# HG changeset patch # User blanchet # Date 1390382020 -3600 # Node ID 761e40ce91bc2bb55ec991df548afe94b4ab79a5 # Parent 57c875e488bd60d7c6a78e25d75fdb6f9947d1a9 whitespace tuning diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Cardinal_Arithmetic.thy --- a/src/HOL/Cardinals/Cardinal_Arithmetic.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Cardinal_Arithmetic.thy Wed Jan 22 10:13:40 2014 +0100 @@ -5,7 +5,7 @@ Cardinal arithmetic. *) -header {* Cardinal Arithmetic *} +header {* Cardinal Arithmetic *} theory Cardinal_Arithmetic imports BNF_Cardinal_Arithmetic Cardinal_Order_Relation @@ -201,7 +201,6 @@ "\Cinfinite r; |I| \o r; \i \ I. |A i| \o r\ \ |SIGMA i : I. A i| \o r" unfolding cinfinite_def by (blast intro: card_of_Sigma_ordLeq_infinite_Field) - lemma card_order_cexp: assumes "card_order r1" "card_order r2" shows "card_order (r1 ^c r2)" diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Cardinal_Order_Relation.thy --- a/src/HOL/Cardinals/Cardinal_Order_Relation.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Cardinal_Order_Relation.thy Wed Jan 22 10:13:40 2014 +0100 @@ -376,13 +376,11 @@ ultimately show ?thesis using ordLeq_transitive by blast qed - lemma ordLeq_Sigma_mono1: assumes "\i \ I. p i \o r i" shows "|SIGMA i : I. Field(p i)| \o |SIGMA i : I. Field(r i)|" using assms by (auto simp add: card_of_Sigma_mono1) - lemma ordLeq_Sigma_mono: assumes "inj_on f I" and "f ` I \ J" and "\j \ J. p j \o r j" @@ -390,13 +388,11 @@ using assms card_of_mono2 card_of_Sigma_mono [of f I J "\ i. Field(p i)" "\ j. Field(r j)"] by metis - lemma card_of_Sigma_cong1: assumes "\i \ I. |A i| =o |B i|" shows "|SIGMA i : I. A i| =o |SIGMA i : I. B i|" using assms by (auto simp add: card_of_Sigma_mono1 ordIso_iff_ordLeq) - lemma card_of_Sigma_cong2: assumes "bij_betw f (I::'i set) (J::'j set)" shows "|SIGMA i : I. (A::'j \ 'a set) (f i)| =o |SIGMA j : J. A j|" @@ -884,7 +880,7 @@ using lists_UNIV by auto -subsection {* Cardinals versus the set-of-finite-sets operator *} +subsection {* Cardinals versus the set-of-finite-sets operator *} definition Fpow :: "'a set \ 'a set set" where "Fpow A \ {X. X \ A \ finite X}" @@ -997,7 +993,7 @@ using assms card_of_Fpow_infinite card_of_ordIso by blast -subsection {* The cardinal $\omega$ and the finite cardinals *} +subsection {* The cardinal $\omega$ and the finite cardinals *} subsubsection {* First as well-orders *} @@ -1119,13 +1115,11 @@ "natLeq =o |A| \ \finite A" using ordIso_imp_ordLeq infinite_iff_natLeq_ordLeq by blast - lemma ordIso_natLeq_on_imp_finite: "|A| =o natLeq_on n \ finite A" unfolding ordIso_def iso_def[abs_def] by (auto simp: Field_natLeq_on bij_betw_finite) - lemma natLeq_on_Card_order: "Card_order (natLeq_on n)" proof(unfold card_order_on_def, auto simp add: natLeq_on_Well_order, simp add: Field_natLeq_on) @@ -1135,20 +1129,17 @@ finite_well_order_on_ordIso ordIso_iff_ordLeq by blast qed - corollary card_of_Field_natLeq_on: "|Field (natLeq_on n)| =o natLeq_on n" using Field_natLeq_on natLeq_on_Card_order Card_order_iff_ordIso_card_of[of "natLeq_on n"] ordIso_symmetric[of "natLeq_on n"] by blast - corollary card_of_less: "|{0 ..< n}| =o natLeq_on n" using Field_natLeq_on card_of_Field_natLeq_on unfolding atLeast_0 atLeastLessThan_def lessThan_def Int_UNIV_left by auto - lemma natLeq_on_ordLeq_less_eq: "((natLeq_on m) \o (natLeq_on n)) = (m \ n)" proof @@ -1167,7 +1158,6 @@ using card_of_less ordIso_ordLeq_trans ordLeq_ordIso_trans ordIso_symmetric by blast qed - lemma natLeq_on_ordLeq_less: "((natLeq_on m) finite (Func A B)" using ordLeq_Func[OF B] by (metis A card_of_ordLeq_finite) -section {* Infinite cardinals are limit ordinals *} + +subsection {* Infinite cardinals are limit ordinals *} lemma card_order_infinite_isLimOrd: assumes c: "Card_order r" and i: "\finite (Field r)" @@ -1684,7 +1674,8 @@ ultimately show False unfolding card_of_ordLess[symmetric] by auto qed -section {* Regular vs. Stable Cardinals *} + +subsection {* Regular vs. stable cardinals *} definition stable :: "'a rel \ bool" where diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Cardinals.thy --- a/src/HOL/Cardinals/Cardinals.