)[OF `0 \ 1` `0 < 3`] by (rule rapprox_posrat_less1, auto) have third_gt0: "(0 :: real) < 1 / 3 + 1" by auto - have uthird_gt0: "0 < Ifloat ?uthird + 1" using ub3_lb by auto - have lthird_gt0: "0 < Ifloat ?lthird + 1" using lb3_lb by auto + have uthird_gt0: "0 < real ?uthird + 1" using ub3_lb by auto + have lthird_gt0: "0 < real ?lthird + 1" using lb3_lb by auto - show ?ub_ln2 unfolding ub_ln2_def Let_def Ifloat_add ln2_sum Float_num(4)[symmetric] + show ?ub_ln2 unfolding ub_ln2_def Let_def real_of_float_add ln2_sum Float_num(4)[symmetric] proof (rule add_mono, fact ln_float_bounds(2)[OF lb2 ub2]) - have "ln (1 / 3 + 1) \ ln (Ifloat ?uthird + 1)" unfolding ln_le_cancel_iff[OF third_gt0 uthird_gt0] using ub3 by auto - also have "\ \ Ifloat (?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird)" + have "ln (1 / 3 + 1) \ ln (real ?uthird + 1)" unfolding ln_le_cancel_iff[OF third_gt0 uthird_gt0] using ub3 by auto + also have "\ \ real (?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird)" using ln_float_bounds(2)[OF ub3_lb ub3_ub] . - finally show "ln (1 / 3 + 1) \ Ifloat (?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird)" . + finally show "ln (1 / 3 + 1) \ real (?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird)" . qed - show ?lb_ln2 unfolding lb_ln2_def Let_def Ifloat_add ln2_sum Float_num(4)[symmetric] + show ?lb_ln2 unfolding lb_ln2_def Let_def real_of_float_add ln2_sum Float_num(4)[symmetric] proof (rule add_mono, fact ln_float_bounds(1)[OF lb2 ub2]) - have "Ifloat (?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird) \ ln (Ifloat ?lthird + 1)" + have "real (?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird) \ ln (real ?lthird + 1)" using ln_float_bounds(1)[OF lb3_lb lb3_ub] . also have "\ \ ln (1 / 3 + 1)" unfolding ln_le_cancel_iff[OF lthird_gt0 third_gt0] using lb3 by auto - finally show "Ifloat (?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird) \ ln (1 / 3 + 1)" . + finally show "real (?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird) \ ln (1 / 3 + 1)" . qed qed @@ -1768,7 +1769,7 @@ show False using `float_divr prec 1 x < 1` unfolding less_float_def le_float_def by auto qed -lemma ln_shifted_float: assumes "0 < m" shows "ln (Ifloat (Float m e)) = ln 2 * real (e + (bitlen m - 1)) + ln (Ifloat (Float m (- (bitlen m - 1))))" +lemma ln_shifted_float: assumes "0 < m" shows "ln (real (Float m e)) = ln 2 * real (e + (bitlen m - 1)) + ln (real (Float m (- (bitlen m - 1))))" proof - let ?B = "2^nat (bitlen m - 1)" have "0 < real m" and "\X. (0 :: real) < 2^X" and "0 < (2 :: real)" and "m \ 0" using assms by auto @@ -1778,7 +1779,7 @@ case True show ?thesis unfolding normalized_float[OF `m \ 0`] unfolding ln_div[OF `0 < real m` `0 < ?B`] real_of_int_add ln_realpow[OF `0 < 2`] - unfolding Ifloat_ge0_exp[OF True] ln_mult[OF `0 < real m` `0 < 2^nat e`] + unfolding real_of_float_ge0_exp[OF True] ln_mult[OF `0 < real m` `0 < 2^nat e`] ln_realpow[OF `0 < 2`] algebra_simps using `0 \ bitlen m - 1` True by auto next case False hence "0 < -e" by auto @@ -1786,20 +1787,20 @@ hence inv_gt0: "(0::real) < inverse (2^nat (-e))" by auto show ?thesis unfolding normalized_float[OF `m \ 0`] unfolding ln_div[OF `0 < real m` `0 < ?B`] real_of_int_add ln_realpow[OF `0 < 2`] - unfolding Ifloat_nge0_exp[OF False] ln_mult[OF `0 < real m` inv_gt0] ln_inverse[OF pow_gt0] + unfolding real_of_float_nge0_exp[OF False] ln_mult[OF `0 < real m` inv_gt0] ln_inverse[OF pow_gt0] ln_realpow[OF `0 < 2`] algebra_simps using `0 \ bitlen m - 1` False by auto qed qed lemma ub_ln_lb_ln_bounds': assumes "1 \ x" - shows "Ifloat (the (lb_ln prec x)) \ ln (Ifloat x) \ ln (Ifloat x) \ Ifloat (the (ub_ln prec x))" + shows "real (the (lb_ln prec x)) \ ln (real x) \ ln (real x) \ real (the (ub_ln prec x))" (is "?lb \ ?ln \ ?ln \ ?ub") proof (cases "x < Float 1 1") - case True hence "Ifloat (x - 1) < 1" unfolding less_float_def Float_num by auto + case True hence "real (x - 1) < 1" unfolding less_float_def Float_num by auto have "\ x \ 0" and "\ x < 1" using `1 \ x` unfolding less_float_def le_float_def by auto - hence "0 \ Ifloat (x - 1)" using `1 \ x` unfolding less_float_def Float_num by auto + hence "0 \ real (x - 1)" using `1 \ x` unfolding less_float_def Float_num by auto show ?thesis unfolding lb_ln.simps unfolding ub_ln.simps Let_def - using ln_float_bounds[OF `0 \ Ifloat (x - 1)` `Ifloat (x - 1) < 1`] `\ x \ 0` `\ x < 1` True by auto + using ln_float_bounds[OF `0 \ real (x - 1)` `real (x - 1) < 1`] `\ x \ 0` `\ x < 1` True by auto next case False have "\ x \ 0" and "\ x < 1" "0 < x" using `1 \ x` unfolding less_float_def le_float_def by auto @@ -1812,8 +1813,8 @@ have "0 < m" and "m \ 0" using float_pos_m_pos `0 < x` Float by auto { - have "Ifloat (lb_ln2 prec * ?s) \ ln 2 * real (e + (bitlen m - 1))" (is "?lb2 \ _") - unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right + have "real (lb_ln2 prec * ?s) \ ln 2 * real (e + (bitlen m - 1))" (is "?lb2 \ _") + unfolding real_of_float_mult real_of_float_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right using lb_ln2[of prec] proof (rule mult_right_mono) have "1 \ Float m e" using `1 \ x` Float unfolding le_float_def by auto @@ -1822,38 +1823,38 @@ qed moreover from bitlen_div[OF `0 < m`, unfolded normalized_float[OF `m \ 0`, symmetric]] - have "0 \ Ifloat (?x - 1)" and "Ifloat (?x - 1) < 1" by auto + have "0 \ real (?x - 1)" and "real (?x - 1) < 1" by auto from ln_float_bounds(1)[OF this] - have "Ifloat ((?x - 1) * lb_ln_horner prec (get_even prec) 1 (?x - 1)) \ ln (Ifloat ?x)" (is "?lb_horner \ _") by auto - ultimately have "?lb2 + ?lb_horner \ ln (Ifloat x)" + have "real ((?x - 1) * lb_ln_horner prec (get_even prec) 1 (?x - 1)) \ ln (real ?x)" (is "?lb_horner \ _") by auto + ultimately have "?lb2 + ?lb_horner \ ln (real x)" unfolding Float ln_shifted_float[OF `0 < m`, of e] by auto } moreover { from bitlen_div[OF `0 < m`, unfolded normalized_float[OF `m \ 0`, symmetric]] - have "0 \ Ifloat (?x - 1)" and "Ifloat (?x - 1) < 1" by auto + have "0 \ real (?x - 1)" and "real (?x - 1) < 1" by auto from ln_float_bounds(2)[OF this] - have "ln (Ifloat ?x) \ Ifloat ((?x - 1) * ub_ln_horner prec (get_odd prec) 1 (?x - 1))" (is "_ \ ?ub_horner") by auto + have "ln (real ?x) \ real ((?x - 1) * ub_ln_horner prec (get_odd prec) 1 (?x - 1))" (is "_ \ ?ub_horner") by auto moreover - have "ln 2 * real (e + (bitlen m - 1)) \ Ifloat (ub_ln2 prec * ?s)" (is "_ \ ?ub2") - unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right + have "ln 2 * real (e + (bitlen m - 1)) \ real (ub_ln2 prec * ?s)" (is "_ \ ?ub2") + unfolding real_of_float_mult real_of_float_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right using ub_ln2[of prec] proof (rule mult_right_mono) have "1 \ Float m e" using `1 \ x` Float unfolding le_float_def by auto from float_gt1_scale[OF this] show "0 \ real (e + (bitlen m - 1))" by auto qed - ultimately have "ln (Ifloat x) \ ?ub2 + ?ub_horner" + ultimately have "ln (real x) \ ?ub2 + ?ub_horner" unfolding Float ln_shifted_float[OF `0 < m`, of e] by auto } ultimately show ?thesis unfolding lb_ln.simps unfolding ub_ln.simps unfolding if_not_P[OF `\ x \ 0`] if_not_P[OF `\ x < 1`] if_not_P[OF False] Let_def - unfolding scale.simps[of m e, unfolded Float[symmetric]] mantissa.simps[of m e, unfolded Float[symmetric]] Ifloat_add by auto + unfolding scale.simps[of m e, unfolded Float[symmetric]] mantissa.simps[of m e, unfolded Float[symmetric]] real_of_float_add by auto qed qed lemma ub_ln_lb_ln_bounds: assumes "0 < x" - shows "Ifloat (the (lb_ln prec x)) \ ln (Ifloat x) \ ln (Ifloat x) \ Ifloat (the (ub_ln prec x))" + shows "real (the (lb_ln prec x)) \ ln (real x) \ ln (real x) \ real (the (ub_ln prec x))" (is "?lb \ ?ln \ ?ln \ ?ub") proof (cases "x < 1") case False hence "1 \ x" unfolding less_float_def le_float_def by auto @@ -1861,74 +1862,74 @@ next case True have "\ x \ 0" using `0 < x` unfolding less_float_def le_float_def by auto - have "0 < Ifloat x" and "Ifloat x \ 0" using `0 < x` unfolding less_float_def by auto - hence A: "0 < 1 / Ifloat x" by auto + have "0 < real x" and "real x \ 0" using `0 < x` unfolding less_float_def by auto + hence A: "0 < 1 / real x" by auto { let ?divl = "float_divl (max prec 1) 1 x" have A': "1 \ ?divl" using float_divl_pos_less1_bound[OF `0 < x` `x < 1`] unfolding le_float_def less_float_def by auto - hence B: "0 < Ifloat ?divl" unfolding le_float_def by auto + hence B: "0 < real ?divl" unfolding le_float_def by auto - have "ln (Ifloat ?divl) \ ln (1 / Ifloat x)" unfolding ln_le_cancel_iff[OF B A] using float_divl[of _ 1 x] by auto - hence "ln (Ifloat x) \ - ln (Ifloat ?divl)" unfolding nonzero_inverse_eq_divide[OF `Ifloat x \ 0`, symmetric] ln_inverse[OF `0 < Ifloat x`] by auto + have "ln (real ?divl) \ ln (1 / real x)" unfolding ln_le_cancel_iff[OF B A] using float_divl[of _ 1 x] by auto + hence "ln (real x) \ - ln (real ?divl)" unfolding nonzero_inverse_eq_divide[OF `real x \ 0`, symmetric] ln_inverse[OF `0 < real x`] by auto from this ub_ln_lb_ln_bounds'[OF A', THEN conjunct1, THEN le_imp_neg_le] - have "?ln \ Ifloat (- the (lb_ln prec ?divl))" unfolding Ifloat_minus by (rule order_trans) + have "?ln \ real (- the (lb_ln prec ?divl))" unfolding real_of_float_minus by (rule order_trans) } moreover { let ?divr = "float_divr prec 1 x" have A': "1 \ ?divr" using float_divr_pos_less1_lower_bound[OF `0 < x` `x < 1`] unfolding le_float_def less_float_def by auto - hence B: "0 < Ifloat ?divr" unfolding le_float_def by auto + hence B: "0 < real ?divr" unfolding le_float_def by auto - have "ln (1 / Ifloat x) \ ln (Ifloat ?divr)" unfolding ln_le_cancel_iff[OF A B] using float_divr[of 1 x] by auto - hence "- ln (Ifloat ?divr) \ ln (Ifloat x)" unfolding nonzero_inverse_eq_divide[OF `Ifloat x \ 0`, symmetric] ln_inverse[OF `0 < Ifloat x`] by auto + have "ln (1 / real x) \ ln (real ?divr)" unfolding