# HG changeset patch # User Manuel Eberl # Date 1575292948 -3600 # Node ID 777d673fa672f57ce2b852d32a22886f59c78ac6 # Parent a8ccea88b7250a9b4624a8ea9e892448f1ce3c02 Removed duplicate theorems from HOL-Analysis diff -r a8ccea88b725 -r 777d673fa672 src/HOL/Analysis/Retracts.thy --- a/src/HOL/Analysis/Retracts.thy Mon Dec 02 14:22:03 2019 +0100 +++ b/src/HOL/Analysis/Retracts.thy Mon Dec 02 14:22:28 2019 +0100 @@ -2592,50 +2592,4 @@ using assms path_connected_complement_homeomorphic_interval path_connected_imp_connected by blast -lemma path_connected_arc_complement: - fixes \ :: "real \ 'a::euclidean_space" - assumes "arc \" "2 \ DIM('a)" - shows "path_connected(- path_image \)" -proof - - have "path_image \ homeomorphic {0..1::real}" - by (simp add: assms homeomorphic_arc_image_interval) - then - show ?thesis - apply (rule path_connected_complement_homeomorphic_convex_compact) - apply (auto simp: assms) - done -qed - -lemma connected_arc_complement: - fixes \ :: "real \ 'a::euclidean_space" - assumes "arc \" "2 \ DIM('a)" - shows "connected(- path_image \)" - by (simp add: assms path_connected_arc_complement path_connected_imp_connected) - -lemma inside_arc_empty: - fixes \ :: "real \ 'a::euclidean_space" - assumes "arc \" - shows "inside(path_image \) = {}" -proof (cases "DIM('a) = 1") - case True - then show ?thesis - using assms connected_arc_image connected_convex_1_gen inside_convex by blast -next - case False - show ?thesis - proof (rule inside_bounded_complement_connected_empty) - show "connected (- path_image \)" - apply (rule connected_arc_complement [OF assms]) - using False - by (metis DIM_ge_Suc0 One_nat_def Suc_1 not_less_eq_eq order_class.order.antisym) - show "bounded (path_image \)" - by (simp add: assms bounded_arc_image) - qed -qed - -lemma inside_simple_curve_imp_closed: - fixes \ :: "real \ 'a::euclidean_space" - shows "\simple_path \; x \ inside(path_image \)\ \ pathfinish \ = pathstart \" - using arc_simple_path inside_arc_empty by blast - end diff -r a8ccea88b725 -r 777d673fa672 src/HOL/Analysis/Smooth_Paths.thy --- a/src/HOL/Analysis/Smooth_Paths.thy Mon Dec 02 14:22:03 2019 +0100 +++ b/src/HOL/Analysis/Smooth_Paths.thy Mon Dec 02 14:22:28 2019 +0100 @@ -9,36 +9,6 @@ subsection\<^marker>\tag unimportant\ \Homeomorphisms of arc images\ -lemma homeomorphism_arc: - fixes g :: "real \ 'a::t2_space" - assumes "arc g" - obtains h where "homeomorphism {0..1} (path_image g) g h" -using assms by (force simp: arc_def homeomorphism_compact path_def path_image_def) - -lemma homeomorphic_arc_image_interval: - fixes g :: "real \ 'a::t2_space" and a::real - assumes "arc g" "a < b" - shows "(path_image g) homeomorphic {a..b}" -proof - - have "(path_image g) homeomorphic {0..1::real}" - by (meson assms(1) homeomorphic_def homeomorphic_sym homeomorphism_arc) - also have "\ homeomorphic {a..b}" - using assms by (force intro: homeomorphic_closed_intervals_real) - finally show ?thesis . -qed - -lemma homeomorphic_arc_images: - fixes g :: "real \ 'a::t2_space" and h :: "real \ 'b::t2_space" - assumes "arc g" "arc h" - shows "(path_image g) homeomorphic (path_image h)" -proof - - have "(path_image g) homeomorphic {0..1::real}" - by (meson assms homeomorphic_def homeomorphic_sym homeomorphism_arc) - also have "\ homeomorphic (path_image h)" - by (meson assms homeomorphic_def homeomorphism_arc) - finally show ?thesis . -qed - lemma path_connected_arc_complement: fixes \ :: "real \ 'a::euclidean_space" assumes "arc \" "2 \ DIM('a)" @@ -487,4 +457,4 @@ lemma valid_path_rectpath [simp, intro]: "valid_path (rectpath a b)" by (simp add: Let_def rectpath_def) -end \ No newline at end of file +end