# HG changeset patch # User huffman # Date 1321506107 -3600 # Node ID 74b17a0881b3852243a47f129f98931be71d8e63 # Parent 528bad46f29e4a1b9a72b97508a7963a57de79a9 Int.thy: remove duplicate lemmas double_less_0_iff and odd_less_0, use {even,odd}_less_0_iff instead diff -r 528bad46f29e -r 74b17a0881b3 src/HOL/Int.thy --- a/src/HOL/Int.thy Thu Nov 17 05:27:45 2011 +0100 +++ b/src/HOL/Int.thy Thu Nov 17 06:01:47 2011 +0100 @@ -1173,32 +1173,6 @@ (* iszero_number_of_Pls would never normally be used because its lhs simplifies to "iszero 0" *) -subsubsection {* The Less-Than Relation *} - -lemma double_less_0_iff: - "(a + a < 0) = (a < (0::'a::linordered_idom))" -proof - - have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib) - also have "... = (a < 0)" - by (simp add: mult_less_0_iff zero_less_two - order_less_not_sym [OF zero_less_two]) - finally show ?thesis . -qed - -lemma odd_less_0: - "(1 + z + z < 0) = (z < (0::int))" -proof (cases z) - case (nonneg n) - then show ?thesis - by (simp add: linorder_not_less add_assoc add_increasing - le_imp_0_less [THEN order_less_imp_le]) -next - case (neg n) - then show ?thesis - by (simp del: of_nat_Suc of_nat_add of_nat_1 - add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric]) -qed - text {* Less-Than or Equals *} text {* Reduces @{term "a\b"} to @{term "~ (b B <= O(f) ==> A \ B <= O(f)"