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Cardinals.thy Wed Jan 22 10:13:40 2014 +0100 @@ -6,7 +6,7 @@ Theory of ordinals and cardinals. *) -header {* Theory of Ordinals and Cardinals *} +header {* Theory of Ordinals and Cardinals *} theory Cardinals imports Ordinal_Arithmetic Cardinal_Arithmetic Wellorder_Extension diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Constructions_on_Wellorders.thy --- a/src/HOL/Cardinals/Constructions_on_Wellorders.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Constructions_on_Wellorders.thy Wed Jan 22 10:13:40 2014 +0100 @@ -9,7 +9,8 @@ theory Constructions_on_Wellorders imports - BNF_Constructions_on_Wellorders Wellorder_Embedding Order_Union "../Library/Cardinal_Notations" + BNF_Constructions_on_Wellorders Wellorder_Embedding Order_Union + "../Library/Cardinal_Notations" begin declare @@ -21,7 +22,8 @@ lemma Func_emp2[simp]: "A \ {} \ Func A {} = {}" by auto -subsection {* Restriction to a set *} + +subsection {* Restriction to a set *} lemma Restr_incr2: "r <= r' \ Restr r A <= Restr r' A" @@ -53,7 +55,7 @@ by blast -subsection {* Order filters versus restrictions and embeddings *} +subsection {* Order filters versus restrictions and embeddings *} lemma ofilter_Restr: assumes WELL: "Well_order r" and @@ -167,7 +169,7 @@ by (auto simp add: ofilter_ordLeq wo_rel.under_ofilter wo_rel_def) -subsection {* Copy via direct images *} +subsection {* Copy via direct images *} lemma Id_dir_image: "dir_image Id f \ Id" unfolding dir_image_def by auto @@ -273,7 +275,7 @@ qed -subsection {* The maxim among a finite set of ordinals *} +subsection {* The maxim among a finite set of ordinals *} text {* The correct phrasing would be ``a maxim of ...", as @{text "\o"} is only a preorder. *} @@ -435,8 +437,7 @@ qed - -section {* Limit and Succesor Ordinals *} +subsection {* Limit and succesor ordinals *} lemma embed_underS2: assumes r: "Well_order r" and s: "Well_order s" and g: "embed r s g" and a: "a \ Field r" @@ -547,7 +548,7 @@ by (elim cases_Total3 disjE) (auto elim: cases_Total3 intro!: assms simp: Field_def) qed -subsection {* Successor and limit elements of an ordinal *} +subsubsection {* Successor and limit elements of an ordinal *} definition "succ i \ suc {i}" @@ -723,7 +724,7 @@ else L f i" -subsection {* Well-order recursion with (zero), succesor, and limit *} +subsubsection {* Well-order recursion with (zero), succesor, and limit *} definition worecSL :: "('a \ 'b \ 'b) \ (('a \ 'b) \ 'a \ 'b) \ 'a \ 'b" where "worecSL S L \ worec (mergeSL S L)" @@ -818,7 +819,7 @@ qed -subsection {* Well-order succ-lim induction: *} +subsubsection {* Well-order succ-lim induction *} lemma ord_cases: obtains j where "i = succ j" and "aboveS j \ {}" | "isLim i" @@ -886,7 +887,6 @@ by (metis (lifting, full_types) a mem_Collect_eq succ_diff succ_in) qed - end (* context wo_rel *) abbreviation "zero \ wo_rel.zero" @@ -900,7 +900,8 @@ abbreviation "worecSL \ wo_rel.worecSL" abbreviation "worecZSL \ wo_rel.worecZSL" -section {* Projections of Wellorders *} + +subsection {* Projections of wellorders *} definition "oproj r s f \ Field s \ f ` (Field r) \ compat r s f" diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Fun_More.thy --- a/src/HOL/Cardinals/Fun_More.