# HG changeset patch # User haftmann # Date 1265634414 -3600 # Node ID 748f0bc3f7caa071f55cb148ea8d55e7fe8be168 # Parent b8c8d01cc20d4bd4eb497854f488dbf17ec19900 moved auxiliary lemmas to more appropriate places diff -r b8c8d01cc20d -r 748f0bc3f7ca src/HOL/SupInf.thy --- a/src/HOL/SupInf.thy Mon Feb 08 14:06:51 2010 +0100 +++ b/src/HOL/SupInf.thy Mon Feb 08 14:06:54 2010 +0100 @@ -6,38 +6,6 @@ imports RComplete begin -lemma minus_max_eq_min: - fixes x :: "'a::{lattice_ab_group_add, linorder}" - shows "- (max x y) = min (-x) (-y)" -by (metis le_imp_neg_le linorder_linear min_max.inf_absorb2 min_max.le_iff_inf min_max.le_iff_sup min_max.sup_absorb1) - -lemma minus_min_eq_max: - fixes x :: "'a::{lattice_ab_group_add, linorder}" - shows "- (min x y) = max (-x) (-y)" -by (metis minus_max_eq_min minus_minus) - -lemma minus_Max_eq_Min [simp]: - fixes S :: "'a::{lattice_ab_group_add, linorder} set" - shows "finite S \ S \ {} \ - (Max S) = Min (uminus ` S)" -proof (induct S rule: finite_ne_induct) - case (singleton x) - thus ?case by simp -next - case (insert x S) - thus ?case by (simp add: minus_max_eq_min) -qed - -lemma minus_Min_eq_Max [simp]: - fixes S :: "'a::{lattice_ab_group_add, linorder} set" - shows "finite S \ S \ {} \ - (Min S) = Max (uminus ` S)" -proof (induct S rule: finite_ne_induct) - case (singleton x) - thus ?case by simp -next - case (insert x S) - thus ?case by (simp add: minus_min_eq_max) -qed - instantiation real :: Sup begin definition