# HG changeset patch # User paulson # Date 1635936905 0 # Node ID 74f044c3e5908a5299287f67593f6f073ad0b993 # Parent 0b3dc8c5fb326a5ffe8569aa2468e00ab9e5c0a4# Parent 2d9d02beaf96b2be0d1c96f1c77343cf28f8c347 merged diff -r 0b3dc8c5fb32 -r 74f044c3e590 src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Wed Nov 03 11:51:42 2021 +0100 +++ b/src/HOL/Topological_Spaces.thy Wed Nov 03 10:55:05 2021 +0000 @@ -567,12 +567,7 @@ lemma (in topological_space) at_eq_bot_iff: "at a = bot \ open {a}" unfolding trivial_limit_def eventually_at_topological - apply safe - apply (case_tac "S = {a}") - apply simp - apply fast - apply fast - done + by (metis UNIV_I empty_iff is_singletonE is_singletonI' singleton_iff) lemma (in perfect_space) at_neq_bot [simp]: "at a \ bot" by (simp add: at_eq_bot_iff not_open_singleton) @@ -1574,15 +1569,11 @@ by (simp add: antimono_iff_le_Suc atMost_Suc) show "x \ (\i\n. A i)" "\n. open (\i\n. A i)" for n using * by auto - show "nhds x = (INF n. principal (\i\n. A i))" - using * + with * show "nhds x = (INF n. principal (\i\n. A i))" unfolding nhds_def - apply - - apply (rule INF_eq) - apply simp_all + apply (intro INF_eq) apply fastforce - apply (intro exI [of _ "\i\n. A i" for n] conjI open_INT) - apply auto + apply blast done qed qed @@ -2487,24 +2478,12 @@ and Q: "\I'. finite I' \ I' \ I \ (s \ (\i\I'. f i) \ {})" shows "s \ (\i\I. f i) \ {}" proof - - note \compact s\ - moreover from P have "\i \ f ` I. closed i" + from P have "\i \ f ` I. closed i" by blast moreover have "\A. finite A \ A \ f ` I \ (s \ (\A) \ {})" - apply rule - apply rule - apply (erule conjE) - proof - - fix A :: "'a set set" - assume "finite A" and "A \ f ` I" - then obtain B where "B \ I" and "finite B" and "A = f ` B" - using finite_subset_image [of A f I] by blast - with Q [of B] show "s \ \A \ {}" - by simp - qed - ultimately have "s \ (\(f ` I)) \ {}" - by (metis compact_imp_fip) - then show ?thesis by simp + by (metis Q finite_subset_image) + ultimately show "s \ (\(f ` I)) \ {}" + by (metis \compact s\ compact_imp_fip) qed end