ln_le_cancel_iff[OF A B] using float_divr[of 1 x] by auto + hence "- ln (real ?divr) \ ln (real x)" unfolding nonzero_inverse_eq_divide[OF `real x \ 0`, symmetric] ln_inverse[OF `0 < real x`] by auto from ub_ln_lb_ln_bounds'[OF A', THEN conjunct2, THEN le_imp_neg_le] this - have "Ifloat (- the (ub_ln prec ?divr)) \ ?ln" unfolding Ifloat_minus by (rule order_trans) + have "real (- the (ub_ln prec ?divr)) \ ?ln" unfolding real_of_float_minus by (rule order_trans) } ultimately show ?thesis unfolding lb_ln.simps[where x=x] ub_ln.simps[where x=x] unfolding if_not_P[OF `\ x \ 0`] if_P[OF True] by auto qed lemma lb_ln: assumes "Some y = lb_ln prec x" - shows "Ifloat y \ ln (Ifloat x)" and "0 < Ifloat x" + shows "real y \ ln (real x)" and "0 < real x" proof - have "0 < x" proof (rule ccontr) assume "\ 0 < x" hence "x \ 0" unfolding le_float_def less_float_def by auto thus False using assms by auto qed - thus "0 < Ifloat x" unfolding less_float_def by auto - have "Ifloat (the (lb_ln prec x)) \ ln (Ifloat x)" using ub_ln_lb_ln_bounds[OF `0 < x`] .. - thus "Ifloat y \ ln (Ifloat x)" unfolding assms[symmetric] by auto + thus "0 < real x" unfolding less_float_def by auto + have "real (the (lb_ln prec x)) \ ln (real x)" using ub_ln_lb_ln_bounds[OF `0 < x`] .. + thus "real y \ ln (real x)" unfolding assms[symmetric] by auto qed lemma ub_ln: assumes "Some y = ub_ln prec x" - shows "ln (Ifloat x) \ Ifloat y" and "0 < Ifloat x" + shows "ln (real x) \ real y" and "0 < real x" proof - have "0 < x" proof (rule ccontr) assume "\ 0 < x" hence "x \ 0" unfolding le_float_def less_float_def by auto thus False using assms by auto qed - thus "0 < Ifloat x" unfolding less_float_def by auto - have "ln (Ifloat x) \ Ifloat (the (ub_ln prec x))" using ub_ln_lb_ln_bounds[OF `0 < x`] .. - thus "ln (Ifloat x) \ Ifloat y" unfolding assms[symmetric] by auto + thus "0 < real x" unfolding less_float_def by auto + have "ln (real x) \ real (the (ub_ln prec x))" using ub_ln_lb_ln_bounds[OF `0 < x`] .. + thus "ln (real x) \ real y" unfolding assms[symmetric] by auto qed -lemma bnds_ln: "\ x lx ux. (Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \ x \ {Ifloat lx .. Ifloat ux} \ Ifloat l \ ln x \ ln x \ Ifloat u" +lemma bnds_ln: "\ x lx ux. (Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \ x \ {real lx .. real ux} \ real l \ ln x \ ln x \ real u" proof (rule allI, rule allI, rule allI, rule impI) fix x lx ux - assume "(Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \ x \ {Ifloat lx .. Ifloat ux}" - hence l: "Some l = lb_ln prec lx " and u: "Some u = ub_ln prec ux" and x: "x \ {Ifloat lx .. Ifloat ux}" by auto + assume "(Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \ x \ {real lx .. real ux}" + hence l: "Some l = lb_ln prec lx " and u: "Some u = ub_ln prec ux" and x: "x \ {real lx .. real ux}" by auto - have "ln (Ifloat ux) \ Ifloat u" and "0 < Ifloat ux" using ub_ln u by auto - have "Ifloat l \ ln (Ifloat lx)" and "0 < Ifloat lx" and "0 < x" using lb_ln[OF l] x by auto + have "ln (real ux) \ real u" and "0 < real ux" using ub_ln u by auto + have "real l \ ln (real lx)" and "0 < real lx" and "0 < x" using lb_ln[OF l] x by auto - from ln_le_cancel_iff[OF `0 < Ifloat lx` `0 < x`] `Ifloat l \ ln (Ifloat lx)` - have "Ifloat l \ ln x" using x unfolding atLeastAtMost_iff by auto + from ln_le_cancel_iff[OF `0 < real lx` `0 < x`] `real l \ ln (real lx)` + have "real l \ ln x" using x unfolding atLeastAtMost_iff by auto moreover - from ln_le_cancel_iff[OF `0 < x` `0 < Ifloat ux`] `ln (Ifloat ux) \ Ifloat u` - have "ln x \ Ifloat u" using x unfolding atLeastAtMost_iff by auto - ultimately show "Ifloat l \ ln x \ ln x \ Ifloat u" .. + from ln_le_cancel_iff[OF `0 < x` `0 < real ux`] `ln (real ux) \ real u` + have "ln x \ real u" using x unfolding atLeastAtMost_iff by auto + ultimately show "real l \ ln x \ ln x \ real u" .. qed @@ -1955,25 +1956,25 @@ | Atom nat | Num float -fun Ifloatarith :: "floatarith \ real list \ real" +fun interpret_floatarith :: "floatarith \ real list \ real" where -"Ifloatarith (Add a b) vs = (Ifloatarith a vs) + (Ifloatarith b vs)" | -"Ifloatarith (Minus a) vs = - (Ifloatarith a vs)" | -"Ifloatarith (Mult a b) vs = (Ifloatarith a vs) * (Ifloatarith b vs)" | -"Ifloatarith (Inverse a) vs = inverse (Ifloatarith a vs)" | -"Ifloatarith (Sin a) vs = sin (Ifloatarith a vs)" | -"Ifloatarith (Cos a) vs = cos (Ifloatarith a vs)" | -"Ifloatarith (Arctan a) vs = arctan (Ifloatarith a vs)" | -"Ifloatarith (Min a b) vs = min (Ifloatarith a vs) (Ifloatarith b vs)" | -"Ifloatarith (Max a b) vs = max (Ifloatarith a vs) (Ifloatarith b vs)" | -"Ifloatarith (Abs a) vs = abs (Ifloatarith a vs)" | -"Ifloatarith Pi vs = pi" | -"Ifloatarith (Sqrt a) vs = sqrt (Ifloatarith a vs)" | -"Ifloatarith (Exp a) vs = exp (Ifloatarith a vs)" | -"Ifloatarith (Ln a) vs = ln (Ifloatarith a vs)" | -"Ifloatarith (Power a n) vs = (Ifloatarith a vs)^n" | -"Ifloatarith (Num f) vs = Ifloat f" | -"Ifloatarith (Atom n) vs = vs ! n" +"interpret_floatarith (Add a b) vs = (interpret_floatarith a vs) + (interpret_floatarith b vs)" | +"interpret_floatarith (Minus a) vs = - (interpret_floatarith a vs)" | +"interpret_floatarith (Mult a b) vs = (interpret_floatarith a vs) * (interpret_floatarith b vs)" | +"interpret_floatarith (Inverse a) vs = inverse (interpret_floatarith a vs)" | +"interpret_floatarith (Sin a) vs = sin (interpret_floatarith a vs)" | +"interpret_floatarith (Cos a) vs = cos (interpret_floatarith a vs)" | +"interpret_floatarith (Arctan a) vs = arctan (interpret_floatarith a vs)" | +"interpret_floatarith (Min a b) vs = min (interpret_floatarith a vs) (interpret_floatarith b vs)" | +"interpret_floatarith (Max a b) vs = max (interpret_floatarith a vs) (interpret_floatarith b vs)" | +"interpret_floatarith (Abs a) vs = abs (interpret_floatarith a vs)" | +"interpret_floatarith Pi vs = pi" | +"interpret_floatarith (Sqrt a) vs = sqrt (interpret_floatarith a vs)" | +"interpret_floatarith (Exp a) vs = exp (interpret_floatarith a vs)" | +"interpret_floatarith (Ln a) vs = ln (interpret_floatarith a vs)" | +"interpret_floatarith (Power a n) vs = (interpret_floatarith a vs)^n" | +"interpret_floatarith (Num f) vs = real f" | +"interpret_floatarith (Atom n) vs = vs ! n" subsection "Implement approximation function" @@ -1996,18 +1997,18 @@ "lift_un' b f = None" fun bounded_by :: "real list \ (float * float) list \ bool " where -bounded_by_Cons: "bounded_by (v#vs) ((l, u)#bs) = ((Ifloat l \ v \ v \ Ifloat u) \ bounded_by vs bs)" | +bounded_by_Cons: "bounded_by (v#vs) ((l, u)#bs) = ((real l \ v \ v \ real u) \ bounded_by vs bs)" | bounded_by_Nil: "bounded_by [] [] = True" | "bounded_by _ _ = False" lemma bounded_by: assumes "bounded_by vs bs" and "i < length bs" - shows "Ifloat (fst (bs ! i)) \ vs ! i \ vs ! i \ Ifloat (snd (bs ! i))" + shows "real (fst (bs ! i)) \ vs ! i \ vs ! i \ real (snd (bs ! i))" using `bounded_by vs bs` and `i < length bs` proof (induct arbitrary: i rule: bounded_by.induct) fix v :: real and vs :: "real list" and l u :: float and bs :: "(float * float) list" and i :: nat - assume hyp: "\i. \bounded_by vs bs; i < length bs\ \ Ifloat (fst (bs ! i)) \ vs ! i \ vs ! i \ Ifloat (snd (bs ! i))" + assume hyp: "\i. \bounded_by vs bs; i < length bs\ \ real (fst (bs ! i)) \ vs ! i \ vs ! i \ real (snd (bs ! i))" assume bounded: "bounded_by (v # vs) ((l, u) # bs)" and length: "i < length ((l, u) # bs)" - show "Ifloat (fst (((l, u) # bs) ! i)) \ (v # vs) ! i \ (v # vs) ! i \ Ifloat (snd (((l, u) # bs) ! i))" + show "real (fst (((l, u) # bs) ! i)) \ (v # vs) ! i \ (v # vs) ! i \ real (snd (((l, u) # bs) ! i))" proof (cases i) case 0 show ?thesis using bounded unfolding 0 nth_Cons_0 fst_conv snd_conv bounded_by.simps .. @@ -2073,9 +2074,9 @@ qed lemma approx_approx': - assumes Pa: "\l u. Some (l, u) = approx prec a vs \ Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" + assumes Pa: "\l u. Some (l, u) = approx prec a vs \ real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" and approx': "Some (l, u) = approx' prec a vs" - shows "Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" + shows "real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" proof - obtain l' u' where S: "Some (l', u') = approx prec a vs" using approx' unfolding approx'.simps by (cases "approx prec a vs", auto) @@ -2088,18 +2089,18 @@ lemma lift_bin': assumes lift_bin'_Some: "Some (l, u) = lift_bin' (approx' prec a bs) (approx' prec b bs) f" - and Pa: "\l u. Some (l, u) = approx prec a bs \ Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" (is "\l u. _ = ?g a \ ?P l u a") - and Pb: "\l u. Some (l, u) = approx prec b bs \ Ifloat l \ Ifloatarith b xs \ Ifloatarith b xs \ Ifloat u" - shows "\ l1 u1 l2 u2. (Ifloat l1 \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u1) \ - (Ifloat l2 \ Ifloatarith b xs \ Ifloatarith b xs \ Ifloat u2) \ + and Pa: "\l u. Some (l, u) = approx prec a bs \ real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" (is "\l u. _ = ?g a \ ?P l u a") + and Pb: "\l u. Some (l, u) = approx prec b bs \ real l \ interpret_floatarith b xs \ interpret_floatarith b xs \ real u" + shows "\ l1 u1 l2 u2. (real l1 \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u1) \ + (real l2 \ interpret_floatarith b xs \ interpret_floatarith b xs \ real u2) \ l = fst (f l1 u1 l2 u2) \ u = snd (f l1 u1 l2 u2)" proof - { fix l u assume "Some (l, u) = approx' prec a bs" with approx_approx'[of prec a bs, OF _ this] Pa - have "Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" by auto } note Pa = this + have "real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" by auto } note Pa = this { fix l u assume "Some (l, u) = approx' prec b bs" with approx_approx'[of prec b bs, OF _ this] Pb - have "Ifloat l \ Ifloatarith b xs \ Ifloatarith b xs \ Ifloat u" by auto } note Pb = this + have "real l \ interpret_floatarith b xs \ interpret_floatarith b xs \ real u" by auto } note