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Fun_More.thy Wed Jan 22 10:13:40 2014 +0100 @@ -11,7 +11,7 @@ imports Main begin -subsection {* Purely functional properties *} +subsection {* Purely functional properties *} (* unused *) (*1*)lemma notIn_Un_bij_betw2: @@ -130,7 +130,6 @@ subsection {* Properties involving Hilbert choice *} - (*1*)lemma bij_betw_inv_into_LEFT: assumes BIJ: "bij_betw f A A'" and SUB: "B \ A" shows "(inv_into A f)`(f ` B) = B" @@ -169,12 +168,10 @@ card_atLeastLessThan[of m] card_atLeastLessThan[of n] bij_betw_iff_card[of "{0 ..< m}" "{0 ..< n}"] by auto - (*2*)lemma atLeastLessThan_less_eq: "({0.. {0.. n)" unfolding ivl_subset by arith - (*2*)lemma atLeastLessThan_less_eq2: assumes "inj_on f {0..<(m::nat)} \ f ` {0.. {0.. n" diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Order_Relation_More.thy --- a/src/HOL/Cardinals/Order_Relation_More.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Order_Relation_More.thy Wed Jan 22 10:13:40 2014 +0100 @@ -11,7 +11,7 @@ imports Main begin -subsection {* The upper and lower bounds operators *} +subsection {* The upper and lower bounds operators *} lemma aboveS_subset_above: "aboveS r a \ above r a" by(auto simp add: aboveS_def above_def) @@ -572,7 +572,7 @@ qed -subsection {* Properties depending on more than one relation *} +subsection {* Properties depending on more than one relation *} lemma under_incr2: "r \ r' \ under r a \ under r' a" diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Ordinal_Arithmetic.thy --- a/src/HOL/Cardinals/Ordinal_Arithmetic.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Ordinal_Arithmetic.thy Wed Jan 22 10:13:40 2014 +0100 @@ -589,7 +589,6 @@ qed qed - definition oexp where "oexp = {(f, g) . f \ FINFUNC \ g \ FINFUNC \ ((let m = s.max_fun_diff f g in (f m, g m) \ r) \ f = g)}" diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Wellorder_Embedding.thy --- a/src/HOL/Cardinals/Wellorder_Embedding.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Wellorder_Embedding.thy Wed Jan 22 10:13:40 2014 +0100 @@ -103,7 +103,7 @@ using one_set_greater[of UNIV UNIV] by auto -subsection {* Uniqueness of embeddings *} +subsection {* Uniqueness of embeddings *} lemma comp_embedS: assumes WELL: "Well_order r" and WELL': "Well_order r'" and WELL'': "Well_order r''" diff -r 57c875e488bd -r 761e40ce91bc src/HOL/Cardinals/Wellorder_Relation.thy --- a/src/HOL/Cardinals/Wellorder_Relation.thy Wed Jan 22 09:45:30 2014 +0100 +++ b/src/HOL/Cardinals/Wellorder_Relation.thy Wed Jan 22 10:13:40 2014 +0100 @@ -29,7 +29,7 @@ using TOTALS by auto -subsection {* Well-founded induction and recursion adapted to non-strict well-order relations *} +subsection {* Well-founded induction and recursion adapted to non-strict well-order relations *} lemma worec_unique_fixpoint: assumes ADM: "adm_wo H" and fp: "f = H f" @@ -60,7 +60,7 @@ qed -subsubsection{* Properties of minim *} +subsubsection {* Properties of minim *} lemma minim_Under: "\B \ Field r; B \ {}\ \ minim B \ Under B" @@ -166,7 +166,7 @@ qed -subsubsection{* Properties of supr *} +subsubsection {* Properties of supr *} lemma supr_Above: assumes SUB: "B \ Field r" and ABOVE: "Above B \ {}" @@ -287,7 +287,7 @@ qed -subsubsection{* Properties of successor *} +subsubsection {* Properties of successor *} lemma suc_least: "\B \ Field r; a \ Field r; (\ b. b \ B \ a \ b \ (b,a) \ r)\ @@ -454,7 +454,7 @@ by(unfold Union_eq, auto) -subsubsection{* Other properties *} +subsubsection {* Other properties *} lemma Trans_Under_regressive: assumes NE: "A \ {}" and SUB: "A \ Field r"