# HG changeset patch # User huffman # Date 1315066339 25200 # Node ID 761f427ef1ab3fa8b162508508a08167965c543f # Parent a89d0ad8ed203cb74174037a760080123d5207bd simplify proof diff -r a89d0ad8ed20 -r 761f427ef1ab src/HOL/Fields.thy --- a/src/HOL/Fields.thy Sat Sep 03 08:01:49 2011 -0700 +++ b/src/HOL/Fields.thy Sat Sep 03 09:12:19 2011 -0700 @@ -207,18 +207,6 @@ thus ?thesis by (simp add: nonzero_inverse_minus_eq) qed -lemma inverse_eq_imp_eq: - "inverse a = inverse b \ a = b" -apply (cases "a=0 | b=0") - apply (force dest!: inverse_zero_imp_zero - simp add: eq_commute [of "0::'a"]) -apply (force dest!: nonzero_inverse_eq_imp_eq) -done - -lemma inverse_eq_iff_eq [simp]: - "inverse a = inverse b \ a = b" - by (force dest!: inverse_eq_imp_eq) - lemma inverse_inverse_eq [simp]: "inverse (inverse a) = a" proof cases @@ -228,6 +216,14 @@ thus ?thesis by (simp add: nonzero_inverse_inverse_eq) qed +lemma inverse_eq_imp_eq: + "inverse a = inverse b \ a = b" + by (drule arg_cong [where f="inverse"], simp) + +lemma inverse_eq_iff_eq [simp]: + "inverse a = inverse b \ a = b" + by (force dest!: inverse_eq_imp_eq) + end subsection {* Fields *}