Pb = this from lift_bin'_f[where g="\a. approx' prec a bs" and P = ?P, OF lift_bin'_Some, OF Pa Pb] show ?thesis by auto @@ -2130,26 +2131,26 @@ lemma lift_un': assumes lift_un'_Some: "Some (l, u) = lift_un' (approx' prec a bs) f" - and Pa: "\l u. Some (l, u) = approx prec a bs \ Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" (is "\l u. _ = ?g a \ ?P l u a") - shows "\ l1 u1. (Ifloat l1 \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u1) \ + and Pa: "\l u. Some (l, u) = approx prec a bs \ real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" (is "\l u. _ = ?g a \ ?P l u a") + shows "\ l1 u1. (real l1 \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u1) \ l = fst (f l1 u1) \ u = snd (f l1 u1)" proof - { fix l u assume "Some (l, u) = approx' prec a bs" with approx_approx'[of prec a bs, OF _ this] Pa - have "Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" by auto } note Pa = this + have "real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" by auto } note Pa = this from lift_un'_f[where g="\a. approx' prec a bs" and P = ?P, OF lift_un'_Some, OF Pa] show ?thesis by auto qed lemma lift_un'_bnds: - assumes bnds: "\ x lx ux. (l, u) = f lx ux \ x \ { Ifloat lx .. Ifloat ux } \ Ifloat l \ f' x \ f' x \ Ifloat u" + assumes bnds: "\ x lx ux. (l, u) = f lx ux \ x \ { real lx .. real ux } \ real l \ f' x \ f' x \ real u" and lift_un'_Some: "Some (l, u) = lift_un' (approx' prec a bs) f" - and Pa: "\l u. Some (l, u) = approx prec a bs \ Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" - shows "Ifloat l \ f' (Ifloatarith a xs) \ f' (Ifloatarith a xs) \ Ifloat u" + and Pa: "\l u. Some (l, u) = approx prec a bs \ real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" + shows "real l \ f' (interpret_floatarith a xs) \ f' (interpret_floatarith a xs) \ real u" proof - from lift_un'[OF lift_un'_Some Pa] - obtain l1 u1 where "Ifloat l1 \ Ifloatarith a xs" and "Ifloatarith a xs \ Ifloat u1" and "l = fst (f l1 u1)" and "u = snd (f l1 u1)" by blast - hence "(l, u) = f l1 u1" and "Ifloatarith a xs \ {Ifloat l1 .. Ifloat u1}" by auto + obtain l1 u1 where "real l1 \ interpret_floatarith a xs" and "interpret_floatarith a xs \ real u1" and "l = fst (f l1 u1)" and "u = snd (f l1 u1)" by blast + hence "(l, u) = f l1 u1" and "interpret_floatarith a xs \ {real l1 .. real u1}" by auto thus ?thesis using bnds by auto qed @@ -2195,115 +2196,115 @@ lemma lift_un: assumes lift_un_Some: "Some (l, u) = lift_un (approx' prec a bs) f" - and Pa: "\l u. Some (l, u) = approx prec a bs \ Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" (is "\l u. _ = ?g a \ ?P l u a") - shows "\ l1 u1. (Ifloat l1 \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u1) \ + and Pa: "\l u. Some (l, u) = approx prec a bs \ real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" (is "\l u. _ = ?g a \ ?P l u a") + shows "\ l1 u1. (real l1 \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u1) \ Some l = fst (f l1 u1) \ Some u = snd (f l1 u1)" proof - { fix l u assume "Some (l, u) = approx' prec a bs" with approx_approx'[of prec a bs, OF _ this] Pa - have "Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" by auto } note Pa = this + have "real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" by auto } note Pa = this from lift_un_f[where g="\a. approx' prec a bs" and P = ?P, OF lift_un_Some, OF Pa] show ?thesis by auto qed lemma lift_un_bnds: - assumes bnds: "\ x lx ux. (Some l, Some u) = f lx ux \ x \ { Ifloat lx .. Ifloat ux } \ Ifloat l \ f' x \ f' x \ Ifloat u" + assumes bnds: "\ x lx ux. (Some l, Some u) = f lx ux \ x \ { real lx .. real ux } \ real l \ f' x \ f' x \ real u" and lift_un_Some: "Some (l, u) = lift_un (approx' prec a bs) f" - and Pa: "\l u. Some (l, u) = approx prec a bs \ Ifloat l \ Ifloatarith a xs \ Ifloatarith a xs \ Ifloat u" - shows "Ifloat l \ f' (Ifloatarith a xs) \ f' (Ifloatarith a xs) \ Ifloat u" + and Pa: "\l u. Some (l, u) = approx prec a bs \ real l \ interpret_floatarith a xs \ interpret_floatarith a xs \ real u" + shows "real l \ f' (interpret_floatarith a xs) \ f' (interpret_floatarith a xs) \ real u" proof - from lift_un[OF lift_un_Some Pa] - obtain l1 u1 where "Ifloat l1 \ Ifloatarith a xs" and "Ifloatarith a xs \ Ifloat u1" and "Some l = fst (f l1 u1)" and "Some u = snd (f l1 u1)" by blast - hence "(Some l, Some u) = f l1 u1" and "Ifloatarith a xs \ {Ifloat l1 .. Ifloat u1}" by auto + obtain l1 u1 where "real l1 \ interpret_floatarith a xs" and "interpret_floatarith a xs \ real u1" and "Some l = fst (f l1 u1)" and "Some u = snd (f l1 u1)" by blast + hence "(Some l, Some u) = f l1 u1" and "interpret_floatarith a xs \ {real l1 .. real u1}" by auto thus ?thesis using bnds by auto qed lemma approx: assumes "bounded_by xs vs" and "Some (l, u) = approx prec arith vs" (is "_ = ?g arith") - shows "Ifloat l \ Ifloatarith arith xs \ Ifloatarith arith xs \ Ifloat u" (is "?P l u arith") + shows "real l \ interpret_floatarith arith xs \ interpret_floatarith arith xs \ real u" (is "?P l u arith") using `Some (l, u) = approx prec arith vs` proof (induct arith arbitrary: l u x) case (Add a b) from lift_bin'[OF Add.prems[unfolded approx.simps]] Add.hyps obtain l1 u1 l2 u2 where "l = l1 + l2" and "u = u1 + u2" - "Ifloat l1 \ Ifloatarith a xs" and "Ifloatarith a xs \ Ifloat u1" - "Ifloat l2 \ Ifloatarith b xs" and "Ifloatarith b xs \ Ifloat u2" unfolding fst_conv snd_conv by blast - thus ?case unfolding Ifloatarith.simps by auto + "real l1 \ interpret_floatarith a xs" and "interpret_floatarith a xs \ real u1" + "real l2 \ interpret_floatarith b xs" and "interpret_floatarith b xs \ real u2" unfolding fst_conv snd_conv by blast + thus ?case unfolding interpret_floatarith.simps by auto next case (Minus a) from lift_un'[OF Minus.prems[unfolded approx.simps]] Minus.hyps obtain l1 u1 where "l = -u1" and "u = -l1" - "Ifloat l1 \ Ifloatarith a xs" and "Ifloatarith a xs \ Ifloat u1" unfolding fst_conv snd_conv by blast - thus ?case unfolding Ifloatarith.simps using Ifloat_minus by auto + "real l1 \ interpret_floatarith a xs" and "interpret_floatarith a xs \ real u1" unfolding fst_conv snd_conv by blast + thus ?case unfolding interpret_floatarith.simps using real_of_float_minus by auto next case (Mult a b) from lift_bin'[OF Mult.prems[unfolded approx.simps]] Mult.hyps obtain l1 u1 l2 u2 where l: "l = float_nprt l1 * float_pprt u2 + float_nprt u1 * float_nprt u2 + float_pprt l1 * float_pprt l2 + float_pprt u1 * float_nprt l2" and u: "u = float_pprt u1 * float_pprt u2 + float_pprt l1 * float_nprt u2 + float_nprt u1 * float_pprt l2 + float_nprt l1 * float_nprt l2" - and "Ifloat l1 \ Ifloatarith a xs" and "Ifloatarith a xs \ Ifloat u1" - and "Ifloat l2 \ Ifloatarith b xs" and "Ifloatarith b xs \ Ifloat u2" unfolding fst_conv snd_conv by blast - thus ?case unfolding Ifloatarith.simps l u Ifloat_add Ifloat_mult Ifloat_nprt Ifloat_pprt + and "real l1 \ interpret_floatarith a xs" and "interpret_floatarith a xs \ real u1" + and "real l2 \ interpret_floatarith b xs" and "interpret_floatarith b xs \ real u2" unfolding fst_conv snd_conv by blast + thus ?case unfolding interpret_floatarith.simps l u real_of_float_add real_of_float_mult real_of_float_nprt real_of_float_pprt using mult_le_prts mult_ge_prts by auto next case (Inverse a) from lift_un[OF Inverse.prems[unfolded approx.simps], unfolded if_distrib[of fst] if_distrib[of snd] fst_conv snd_conv] Inverse.hyps obtain l1 u1 where l': "Some l = (if 0 < l1 \ u1 < 0 then Some (float_divl prec 1 u1) else None)" and u': "Some u = (if 0 < l1 \ u1 < 0 then Some (float_divr prec 1 l1) else None)" - and l1: "Ifloat l1 \ Ifloatarith a xs" and u1: "Ifloatarith a xs \ Ifloat u1" by blast + and l1: "real l1 \ interpret_floatarith a xs" and u1: "interpret_floatarith a xs \ real u1" by blast have either: "0 < l1 \ u1 < 0" proof (rule ccontr) assume P: "\ (0 < l1 \ u1 < 0)" show False using l' unfolding if_not_P[OF P] by auto qed - moreover have l1_le_u1: "Ifloat l1 \ Ifloat u1" using l1 u1 by auto - ultimately have "Ifloat l1 \ 0" and "Ifloat u1 \ 0" unfolding less_float_def by auto + moreover have l1_le_u1: "real l1 \ real u1" using l1 u1 by auto + ultimately have "real l1 \ 0" and "real u1 \ 0" unfolding less_float_def by auto - have inv: "inverse (Ifloat u1) \ inverse (Ifloatarith a xs) - \ inverse (Ifloatarith a xs) \ inverse (Ifloat l1)" + have inv: "inverse (real u1) \ inverse (interpret_floatarith a xs) + \ inverse (interpret_floatarith a xs) \ inverse (real l1)" proof (cases "0 < l1") - case True hence "0 < Ifloat u1" and "0 < Ifloat l1" "0 < Ifloatarith a xs" + case True hence "0 < real u1" and "0 < real l1" "0 < interpret_floatarith a xs" unfolding less_float_def using l1_le_u1 l1 by auto show ?thesis - unfolding inverse_le_iff_le[OF `0 < Ifloat u1` `0 < Ifloatarith a xs`] - inverse_le_iff_le[OF `0 < Ifloatarith a xs` `0 < Ifloat l1`] + unfolding inverse_le_iff_le[OF `0 < real u1` `0 < interpret_floatarith a xs`] + inverse_le_iff_le[OF `0 < interpret_floatarith a xs` `0 < real l1`] using l1 u1 by auto next case False hence "u1 < 0" using either by blast - hence "Ifloat u1 < 0" and "Ifloat l1 < 0" "Ifloatarith a xs < 0" + hence "real u1 < 0" and "real l1 < 0" "interpret_floatarith a xs < 0" unfolding less_float_def using l1_le_u1 u1 by auto show ?thesis - unfolding inverse_le_iff_le_neg[OF `Ifloat u1 < 0` `Ifloatarith a xs < 0`] - inverse_le_iff_le_neg[OF `Ifloatarith a xs < 0` `Ifloat l1 < 0`] + unfolding inverse_le_iff_le_neg[OF `real u1 < 0` `interpret_floatarith a xs < 0`] + inverse_le_iff_le_neg[OF `interpret_floatarith a xs < 0` `real l1 < 0`] using l1 u1 by auto qed from l' have "l = float_divl prec 1 u1" by (cases "0 < l1 \ u1 < 0", auto) - hence "Ifloat l \ inverse (Ifloat u1)" unfolding nonzero_inverse_eq_divide[OF `Ifloat u1 \ 0`] using float_divl[of prec 1 u1] by auto - also have "\ \ inverse (Ifloatarith a xs)" using inv by auto - finally have "Ifloat l \ inverse (Ifloatarith a xs)" . + hence "real l \ inverse (real u1)" unfolding nonzero_inverse_eq_divide[OF `real u1 \ 0`] using float_divl[of prec 1 u1] by auto + also have "\ \ inverse (interpret_floatarith a xs)" using inv by auto + finally have "real l \ inverse (interpret_floatarith a xs)" . moreover from u' have "u = float_divr prec 1 l1" by (cases "0 < l1 \ u1 < 0", auto) - hence "inverse (Ifloat l1) \ Ifloat u" unfolding nonzero_inverse_eq_divide[OF `Ifloat l1 \ 0`] using float_divr[of 1 l1 prec] by auto - hence "inverse (Ifloatarith a xs) \ Ifloat u" by (rule order_trans[OF inv[THEN conjunct2]]) - ultimately show ?case unfolding Ifloatarith.simps using l1 u1 by auto + hence "inverse (real l1) \ real u" unfolding nonzero_inverse_eq_divide[OF `real l1 \ 0`] using float_divr[of 1 l1 prec] by auto + hence "inverse (interpret_floatarith a xs) \ real u" by (rule order_trans[OF inv[THEN conjunct2]]) + ultimately show ?case unfolding interpret_floatarith.simps using l1 u1 by auto next case (Abs x) from lift_un'[OF Abs.prems[unfolded approx.simps], unfolded fst_conv snd_conv] Abs.hyps obtain l1 u1 where l': "l = (if l1 < 0 \ 0 < u1 then 0 else min \l1\ \u1\)" and u': "u = max \l1\ \u1\" - and l1: "Ifloat l1 \ Ifloatarith x xs" and u1: "Ifloatarith x xs \ Ifloat u1" by blast - thus ?case unfolding l' u' by (cases "l1 < 0 \ 0 < u1", auto simp add: Ifloat_min Ifloat_max Ifloat_abs less_float_def) + and l1: "real l1 \ interpret_floatarith x xs" and u1: "interpret_floatarith x xs \ real u1" by blast + thus ?case unfolding l' u' by (cases "l1 < 0 \ 0 < u1", auto simp add: real_of_float_min real_of_float_max real_of_float_abs less_float_def) next case (Min a b) from lift_bin'[OF Min.prems[unfolded approx.simps], unfolded fst_conv snd_conv] Min.hyps obtain l1 u1 l2 u2 where l': "l = min l1 l2" and u': "u = min u1 u2" - and l1: "Ifloat l1 \ Ifloatarith a xs" and u1: "Ifloatarith a xs \ Ifloat u1" - and l1: "Ifloat l2 \ Ifloatarith b xs" and u1: "Ifloatarith b xs \ Ifloat u2" by blast - thus ?case unfolding l' u' by (auto simp add: Ifloat_min) + and l1: "real l1 \ interpret_floatarith a xs" and u1: "interpret_floatarith a xs \ real u1" + and l1: "real l2 \ interpret_floatarith b xs" and u1: "interpret_floatarith b xs \ real u2" by blast + thus ?case unfolding l' u' by (auto simp add: real_of_float_min) next case (Max a b) from lift_bin'[OF Max.prems[unfolded approx.simps], unfolded fst_conv snd_conv] Max.hyps obtain l1 u1 l2 u2 where l': "l = max l1 l2" and u': "u = max u1 u2" - and l1: "Ifloat l1 \ Ifloatarith a xs" and u1: "Ifloatarith a xs \ Ifloat u1" - and l1: "Ifloat l2 \ Ifloatarith b xs" and u1: "Ifloatarith b xs \ Ifloat u2" by blast - thus ?case unfolding l' u' by (auto simp add: Ifloat_max) + and l1: "real l1 \ interpret_floatarith a xs" and u1: "interpret_floatarith a xs \ real u1" + and l1: "real l2 \ interpret_floatarith b xs" and u1: "interpret_floatarith b xs \ real u2" by blast + thus ?case unfolding l' u' by (auto simp add: real_of_float_max) next case (Sin a) with lift_un'_bnds[OF bnds_sin] show ?case by auto next case (Cos a) with lift_un'_bnds[OF bnds_cos] show ?case by auto next case (Arctan a) with lift_un'_bnds[OF bnds_arctan] show ?case by auto @@ -2325,19 +2326,19 @@ qed qed -datatype ApproxEq = Less floatarith floatarith - | LessEqual floatarith floatarith +datatype inequality = Less floatarith floatarith + | LessEqual floatarith floatarith -fun uneq :: "ApproxEq \ real list \ bool" where -"uneq (Less a b) vs = (Ifloatarith a vs < Ifloatarith b vs)" | -"uneq (LessEqual a b) vs = (Ifloatarith a vs \ Ifloatarith b vs)" +fun interpret_inequality :: "inequality \ real list \ bool" where +"interpret_inequality (Less a b) vs = (interpret_floatarith a vs < interpret_floatarith b vs)" | +"interpret_inequality (LessEqual a b) vs = (interpret_floatarith a vs \ interpret_floatarith b vs)" -fun uneq' :: "nat \ ApproxEq \ (float * float) list \ bool" where -"uneq' prec (Less a b) bs = (case (approx prec a bs, approx prec b bs) of (Some (l, u), Some (l', u')) \ u < l' | _ \ False)" | -"uneq' prec (LessEqual a b) bs = (case (approx prec a bs, approx prec b bs) of (Some (l, u), Some (l', u')) \ u \ l' | _ \ False)" +fun approx_inequality :: "nat \ inequality \ (float * float) list \ bool" where +"approx_inequality prec (Less a b) bs = (case (approx prec a bs, approx prec b bs) of (Some (l, u), Some (l', u')) \ u < l' | _ \ False)" | +"approx_inequality prec (LessEqual a b) bs = (case (approx prec a bs, approx prec b bs) of (Some (l, u), Some (l', u')) \ u \ l' | _ \ False)" -lemma uneq_approx: fixes m :: nat assumes "bounded_by vs bs" and "uneq' prec eq bs" - shows "uneq eq vs" +lemma approx_inequality: fixes m :: nat assumes "bounded_by vs bs" and "approx_inequality prec eq bs" + shows "interpret_inequality eq vs" proof (cases eq) case (Less a b) show ?thesis @@ -2346,17 +2347,17 @@ case True then obtain l u l' u' where a_approx: "approx prec a bs = Some (l, u)" and b_approx: "approx prec b bs = Some (l', u') " by auto - with `uneq' prec eq bs` have "Ifloat u < Ifloat l'" - unfolding Less uneq'.simps less_float_def by auto + with `approx_inequality prec eq bs` have "real u < real l'" + unfolding Less approx_inequality.simps less_float_def by auto moreover from a_approx[symmetric] and b_approx[symmetric] and `bounded_by vs bs` - have "Ifloatarith a vs \ Ifloat u" and "Ifloat l' \ Ifloatarith b vs" + have "interpret_floatarith a vs \ real u" and "real l' \ interpret_floatarith b vs" using approx by auto - ultimately show ?thesis unfolding uneq.simps Less by auto + ultimately show ?thesis unfolding interpret_inequality.simps Less by auto next case False hence "approx prec a bs = None \ approx prec b bs = None" unfolding not_Some_eq[symmetric] by auto - hence "\ uneq' prec eq bs" unfolding Less uneq'.simps + hence "\ approx_inequality prec eq bs" unfolding Less approx_inequality.simps by (cases "approx prec a bs = None", auto) thus ?thesis using assms by auto qed @@ -2368,66 +2369,70 @@ case True then obtain l u l' u' where a_approx: "approx prec a bs = Some (l, u)" and b_approx: "approx prec b bs = Some (l', u') " by auto - with `uneq' prec eq bs` have "Ifloat u \ Ifloat l'" - unfolding LessEqual uneq'.simps le_float_def by auto + with `approx_inequality prec eq bs` have "real u \ real l'" + unfolding LessEqual approx_inequality.simps le_float_def by auto moreover from a_approx[symmetric] and b_approx[symmetric] and `bounded_by vs bs` - have "Ifloatarith a vs \ Ifloat u" and "Ifloat l' \ Ifloatarith b vs" + have "interpret_floatarith a vs \ real u" and "real l' \ interpret_floatarith b vs" using approx by auto - ultimately show ?thesis unfolding uneq.simps LessEqual by auto + ultimately show ?thesis unfolding interpret_inequality.simps LessEqual by auto next case False hence "approx prec a bs = None \ approx prec b bs = None" unfolding not_Some_eq[symmetric] by auto - hence "\ uneq' prec eq bs" unfolding LessEqual uneq'.simps + hence "\ approx_inequality prec eq bs" unfolding LessEqual approx_inequality.simps by (cases "approx prec a bs = None", auto) thus ?thesis using assms by auto qed qed -lemma Ifloatarith_divide: "Ifloatarith (Mult a (Inverse b)) vs = (Ifloatarith a vs) / (Ifloatarith b vs)" - unfolding real_divide_def Ifloatarith.simps .. +lemma interpret_floatarith_divide: "interpret_floatarith (Mult a (Inverse b)) vs = (interpret_floatarith a vs) / (interpret_floatarith b vs)" + unfolding real_divide_def interpret_floatarith.simps .. -lemma Ifloatarith_diff: "Ifloatarith (Add a (Minus b)) vs = (Ifloatarith a vs) - (Ifloatarith b vs)" - unfolding real_diff_def Ifloatarith.simps .. +lemma interpret_floatarith_diff: "interpret_floatarith (Add a (Minus b)) vs = (interpret_floatarith a vs) - (interpret_floatarith b vs)" + unfolding real_diff_def interpret_floatarith.simps .. + +lemma interpret_floatarith_tan: "interpret_floatarith (Mult (Sin a) (Inverse (Cos a))) vs = tan (interpret_floatarith a vs)" + unfolding tan_def interpret_floatarith.simps real_divide_def .. -lemma Ifloatarith_tan: "Ifloatarith (Mult (Sin a) (Inverse (Cos a))) vs = tan (Ifloatarith a vs)" - unfolding tan_def Ifloatarith.simps real_divide_def .. +lemma interpret_floatarith_powr: "interpret_floatarith (Exp (Mult b (Ln a))) vs = (interpret_floatarith a vs) powr (interpret_floatarith b vs)" + unfolding powr_def interpret_floatarith.simps .. -lemma Ifloatarith_powr: "Ifloatarith (Exp (Mult b (Ln a))) vs = (Ifloatarith a vs) powr (Ifloatarith b vs)" - unfolding powr_def Ifloatarith.simps .. +lemma interpret_floatarith_log: "interpret_floatarith ((Mult (Ln x) (Inverse (Ln b)))) vs = log (interpret_floatarith b vs) (interpret_floatarith x vs)" + unfolding log_def interpret_floatarith.simps real_divide_def .. -lemma Ifloatarith_log: "Ifloatarith ((Mult (Ln x) (Inverse (Ln b)))) vs = log (Ifloatarith b vs) (Ifloatarith x vs)" - unfolding log_def Ifloatarith.simps real_divide_def .. - -lemma Ifloatarith_num: shows "Ifloatarith (Num (Float 0 0)) vs = 0" and "Ifloatarith (Num (Float 1 0)) vs = 1" and "Ifloatarith (Num (Float (number_of a) 0)) vs = number_of a" by auto +lemma interpret_floatarith_num: + shows "interpret_floatarith (Num (Float 0 0)) vs = 0" + and "interpret_floatarith (Num (Float 1 0)) vs = 1" + and "interpret_floatarith (Num (Float (number_of a) 0)) vs = number_of a" by auto subsection {* Implement proof method \texttt{approximation} *} -lemma bounded_divl: assumes "Ifloat a / Ifloat b \ x" shows "Ifloat (float_divl p a b) \ x" by (rule order_trans[OF _ assms], rule float_divl) -lemma bounded_divr: assumes "x \ Ifloat a / Ifloat b" shows "x \ Ifloat (float_divr p a b)" by (rule order_trans[OF assms _], rule float_divr) -lemma bounded_num: shows "Ifloat (Float 5 1) = 10" and "Ifloat (Float 0 0) = 0" and "Ifloat (Float 1 0) = 1" and "Ifloat (Float (number_of n) 0) = (number_of n)" - and "0 * pow2 e = Ifloat (Float 0 e)" and "1 * pow2 e = Ifloat (Float 1 e)" and "number_of m * pow2 e = Ifloat (Float (number_of m) e)" - and "Ifloat (Float (number_of A) (int B)) = (number_of A) * 2^B" - and "Ifloat (Float 1 (int B)) = 2^B" - and "Ifloat (Float (number_of A) (- int B)) = (number_of A) / 2^B" - and "Ifloat (Float 1 (- int B)) = 1 / 2^B" - by (auto simp add: Ifloat.simps pow2_def real_divide_def) +lemma bounded_divl: assumes "real a / real b \ x" shows "real (float_divl p a b) \ x" by (rule order_trans[OF _ assms], rule float_divl) +lemma bounded_divr: assumes "x \ real a / real b" shows "x \ real (float_divr p a b)" by (rule order_trans[OF assms _], rule float_divr) +lemma bounded_num: shows "real (Float 5 1) = 10" and "real (Float 0 0) = 0" and "real (Float 1 0) = 1" and "real (Float (number_of n) 0) = (number_of n)" + and "0 * pow2 e = real (Float 0 e)" and "1 * pow2 e = real (Float 1 e)" and "number_of m * pow2 e = real (Float (number_of m) e)" + and "real (Float (number_of A) (int B)) = (number_of A) * 2^B" + and "real (Float 1 (int B)) = 2^B" + and "real (Float (number_of A) (- int B)) = (number_of A) / 2^B" + and "real (Float 1 (- int B)) = 1 / 2^B" + by (auto simp add: real_of_float_simp pow2_def real_divide_def) lemmas bounded_by_equations = bounded_by_Cons bounded_by_Nil float_power bounded_divl bounded_divr bounded_num HOL.simp_thms -lemmas uneq_equations = uneq.simps Ifloatarith.simps Ifloatarith_num Ifloatarith_divide Ifloatarith_diff Ifloatarith_tan Ifloatarith_powr Ifloatarith_log +lemmas interpret_inequality_equations = interpret_inequality.simps interpret_floatarith.simps interpret_floatarith_num + interpret_floatarith_divide interpret_floatarith_diff interpret_floatarith_tan interpret_floatarith_powr interpret_floatarith_log ML {* - val uneq_equations = PureThy.get_thms @{theory} "uneq_equations"; + val ineq_equations = PureThy.get_thms @{theory} "interpret_inequality_equations"; val bounded_by_equations = PureThy.get_thms @{theory} "bounded_by_equations"; val bounded_by_simpset = (HOL_basic_ss addsimps bounded_by_equations) - fun reify_uneq ctxt i = (fn st => + fun reify_ineq ctxt i = (fn st => let val to = HOLogic.dest_Trueprop (Logic.strip_imp_concl (List.nth (prems_of st, i - 1))) - in (Reflection.genreify_tac ctxt uneq_equations (SOME to) i) st + in (Reflection.genreify_tac ctxt ineq_equations (SOME to) i) st end) - fun rule_uneq ctxt prec i thm = let + fun rule_ineq ctxt prec i thm = let fun conv_num typ = HOLogic.dest_number #> snd #> HOLogic.mk_number typ val to_natc = conv_num @{typ "nat"} #> Thm.cterm_of (ProofContext.theory_of ctxt) val to_nat = conv_num @{typ "nat"} @@ -2488,7 +2493,7 @@ val bs = (HOLogic.dest_list #> map lift_var #> HOLogic.mk_list @{typ "float * float"}) vs val map = [(@{cpat "?prec::nat"}, to_natc prec), (@{cpat "?bs::(float * float) list"}, Thm.cterm_of (ProofContext.theory_of ctxt) bs)] - in rtac (Thm.instantiate ([], map) @{thm "uneq_approx"}) i thm end + in rtac (Thm.instantiate ([], map) @{thm "approx_inequality"}) i thm end val eval_tac = CSUBGOAL (fn (ct, i) => rtac (eval_oracle ct) i) @@ -2501,8 +2506,8 @@ Args.term >> (fn prec => fn ctxt => SIMPLE_METHOD' (fn i => - (DETERM (reify_uneq ctxt i) - THEN rule_uneq ctxt prec i + (DETERM (reify_ineq ctxt i) + THEN rule_ineq ctxt prec i THEN Simplifier.asm_full_simp_tac bounded_by_simpset i THEN (TRY (filter_prems_tac (fn t => false) i)) THEN (gen_eval_tac eval_oracle ctxt) i))) diff -r a09767ab684d -r 73dd67adf90a src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Mon May 11 08:29:28 2009 -0700 +++ b/src/HOL/Library/Float.thy Wed Apr 29 20:19:50 2009 +0200 @@ -15,8 +15,17 @@ datatype float = Float int int -primrec Ifloat :: "float \ real" where - "Ifloat (Float a b) = real a * pow2 b" +primrec of_float :: "float \ real" where + "of_float (Float a b) = real a * pow2 b" + +defs (overloaded) + real_of_float_def [code unfold]: "real == of_float" + +primrec mantissa :: "float \ int" where + "mantissa (Float a b) = a" + +primrec scale :: "float \ int" where + "scale (Float a b) = b" instantiation float :: zero begin definition zero_float where "0 = Float 0 0" @@ -33,20 +42,17 @@ instance .. end -primrec mantissa :: "float \ int" where - "mantissa (Float a b) = a" +lemma real_of_float_simp[simp]: "real (Float a b) = real a * pow2 b" + unfolding real_of_float_def using of_float.simps . -primrec scale :: "float \ int" where - "scale (Float a b) = b" - -lemma Ifloat_neg_exp: "e < 0 \ Ifloat (Float m e) = real m * inverse (2^nat (-e))" by auto -lemma Ifloat_nge0_exp: "\ 0 \ e \ Ifloat (Float m e) = real m * inverse (2^nat (-e))" by auto -lemma Ifloat_ge0_exp: "0 \ e \ Ifloat (Float m e) = real m * (2^nat e)" by auto +lemma real_of_float_neg_exp: "e < 0 \ real (Float m e) = real m * inverse (2^nat (-e))" by auto +lemma real_of_float_nge0_exp: "\ 0 \ e \ real (Float m e) = real m * inverse (2^nat (-e))" by auto +lemma real_of_float_ge0_exp: "0 \ e \ real (Float m e) = real m * (2^nat e)" by auto lemma Float_num[simp]: shows - "Ifloat (Float 1 0) = 1" and "Ifloat (Float 1 1) = 2" and "Ifloat (Float 1 2) = 4" and - "Ifloat (Float 1 -1) = 1/2" and "Ifloat (Float 1 -2) = 1/4" and "Ifloat (Float 1 -3) = 1/8" and - "Ifloat (Float -1 0) = -1" and "Ifloat (Float (number_of n) 0) = number_of n" + "real (Float 1 0) = 1" and "real (Float 1 1) = 2" and "real (Float 1 2) = 4" and + "real (Float 1 -1) = 1/2" and "real (Float 1 -2) = 1/4" and "real (Float 1 -3) = 1/8" and + "real (Float -1 0) = -1" and "real (Float (number_of n) 0) = number_of n" by auto lemma pow2_0[simp]: "pow2 0 = 1" by simp @@ -131,7 +137,7 @@ lemma float_split2: "(\ a b. x \ Float a b) = False" by (auto simp add: float_split) -lemma float_zero[simp]: "Ifloat (Float 0 e) = 0" by simp +lemma float_zero[simp]: "real (Float 0 e) = 0" by simp lemma abs_div_2_less: "a \ 0 \ a \ -1 \ abs((a::int) div 2) < abs a" by arith @@ -142,7 +148,7 @@ termination by (relation "measure (nat o abs o mantissa)") (auto intro: abs_div_2_less) declare normfloat.simps[simp del] -theorem normfloat[symmetric, simp]: "Ifloat f = Ifloat (normfloat f)" +theorem normfloat[symmetric, simp]: "real f = real (normfloat f)" proof (induct f rule: normfloat.induct) case (1 a b) have real2: "2 = real (2::int)" @@ -217,7 +223,7 @@ lemma float_eq_odd_helper: assumes odd: "odd a'" - and floateq: "Ifloat (Float a b) = Ifloat (Float a' b')" + and floateq: "real (Float a b) = real (Float a' b')" shows "b \ b'" proof - { @@ -267,7 +273,7 @@ lemma float_eq_odd: assumes odd1: "odd a" and odd2: "odd a'" - and floateq: "Ifloat (Float a b) = Ifloat (Float a' b')" + and floateq: "real (Float a b) = real (Float a' b')" shows "a = a' \ b = b'" proof - from @@ -278,14 +284,14 @@ qed theorem normfloat_unique: - assumes Ifloat_eq: "Ifloat f = Ifloat g" + assumes real_of_float_eq: "real f = real g" shows "normfloat f = normfloat g" proof - from float_split[of "normfloat f"] obtain a b where normf:"normfloat f = Float a b" by auto from float_split[of "normfloat g"] obtain a' b' where normg:"normfloat g = Float a' b'" by auto - have "Ifloat (normfloat f) = Ifloat (normfloat g)" - by (simp add: Ifloat_eq) - then have float_eq: "Ifloat (Float a b) = Ifloat (Float a' b')" + have "real (normfloat f) = real (normfloat g)" + by (simp add: real_of_float_eq) + then have float_eq: "real (Float a b) = real (Float a' b')" by (simp add: normf normg) have ab: "odd a \ (a = 0 \ b = 0)" by (rule normfloat_imp_odd_or_zero[OF normf]) have ab': "odd a' \ (a' = 0 \ b' = 0)" by (rule normfloat_imp_odd_or_zero[OF normg]) @@ -341,32 +347,32 @@ "float_nprt (Float a e) = (if 0 <= a then 0 else (Float a e))" instantiation float :: ord begin -definition le_float_def: "z \ w \ Ifloat z \ Ifloat w" -definition less_float_def: "z < w \ Ifloat z < Ifloat w" +definition le_float_def: "z \ (w :: float) \ real z \ real w" +definition less_float_def: "z < (w :: float) \ real z < real w" instance .. end -lemma Ifloat_add[simp]: "Ifloat (a + b) = Ifloat a + Ifloat b" +lemma real_of_float_add[simp]: "real (a + b) = real a + real (b :: float)" by (cases a, cases b, simp add: algebra_simps plus_float.simps, auto simp add: pow2_int[symmetric] pow2_add[symmetric]) -lemma Ifloat_minus[simp]: "Ifloat (- a) = - Ifloat a" +lemma real_of_float_minus[simp]: "real (- a) = - real (a :: float)" by (cases a, simp add: uminus_float.simps) -lemma Ifloat_sub[simp]: "Ifloat (a - b) = Ifloat a - Ifloat b" +lemma real_of_float_sub[simp]: "real (a - b) = real a - real (b :: float)" by (cases a, cases b, simp add: minus_float_def) -lemma Ifloat_mult[simp]: "Ifloat (a*b) = Ifloat a * Ifloat b" +lemma real_of_float_mult[simp]: "real (a*b) = real a * real (b :: float)" by (cases a, cases b, simp add: times_float.simps pow2_add) -lemma Ifloat_0[simp]: "Ifloat 0 = 0" +lemma real_of_float_0[simp]: "real (0 :: float) = 0" by (auto simp add: zero_float_def float_zero) -lemma Ifloat_1[simp]: "Ifloat 1 = 1" +lemma real_of_float_1[simp]: "real (1 :: float) = 1" by (auto simp add: one_float_def) lemma zero_le_float: - "(0 <= Ifloat (Float a b)) = (0 <= a)" + "(0 <= real (Float a b)) = (0 <= a)" apply auto apply (auto simp add: zero_le_mult_iff) apply (insert zero_less_pow2[of b]) @@ -374,19 +380,19 @@ done lemma float_le_zero: - "(Ifloat (Float a b) <= 0) = (a <= 0)" + "(real (Float a b) <= 0) = (a <= 0)" apply auto apply (auto simp add: mult_le_0_iff) apply (insert zero_less_pow2[of b]) apply auto done -declare Ifloat.simps[simp del] +declare real_of_float_simp[simp del] -lemma Ifloat_pprt[simp]: "Ifloat (float_pprt a) = pprt (Ifloat a)" +lemma real_of_float_pprt[simp]: "real (float_pprt a) = pprt (real a)" by (cases a, auto simp add: float_pprt.simps zero_le_float float_le_zero float_zero) -lemma Ifloat_nprt[simp]: "Ifloat (float_nprt a) = nprt (Ifloat a)" +lemma real_of_float_nprt[simp]: "real (float_nprt a) = nprt (real a)" by (cases a, auto simp add: float_nprt.simps zero_le_float float_le_zero float_zero) instance float :: ab_semigroup_add @@ -440,10 +446,10 @@ lemma float_less_simp: "((x::float) < y) = (0 < y - x)" by (auto simp add: less_float_def) -lemma Ifloat_min: "Ifloat (min x y) = min (Ifloat x) (Ifloat y)" unfolding min_def le_float_def by auto -lemma Ifloat_max: "Ifloat (max a b) = max (Ifloat a) (Ifloat b)" unfolding max_def le_float_def by auto +lemma real_of_float_min: "real (min x y :: float) = min (real x) (real y)" unfolding min_def le_float_def by auto +lemma real_of_float_max: "real (max a b :: float) = max (real a) (real b)" unfolding max_def le_float_def by auto -lemma float_power: "Ifloat (x ^ n) = Ifloat x ^ n" +lemma float_power: "real (x ^ n :: float) = real x ^ n" by (induct n) simp_all lemma zero_le_pow2[simp]: "0 \ pow2 s" @@ -467,7 +473,7 @@ done lemma float_pos_m_pos: "0 < Float m e \ 0 < m" - unfolding less_float_def Ifloat.simps Ifloat_0 zero_less_mult_iff + unfolding less_float_def real_of_float_simp real_of_float_0 zero_less_mult_iff by auto lemma float_pos_less1_e_neg: assumes "0 < Float m e" and "Float m e < 1" shows "e < 0" @@ -480,7 +486,7 @@ assume "\ e < 0" hence "0 \ e" by auto hence "1 \ pow2 e" unfolding pow2_def by auto from mult_mono[OF `1 \ real m` this `0 \ real m`] - have "1 \ Float m e" by (simp add: le_float_def Ifloat.simps) + have "1 \ Float m e" by (simp add: le_float_def real_of_float_simp) thus False using `Float m e < 1` unfolding less_float_def le_float_def by auto qed qed @@ -490,7 +496,7 @@ have "e < 0" using float_pos_less1_e_neg assms by auto have "\x. (0::real) < 2^x" by auto have "real m < 2^(nat (-e))" using `Float m e < 1` - unfolding less_float_def Ifloat_neg_exp[OF `e < 0`] Ifloat_1 + unfolding less_float_def real_of_float_neg_exp[OF `e < 0`] real_of_float_1 real_mult_less_iff1[of _ _ 1, OF `0 < 2^(nat (-e))`, symmetric] real_mult_assoc by auto thus ?thesis unfolding real_of_int_less_iff[symmetric] by auto @@ -588,7 +594,7 @@ hence "0 < m" using float_pos_m_pos by auto hence "m \ 0" and "1 < (2::int)" by auto case False let ?S = "2^(nat (-e))" - have "1 \ real m * inverse ?S" using assms unfolding le_float_def Ifloat_nge0_exp[OF False] by auto + have "1 \ real m * inverse ?S" using assms unfolding le_float_def real_of_float_nge0_exp[OF False] by auto hence "1 * ?S \ real m * inverse ?S * ?S" by (rule mult_right_mono, auto) hence "?S \ real m" unfolding mult_assoc by auto hence "?S \ m" unfolding real_of_int_le_iff[symmetric] by auto @@ -598,12 +604,12 @@ thus ?thesis by auto qed -lemma normalized_float: assumes "m \ 0" shows "Ifloat (Float m (- (bitlen m - 1))) = real m / 2^nat (bitlen m - 1)" +lemma normalized_float: assumes "m \ 0" shows "real (Float m (- (bitlen m - 1))) = real m / 2^nat (bitlen m - 1)" proof (cases "- (bitlen m - 1) = 0") - case True show ?thesis unfolding Ifloat.simps pow2_def using True by auto + case True show ?thesis unfolding real_of_float_simp pow2_def using True by auto next case False hence P: "\ 0 \ - (bitlen m - 1)" using bitlen_ge1[OF `m \ 0`] by auto - show ?thesis unfolding Ifloat_nge0_exp[OF P] real_divide_def by auto + show ?thesis unfolding real_of_float_nge0_exp[OF P] real_divide_def by auto qed lemma bitlen_Pls: "bitlen (Int.Pls) = Int.Pls" by (subst Pls_def, subst Pls_def, simp) @@ -660,7 +666,7 @@ lemma lapprox_posrat: assumes x: "0 \ x" and y: "0 < y" - shows "Ifloat (lapprox_posrat prec x y) \ real x / real y" + shows "real (lapprox_posrat prec x y) \ real x / real y" proof - let ?l = "nat (int prec + bitlen y - bitlen x)" @@ -668,7 +674,7 @@ by (rule mult_right_mono, fact real_of_int_div4, simp) also have "\ \ (real x / real y) * 2^?l * inverse (2^?l)" by auto finally have "real (x * 2^?l div y) * inverse (2^?l) \ real x / real y" unfolding real_mult_assoc by auto - thus ?thesis unfolding lapprox_posrat_def Let_def normfloat Ifloat.simps + thus ?thesis unfolding lapprox_posrat_def Let_def normfloat real_of_float_simp unfolding pow2_minus pow2_int minus_minus . qed @@ -688,19 +694,19 @@ qed lemma lapprox_posrat_bottom: assumes "0 < y" - shows "real (x div y) \ Ifloat (lapprox_posrat n x y)" + shows "real (x div y) \ real (lapprox_posrat n x y)" proof - have pow: "\x. (0::int) < 2^x" by auto show ?thesis - unfolding lapprox_posrat_def Let_def Ifloat_add normfloat Ifloat.simps pow2_minus pow2_int + unfolding lapprox_posrat_def Let_def real_of_float_add normfloat real_of_float_simp pow2_minus pow2_int using real_of_int_div_mult[OF `0 < y` pow] by auto qed lemma lapprox_posrat_nonneg: assumes "0 \ x" and "0 < y" - shows "0 \ Ifloat (lapprox_posrat n x y)" + shows "0 \ real (lapprox_posrat n x y)" proof - show ?thesis - unfolding lapprox_posrat_def Let_def Ifloat_add normfloat Ifloat.simps pow2_minus pow2_int + unfolding lapprox_posrat_def Let_def real_of_float_add normfloat real_of_float_simp pow2_minus pow2_int using pos_imp_zdiv_nonneg_iff[OF `0 < y`] assms by (auto intro!: mult_nonneg_nonneg) qed @@ -716,7 +722,7 @@ lemma rapprox_posrat: assumes x: "0 \ x" and y: "0 < y" - shows "real x / real y \ Ifloat (rapprox_posrat prec x y)" + shows "real x / real y \ real (rapprox_posrat prec x y)" proof - let ?l = "nat (int prec + bitlen y - bitlen x)" let ?X = "x * 2^?l" show ?thesis @@ -727,7 +733,7 @@ also have "\ = real x / real y * (2^?l * inverse (2^?l))" by auto finally have "real (?X div y) * inverse (2^?l) = real x / real y" by auto thus ?thesis unfolding rapprox_posrat_def Let_def normfloat if_P[OF True] - unfolding Ifloat.simps pow2_minus pow2_int minus_minus by auto + unfolding real_of_float_simp pow2_minus pow2_int minus_minus by auto next case False have "0 \ real y" and "real y \ 0" using `0 < y` by auto @@ -742,13 +748,13 @@ also have "\ = real y * real (?X div y + 1) / real y / 2^?l" by auto also have "\ = real (?X div y + 1) * inverse (2^?l)" unfolding nonzero_mult_divide_cancel_left[OF `real y \ 0`] unfolding real_divide_def .. - finally show ?thesis unfolding rapprox_posrat_def Let_def normfloat Ifloat.simps if_not_P[OF False] + finally show ?thesis unfolding rapprox_posrat_def Let_def normfloat real_of_float_simp if_not_P[OF False] unfolding pow2_minus pow2_int minus_minus by auto qed qed lemma rapprox_posrat_le1: assumes "0 \ x" and "0 < y" and "x \ y" - shows "Ifloat (rapprox_posrat n x y) \ 1" + shows "real (rapprox_posrat n x y) \ 1" proof - let ?l = "nat (int n + bitlen y - bitlen x)" let ?X = "x * 2^?l" show ?thesis @@ -760,7 +766,7 @@ finally have "real (?X div y) * inverse (2^?l) = real x / real y" by auto also have "real x / real y \ 1" using `0 \ x` and `0 < y` and `x \ y` by auto finally show ?thesis unfolding rapprox_posrat_def Let_def normfloat if_P[OF True] - unfolding Ifloat.simps pow2_minus pow2_int minus_minus by auto + unfolding real_of_float_simp pow2_minus pow2_int minus_minus by auto next case False have "x \ y" @@ -781,7 +787,7 @@ unfolding real_of_int_le_iff[of _ "2^?l", symmetric] real_of_int_power[symmetric] real_number_of by (rule mult_right_mono, auto) hence "real (?X div y + 1) * inverse (2^?l) \ 1" by auto - thus ?thesis unfolding rapprox_posrat_def Let_def normfloat Ifloat.simps if_not_P[OF False] + thus ?thesis unfolding rapprox_posrat_def Let_def normfloat real_of_float_simp if_not_P[OF False] unfolding pow2_minus pow2_int minus_minus by auto qed qed @@ -798,9 +804,9 @@ qed lemma rapprox_posrat_less1: assumes "0 \ x" and "0 < y" and "2 * x < y" and "0 < n" - shows "Ifloat (rapprox_posrat n x y) < 1" + shows "real (rapprox_posrat n x y) < 1" proof (cases "x = 0") - case True thus ?thesis unfolding rapprox_posrat_def True Let_def normfloat Ifloat.simps by auto + case True thus ?thesis unfolding rapprox_posrat_def True Let_def normfloat real_of_float_simp by auto next case False hence "0 < x" using `0 \ x` by auto hence "x < y" using assms by auto @@ -814,7 +820,7 @@ also have "\ = real x / real y * (2^?l * inverse (2^?l))" by auto finally have "real (?X div y) * inverse (2^?l) = real x / real y" by auto also have "real x / real y < 1" using `0 \ x` and `0 < y` and `x < y` by auto - finally show ?thesis unfolding rapprox_posrat_def Let_def normfloat Ifloat.simps if_P[OF True] + finally show ?thesis unfolding rapprox_posrat_def Let_def normfloat real_of_float_simp if_P[OF True] unfolding pow2_minus pow2_int minus_minus by auto next case False @@ -855,7 +861,7 @@ unfolding real_of_int_less_iff[of _ "2^?l", symmetric] real_of_int_power[symmetric] real_number_of by (rule mult_strict_right_mono, auto) hence "real (?X div y + 1) * inverse (2^?l) < 1" by auto - thus ?thesis unfolding rapprox_posrat_def Let_def normfloat Ifloat.simps if_not_P[OF False] + thus ?thesis unfolding rapprox_posrat_def Let_def normfloat real_of_float_simp if_not_P[OF False] unfolding pow2_minus pow2_int minus_minus by auto qed qed @@ -890,7 +896,7 @@ else (if 0 < y then - (rapprox_posrat prec (-x) y) else lapprox_posrat prec (-x) (-y)))" by auto -lemma lapprox_rat: "Ifloat (lapprox_rat prec x y) \ real x / real y" +lemma lapprox_rat: "real (lapprox_rat prec x y) \ real x / real y" proof - have h[rule_format]: "! a b b'. b' \ b \ a \ b' \ a \ (b::real)" by auto show ?thesis @@ -917,7 +923,7 @@ qed lemma lapprox_rat_bottom: assumes "0 \ x" and "0 < y" - shows "real (x div y) \ Ifloat (lapprox_rat n x y)" + shows "real (x div y) \ real (lapprox_rat n x y)" unfolding lapprox_rat.simps(2)[OF assms] using lapprox_posrat_bottom[OF `0 int \ int \ float" @@ -935,7 +941,7 @@ (if 0 < y then - (lapprox_posrat prec (-x) y) else rapprox_posrat prec (-x) (-y)))" by auto -lemma rapprox_rat: "real x / real y \ Ifloat (rapprox_rat prec x y)" +lemma rapprox_rat: "real x / real y \ real (rapprox_rat prec x y)" proof - have h[rule_format]: "! a b b'. b' \ b \ a \ b' \ a \ (b::real)" by auto show ?thesis @@ -962,19 +968,19 @@ qed lemma rapprox_rat_le1: assumes "0 \ x" and "0 < y" and "x \ y" - shows "Ifloat (rapprox_rat n x y) \ 1" + shows "real (rapprox_rat n x y) \ 1" unfolding rapprox_rat.simps(2)[OF `0 \ x` `0 < y`] using rapprox_posrat_le1[OF assms] . lemma rapprox_rat_neg: assumes "x < 0" and "0 < y" - shows "Ifloat (rapprox_rat n x y) \ 0" + shows "real (rapprox_rat n x y) \ 0" unfolding rapprox_rat.simps(3)[OF assms] using lapprox_posrat_nonneg[of "-x" y n] assms by auto lemma rapprox_rat_nonneg_neg: assumes "0 \ x" and "y < 0" - shows "Ifloat (rapprox_rat n x y) \ 0" + shows "real (rapprox_rat n x y) \ 0" unfolding rapprox_rat.simps(5)[OF assms] using lapprox_posrat_nonneg[of x "-y" n] assms by auto lemma rapprox_rat_nonpos_pos: assumes "x \ 0" and "0 < y" - shows "Ifloat (rapprox_rat n x y) \ 0" + shows "real (rapprox_rat n x y) \ 0" proof (cases "x = 0") case True hence "0 \ x" by auto show ?thesis unfolding rapprox_rat.simps(2)[OF `0 \ x` `0 < y`] unfolding True rapprox_posrat_def Let_def by auto @@ -992,7 +998,7 @@ in f * l)" -lemma float_divl: "Ifloat (float_divl prec x y) \ Ifloat x / Ifloat y" +lemma float_divl: "real (float_divl prec x y) \ real x / real y" proof - from float_split[of x] obtain mx sx where x: "x = Float mx sx" by auto from float_split[of y] obtain my sy where y: "y = Float my sy" by auto @@ -1013,29 +1019,29 @@ apply (subst pow2_add[symmetric]) apply (simp add: field_simps) done - then have "Ifloat (lapprox_rat prec mx my) \ (real mx * pow2 sx / (real my * pow2 sy)) / (pow2 (sx - sy))" + then have "real (lapprox_rat prec mx my) \ (real mx * pow2 sx / (real my * pow2 sy)) / (pow2 (sx - sy))" by (rule order_trans[OF lapprox_rat]) - then have "Ifloat (lapprox_rat prec mx my) * pow2 (sx - sy) \ real mx * pow2 sx / (real my * pow2 sy)" + then have "real (lapprox_rat prec mx my) * pow2 (sx - sy) \ real mx * pow2 sx / (real my * pow2 sy)" apply (subst pos_le_divide_eq[symmetric]) apply simp_all done - then have "pow2 (sx - sy) * Ifloat (lapprox_rat prec mx my) \ real mx * pow2 sx / (real my * pow2 sy)" + then have "pow2 (sx - sy) * real (lapprox_rat prec mx my) \ real mx * pow2 sx / (real my * pow2 sy)" by (simp add: algebra_simps) then show ?thesis - by (simp add: x y Let_def Ifloat.simps) + by (simp add: x y Let_def real_of_float_simp) qed lemma float_divl_lower_bound: assumes "0 \ x" and "0 < y" shows "0 \ float_divl prec x y" proof (cases x, cases y) fix xm xe ym ye :: int assume x_eq: "x = Float xm xe" and y_eq: "y = Float ym ye" - have "0 \ xm" using `0 \ x`[unfolded x_eq le_float_def Ifloat.simps Ifloat_0 zero_le_mult_iff] by auto - have "0 < ym" using `0 < y`[unfolded y_eq less_float_def Ifloat.simps Ifloat_0 zero_less_mult_iff] by auto + have "0 \ xm" using `0 \ x`[unfolded x_eq le_float_def real_of_float_simp real_of_float_0 zero_le_mult_iff] by auto + have "0 < ym" using `0 < y`[unfolded y_eq less_float_def real_of_float_simp real_of_float_0 zero_less_mult_iff] by auto - have "\n. 0 \ Ifloat (Float 1 n)" unfolding Ifloat.simps using zero_le_pow2 by auto - moreover have "0 \ Ifloat (lapprox_rat prec xm ym)" by (rule order_trans[OF _ lapprox_rat_bottom[OF `0 \ xm` `0 < ym`]], auto simp add: `0 \ xm` pos_imp_zdiv_nonneg_iff[OF `0 < ym`]) + have "\n. 0 \ real (Float 1 n)" unfolding real_of_float_simp using zero_le_pow2 by auto + moreover have "0 \ real (lapprox_rat prec xm ym)" by (rule order_trans[OF _ lapprox_rat_bottom[OF `0 \ xm` `0 < ym`]], auto simp add: `0 \ xm` pos_imp_zdiv_nonneg_iff[OF `0 < ym`]) ultimately show "0 \ float_divl prec x y" - unfolding x_eq y_eq float_divl.simps Let_def le_float_def Ifloat_0 by (auto intro!: mult_nonneg_nonneg) + unfolding x_eq y_eq float_divl.simps Let_def le_float_def real_of_float_0 by (auto intro!: mult_nonneg_nonneg) qed lemma float_divl_pos_less1_bound: assumes "0 < x" and "x < 1" and "0 < prec" shows "1 \ float_divl prec 1 x" @@ -1076,7 +1082,7 @@ show ?thesis unfolding one_float_def Float float_divl.simps Let_def lapprox_rat.simps(2)[OF zero_le_one `0 < m`] lapprox_posrat_def `bitlen 1 = 1` - unfolding le_float_def Ifloat_mult normfloat Ifloat.simps pow2_minus pow2_int e_nat + unfolding le_float_def real_of_float_mult normfloat real_of_float_simp pow2_minus pow2_int e_nat using `1 \ 2^?e * ?d` by (auto simp add: pow2_def) qed @@ -1089,7 +1095,7 @@ in f * r)" -lemma float_divr: "Ifloat x / Ifloat y \ Ifloat (float_divr prec x y)" +lemma float_divr: "real x / real y \ real (float_divr prec x y)" proof - from float_split[of x] obtain mx sx where x: "x = Float mx sx" by auto from float_split[of y] obtain my sy where y: "y = Float my sy" by auto @@ -1109,20 +1115,20 @@ apply (subst pow2_add[symmetric]) apply (simp add: field_simps) done - then have "Ifloat (rapprox_rat prec mx my) \ (real mx * pow2 sx / (real my * pow2 sy)) / (pow2 (sx - sy))" + then have "real (rapprox_rat prec mx my) \ (real mx * pow2 sx / (real my * pow2 sy)) / (pow2 (sx - sy))" by (rule order_trans[OF _ rapprox_rat]) - then have "Ifloat (rapprox_rat prec mx my) * pow2 (sx - sy) \ real mx * pow2 sx / (real my * pow2 sy)" + then have "real (rapprox_rat prec mx my) * pow2 (sx - sy) \ real mx * pow2 sx / (real my * pow2 sy)" apply (subst pos_divide_le_eq[symmetric]) apply simp_all done then show ?thesis - by (simp add: x y Let_def algebra_simps Ifloat.simps) + by (simp add: x y Let_def algebra_simps real_of_float_simp) qed lemma float_divr_pos_less1_lower_bound: assumes "0 < x" and "x < 1" shows "1 \ float_divr prec 1 x" proof - - have "1 \ 1 / Ifloat x" using `0 < x` and `x < 1` unfolding less_float_def by auto - also have "\ \ Ifloat (float_divr prec 1 x)" using float_divr[where x=1 and y=x] by auto + have "1 \ 1 / real x" using `0 < x` and `x < 1` unfolding less_float_def by auto + also have "\ \ real (float_divr prec 1 x)" using float_divr[where x=1 and y=x] by auto finally show ?thesis unfolding le_float_def by auto qed @@ -1130,27 +1136,27 @@ proof (cases x, cases y) fix xm xe ym ye :: int assume x_eq: "x = Float xm xe" and y_eq: "y = Float ym ye" - have "xm \ 0" using `x \ 0`[unfolded x_eq le_float_def Ifloat.simps Ifloat_0 mult_le_0_iff] by auto - have "0 < ym" using `0 < y`[unfolded y_eq less_float_def Ifloat.simps Ifloat_0 zero_less_mult_iff] by auto + have "xm \ 0" using `x \ 0`[unfolded x_eq le_float_def real_of_float_simp real_of_float_0 mult_le_0_iff] by auto + have "0 < ym" using `0 < y`[unfolded y_eq less_float_def real_of_float_simp real_of_float_0 zero_less_mult_iff] by auto - have "\n. 0 \ Ifloat (Float 1 n)" unfolding Ifloat.simps using zero_le_pow2 by auto - moreover have "Ifloat (rapprox_rat prec xm ym) \ 0" using rapprox_rat_nonpos_pos[OF `xm \ 0` `0 < ym`] . + have "\n. 0 \ real (Float 1 n)" unfolding real_of_float_simp using zero_le_pow2 by auto + moreover have "real (rapprox_rat prec xm ym) \ 0" using rapprox_rat_nonpos_pos[OF `xm \ 0` `0 < ym`] . ultimately show "float_divr prec x y \ 0" - unfolding x_eq y_eq float_divr.simps Let_def le_float_def Ifloat_0 Ifloat_mult by (auto intro!: mult_nonneg_nonpos) + unfolding x_eq y_eq float_divr.simps Let_def le_float_def real_of_float_0 real_of_float_mult by (auto intro!: mult_nonneg_nonpos) qed lemma float_divr_nonneg_neg_upper_bound: assumes "0 \ x" and "y < 0" shows "float_divr prec x y \ 0" proof (cases x, cases y) fix xm xe ym ye :: int assume x_eq: "x = Float xm xe" and y_eq: "y = Float ym ye" - have "0 \ xm" using `0 \ x`[unfolded x_eq le_float_def Ifloat.simps Ifloat_0 zero_le_mult_iff] by auto - have "ym < 0" using `y < 0`[unfolded y_eq less_float_def Ifloat.simps Ifloat_0 mult_less_0_iff] by auto + have "0 \ xm" using `0 \ x`[unfolded x_eq le_float_def real_of_float_simp real_of_float_0 zero_le_mult_iff] by auto + have "ym < 0" using `y < 0`[unfolded y_eq less_float_def real_of_float_simp real_of_float_0 mult_less_0_iff] by auto hence "0 < - ym" by auto - have "\n. 0 \ Ifloat (Float 1 n)" unfolding Ifloat.simps using zero_le_pow2 by auto - moreover have "Ifloat (rapprox_rat prec xm ym) \ 0" using rapprox_rat_nonneg_neg[OF `0 \ xm` `ym < 0`] . + have "\n. 0 \ real (Float 1 n)" unfolding real_of_float_simp using zero_le_pow2 by auto + moreover have "real (rapprox_rat prec xm ym) \ 0" using rapprox_rat_nonneg_neg[OF `0 \ xm` `ym < 0`] . ultimately show "float_divr prec x y \ 0" - unfolding x_eq y_eq float_divr.simps Let_def le_float_def Ifloat_0 Ifloat_mult by (auto intro!: mult_nonneg_nonpos) + unfolding x_eq y_eq float_divr.simps Let_def le_float_def real_of_float_0 real_of_float_mult by (auto intro!: mult_nonneg_nonpos) qed primrec round_down :: "nat \ float \ float" where @@ -1163,7 +1169,7 @@ if 0 < d then let P = 2^nat d ; n = m div P ; r = m mod P in Float (n + (if r = 0 then 0 else 1)) (e + d) else Float m e)" -lemma round_up: "Ifloat x \ Ifloat (round_up prec x)" +lemma round_up: "real x \ real (round_up prec x)" proof (cases x) case (Float m e) let ?d = "bitlen m - int prec" @@ -1177,7 +1183,7 @@ proof (cases "m mod ?p = 0") case True have m: "m = m div ?p * ?p + 0" unfolding True[symmetric] using zdiv_zmod_equality2[where k=0, unfolded monoid_add_class.add_0_right, symmetric] . - have "Ifloat (Float m e) = Ifloat (Float (m div ?p) (e + ?d))" unfolding Ifloat.simps arg_cong[OF m, of real] + have "real (Float m e) = real (Float (m div ?p) (e + ?d))" unfolding real_of_float_simp arg_cong[OF m, of real] by (auto simp add: pow2_add `0 < ?d` pow_d) thus ?thesis unfolding Float round_up.simps Let_def if_P[OF `m mod ?p = 0`] if_P[OF `0 < ?d`] @@ -1186,7 +1192,7 @@ case False have "m = m div ?p * ?p + m mod ?p" unfolding zdiv_zmod_equality2[where k=0, unfolded monoid_add_class.add_0_right] .. also have "\ \ (m div ?p + 1) * ?p" unfolding left_distrib zmult_1 by (rule add_left_mono, rule pos_mod_bound[OF `0 < ?p`, THEN less_imp_le]) - finally have "Ifloat (Float m e) \ Ifloat (Float (m div ?p + 1) (e + ?d))" unfolding Ifloat.simps add_commute[of e] + finally have "real (Float m e) \ real (Float (m div ?p + 1) (e + ?d))" unfolding real_of_float_simp add_commute[of e] unfolding pow2_add mult_assoc[symmetric] real_of_int_le_iff[of m, symmetric] by (auto intro!: mult_mono simp add: pow2_add `0 < ?d` pow_d) thus ?thesis @@ -1199,7 +1205,7 @@ qed qed -lemma round_down: "Ifloat (round_down prec x) \ Ifloat x" +lemma round_down: "real (round_down prec x) \ real x" proof (cases x) case (Float m e) let ?d = "bitlen m - int prec" @@ -1211,7 +1217,7 @@ hence pow_d: "pow2 ?d = real ?p" unfolding pow2_int[symmetric] power_real_number_of[symmetric] by auto have "m div ?p * ?p \ m div ?p * ?p + m mod ?p" by (auto simp add: pos_mod_bound[OF `0 < ?p`, THEN less_imp_le]) also have "\ \ m" unfolding zdiv_zmod_equality2[where k=0, unfolded monoid_add_class.add_0_right] .. - finally have "Ifloat (Float (m div ?p) (e + ?d)) \ Ifloat (Float m e)" unfolding Ifloat.simps add_commute[of e] + finally have "real (Float (m div ?p) (e + ?d)) \ real (Float m e)" unfolding real_of_float_simp add_commute[of e] unfolding pow2_add mult_assoc[symmetric] real_of_int_le_iff[of _ m, symmetric] by (auto intro!: mult_mono simp add: pow2_add `0 < ?d` pow_d) thus ?thesis @@ -1235,12 +1241,12 @@ in if l > 0 then Float (m div (2^nat l) + 1) (e + l) else Float m e)" -lemma lb_mult: "Ifloat (lb_mult prec x y) \ Ifloat (x * y)" +lemma lb_mult: "real (lb_mult prec x y) \ real (x * y)" proof (cases "normfloat (x * y)") case (Float m e) hence "odd m \ (m = 0 \ e = 0)" by (rule normfloat_imp_odd_or_zero) let ?l = "bitlen m - int prec" - have "Ifloat (lb_mult prec x y) \ Ifloat (normfloat (x * y))" + have "real (lb_mult prec x y) \ real (normfloat (x * y))" proof (cases "?l > 0") case False thus ?thesis unfolding lb_mult_def Float Let_def float.cases by auto next @@ -1253,19 +1259,19 @@ also have "\ = real m" unfolding zmod_zdiv_equality[symmetric] .. finally show ?thesis by auto qed - thus ?thesis unfolding lb_mult_def Float Let_def float.cases if_P[OF True] Ifloat.simps pow2_add real_mult_commute real_mult_assoc by auto + thus ?thesis unfolding lb_mult_def Float Let_def float.cases if_P[OF True] real_of_float_simp pow2_add real_mult_commute real_mult_assoc by auto qed - also have "\ = Ifloat (x * y)" unfolding normfloat .. + also have "\ = real (x * y)" unfolding normfloat .. finally show ?thesis . qed -lemma ub_mult: "Ifloat (x * y) \ Ifloat (ub_mult prec x y)" +lemma ub_mult: "real (x * y) \ real (ub_mult prec x y)" proof (cases "normfloat (x * y)") case (Float m e) hence "odd m \ (m = 0 \ e = 0)" by (rule normfloat_imp_odd_or_zero) let ?l = "bitlen m - int prec" - have "Ifloat (x * y) = Ifloat (normfloat (x * y))" unfolding normfloat .. - also have "\ \ Ifloat (ub_mult prec x y)" + have "real (x * y) = real (normfloat (x * y))" unfolding normfloat .. + also have "\ \ real (ub_mult prec x y)" proof (cases "?l > 0") case False thus ?thesis unfolding ub_mult_def Float Let_def float.cases by auto next @@ -1280,7 +1286,7 @@ also have "\ \ (real (m div 2^(nat ?l)) + 1) * 2^(nat ?l)" unfolding real_add_mult_distrib using mod_uneq by auto finally show ?thesis unfolding pow2_int[symmetric] using True by auto qed - thus ?thesis unfolding ub_mult_def Float Let_def float.cases if_P[OF True] Ifloat.simps pow2_add real_mult_commute real_mult_assoc by auto + thus ?thesis unfolding ub_mult_def Float Let_def float.cases if_P[OF True] real_of_float_simp pow2_add real_mult_commute real_mult_assoc by auto qed finally show ?thesis . qed @@ -1293,28 +1299,28 @@ instance .. end -lemma Ifloat_abs: "Ifloat \x\ = \Ifloat x\" +lemma real_of_float_abs: "real \x :: float\ = \real x\" proof (cases x) case (Float m e) have "\real m\ * pow2 e = \real m * pow2 e\" unfolding abs_mult by auto - thus ?thesis unfolding Float abs_float_def float_abs.simps Ifloat.simps by auto + thus ?thesis unfolding Float abs_float_def float_abs.simps real_of_float_simp by auto qed primrec floor_fl :: "float \ float" where "floor_fl (Float m e) = (if 0 \ e then Float m e else Float (m div (2 ^ (nat (-e)))) 0)" -lemma floor_fl: "Ifloat (floor_fl x) \ Ifloat x" +lemma floor_fl: "real (floor_fl x) \ real x" proof (cases x) case (Float m e) show ?thesis proof (cases "0 \ e") case False hence me_eq: "pow2 (-e) = pow2 (int (nat (-e)))" by auto - have "Ifloat (Float (m div (2 ^ (nat (-e)))) 0) = real (m div 2 ^ (nat (-e)))" unfolding Ifloat.simps by auto + have "real (Float (m div (2 ^ (nat (-e)))) 0) = real (m div 2 ^ (nat (-e)))" unfolding real_of_float_simp by auto also have "\ \ real m / real ((2::int) ^ (nat (-e)))" using real_of_int_div4 . also have "\ = real m * inverse (2 ^ (nat (-e)))" unfolding power_real_number_of[symmetric] real_divide_def .. - also have "\ = Ifloat (Float m e)" unfolding Ifloat.simps me_eq pow2_int pow2_neg[of e] .. + also have "\ = real (Float m e)" unfolding real_of_float_simp me_eq pow2_int pow2_neg[of e] .. finally show ?thesis unfolding Float floor_fl.simps if_not_P[OF `\ 0 \ e`] . next case True thus ?thesis unfolding Float by auto @@ -1333,17 +1339,17 @@ "ceiling_fl (Float m e) = (if 0 \ e then Float m e else Float (m div (2 ^ (nat (-e))) + 1) 0)" -lemma ceiling_fl: "Ifloat x \ Ifloat (ceiling_fl x)" +lemma ceiling_fl: "real x \ real (ceiling_fl x)" proof (cases x) case (Float m e) show ?thesis proof (cases "0 \ e") case False hence me_eq: "pow2 (-e) = pow2 (int (nat (-e)))" by auto - have "Ifloat (Float m e) = real m * inverse (2 ^ (nat (-e)))" unfolding Ifloat.simps me_eq pow2_int pow2_neg[of e] .. + have "real (Float m e) = real m * inverse (2 ^ (nat (-e)))" unfolding real_of_float_simp me_eq pow2_int pow2_neg[of e] .. also have "\ = real m / real ((2::int) ^ (nat (-e)))" unfolding power_real_number_of[symmetric] real_divide_def .. also have "\ \ 1 + real (m div 2 ^ (nat (-e)))" using real_of_int_div3[unfolded diff_le_eq] . - also have "\ = Ifloat (Float (m div (2 ^ (nat (-e))) + 1) 0)" unfolding Ifloat.simps by auto + also have "\ = real (Float (m div (2 ^ (nat (-e))) + 1) 0)" unfolding real_of_float_simp by auto finally show ?thesis unfolding Float ceiling_fl.simps if_not_P[OF `\ 0 \ e`] . next case True thus ?thesis unfolding Float by auto @@ -1358,48 +1364,48 @@ definition ub_mod :: "nat \ float \ float \ float \ float" where "ub_mod prec x ub lb = x - floor_fl (float_divl prec x ub) * lb" -lemma lb_mod: fixes k :: int assumes "0 \ Ifloat x" and "real k * y \ Ifloat x" (is "?k * y \ ?x") - assumes "0 < Ifloat lb" "Ifloat lb \ y" (is "?lb \ y") "y \ Ifloat ub" (is "y \ ?ub") - shows "Ifloat (lb_mod prec x ub lb) \ ?x - ?k * y" +lemma lb_mod: fixes k :: int assumes "0 \ real x" and "real k * y \ real x" (is "?k * y \ ?x") + assumes "0 < real lb" "real lb \ y" (is "?lb \ y") "y \ real ub" (is "y \ ?ub") + shows "real (lb_mod prec x ub lb) \ ?x - ?k * y" proof - have "?lb \ ?ub" by (auto!) have "0 \ ?lb" and "?lb \ 0" by (auto!) have "?k * y \ ?x" using assms by auto also have "\ \ ?x / ?lb * ?ub" by (metis mult_left_mono[OF `?lb \ ?ub` `0 \ ?x`] divide_right_mono[OF _ `0 \ ?lb` ] times_divide_eq_left nonzero_mult_divide_cancel_right[OF `?lb \ 0`]) - also have "\ \ Ifloat (ceiling_fl (float_divr prec x lb)) * ?ub" by (metis mult_right_mono order_trans `0 \ ?lb` `?lb \ ?ub` float_divr ceiling_fl) - finally show ?thesis unfolding lb_mod_def Ifloat_sub Ifloat_mult by auto + also have "\ \ real (ceiling_fl (float_divr prec x lb)) * ?ub" by (metis mult_right_mono order_trans `0 \ ?lb` `?lb \ ?ub` float_divr ceiling_fl) + finally show ?thesis unfolding lb_mod_def real_of_float_sub real_of_float_mult by auto qed -lemma ub_mod: fixes k :: int assumes "0 \ Ifloat x" and "Ifloat x \ real k * y" (is "?x \ ?k * y") - assumes "0 < Ifloat lb" "Ifloat lb \ y" (is "?lb \ y") "y \ Ifloat ub" (is "y \ ?ub") - shows "?x - ?k * y \ Ifloat (ub_mod prec x ub lb)" +lemma ub_mod: fixes k :: int and x :: float assumes "0 \ real x" and "real x \ real k * y" (is "?x \ ?k * y") + assumes "0 < real lb" "real lb \ y" (is "?lb \ y") "y \ real ub" (is "y \ ?ub") + shows "?x - ?k * y \ real (ub_mod prec x ub lb)" proof - have "?lb \ ?ub" by (auto!) hence "0 \ ?lb" and "0 \ ?ub" and "?ub \ 0" by (auto!) - have "Ifloat (floor_fl (float_divl prec x ub)) * ?lb \ ?x / ?ub * ?lb" by (metis mult_right_mono order_trans `0 \ ?lb` `?lb \ ?ub` float_divl floor_fl) + have "real (floor_fl (float_divl prec x ub)) * ?lb \ ?x / ?ub * ?lb" by (metis mult_right_mono order_trans `0 \ ?lb` `?lb \ ?ub` float_divl floor_fl) also have "\ \ ?x" by (metis mult_left_mono[OF `?lb \ ?ub` `0 \ ?x`] divide_right_mono[OF _ `0 \ ?ub` ] times_divide_eq_left nonzero_mult_divide_cancel_right[OF `?ub \ 0`]) also have "\ \ ?k * y" using assms by auto - finally show ?thesis unfolding ub_mod_def Ifloat_sub Ifloat_mult by auto + finally show ?thesis unfolding ub_mod_def real_of_float_sub real_of_float_mult by auto qed lemma le_float_def': "f \ g = (case f - g of Float a b \ a \ 0)" proof - - have le_transfer: "(f \ g) = (Ifloat (f - g) \ 0)" by (auto simp add: le_float_def) + have le_transfer: "(f \ g) = (real (f - g) \ 0)" by (auto simp add: le_float_def) from float_split[of "f - g"] obtain a b where f_diff_g: "f - g = Float a b" by auto - with le_transfer have le_transfer': "f \ g = (Ifloat (Float a b) \ 0)" by simp + with le_transfer have le_transfer': "f \ g = (real (Float a b) \ 0)" by simp show ?thesis by (simp add: le_transfer' f_diff_g float_le_zero) qed lemma float_less_zero: - "(Ifloat (Float a b) < 0) = (a < 0)" - apply (auto simp add: mult_less_0_iff Ifloat.simps) + "(real (Float a b) < 0) = (a < 0)" + apply (auto simp add: mult_less_0_iff real_of_float_simp) done lemma less_float_def': "f < g = (case f - g of Float a b \ a < 0)" proof - - have less_transfer: "(f < g) = (Ifloat (f - g) < 0)" by (auto simp add: less_float_def) + have less_transfer: "(f < g) = (real (f - g) < 0)" by (auto simp add: less_float_def) from float_split[of "f - g"] obtain a b where f_diff_g: "f - g = Float a b" by auto - with less_transfer have less_transfer': "f < g = (Ifloat (Float a b) < 0)" by simp + with less_transfer have less_transfer': "f < g = (real (Float a b) < 0)" by simp show ?thesis by (simp add: less_transfer' f_diff_g float_less_zero) qed