# HG changeset patch # User paulson # Date 1020853302 -7200 # Node ID 777db68dee1e9f230930cb32a84b1a8135ed9845 # Parent c63612ffb186aa61e4c07c165c021a0051c894fa isar conversion diff -r c63612ffb186 -r 777db68dee1e src/HOL/ex/Puzzle.ML --- a/src/HOL/ex/Puzzle.ML Wed May 08 12:15:30 2002 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,44 +0,0 @@ -(* Title: HOL/ex/puzzle.ML - ID: $Id$ - Author: Tobias Nipkow - Copyright 1993 TU Muenchen - -A question from "Bundeswettbewerb Mathematik" - -Proof due to Herbert Ehler -*) - -AddSIs [Puzzle.f_ax]; - -Goal "! n. k=f(n) --> n <= f(n)"; -by (induct_thm_tac nat_less_induct "k" 1); -by (rtac allI 1); -by (rename_tac "i" 1); -by (case_tac "i" 1); - by (Asm_simp_tac 1); -by (blast_tac (claset() addSIs [Suc_leI] addIs [le_less_trans]) 1); -val lemma = result() RS spec RS mp; - -Goal "n <= f(n)"; -by (fast_tac (claset() addIs [lemma]) 1); -qed "lemma1"; - -Goal "f(n) < f(Suc(n))"; -by (blast_tac (claset() addIs [le_less_trans, lemma1]) 1); -qed "lemma2"; - -Goal "m <= n --> f(m) <= f(n)"; -by (induct_tac "n" 1); - by (Simp_tac 1); -by (rtac impI 1); -by (etac le_SucE 1); - by (cut_inst_tac [("n","n")]lemma2 1); - by (arith_tac 1); -by (Asm_simp_tac 1); -qed_spec_mp "f_mono"; - -Goal "f(n) = n"; -by (rtac order_antisym 1); -by (rtac lemma1 2); -by (fast_tac (claset() addIs [leI] addDs [leD,f_mono,Suc_leI]) 1); -qed "f_id"; diff -r c63612ffb186 -r 777db68dee1e src/HOL/ex/Tarski.ML --- a/src/HOL/ex/Tarski.ML Wed May 08 12:15:30 2002 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,877 +0,0 @@ -(* Title: HOL/ex/Tarski - ID: $Id$ - Author: Florian Kammueller, Cambridge University Computer Laboratory - Copyright 1999 University of Cambridge - -Minimal version of lattice theory plus the full theorem of Tarski: - The fixedpoints of a complete lattice themselves form a complete lattice. - -Illustrates first-class theories, using the Sigma representation of structures -*) - - -(* abbreviate commonly used tactic application *) - -fun afs thms = (asm_full_simp_tac (simpset() addsimps thms)); - -(* Partial Order *) -Open_locale "PO"; - -val simp_PO = simplify (simpset() addsimps [PartialOrder_def]) (thm "cl_po"); -Addsimps [simp_PO, thm "cl_po"]; - -val PO_simp = [thm "A_def", thm "r_def"]; - -Goal "refl A r"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "PartialOrderE1"; - -Goal "antisym r"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "PartialOrderE2"; - -Goal "trans r"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "PartialOrderE3"; - -Goal "[| refl A r; x \\ A|] ==> (x, x) \\ r"; -by (afs [refl_def] 1); -qed "reflE"; -(* Interesting: A and r don't get bound because the proof doesn't use - locale rules -val reflE = "[| refl ?A ?r; ?x \\ ?A |] ==> (?x, ?x) \\ ?r" *) - -Goal "[| antisym r; (a, b) \\ r; (b, a) \\ r |] ==> a = b"; -by (afs [antisym_def] 1); -qed "antisymE"; - -Goalw [trans_def] "[| trans r; (a, b) \\ r; (b, c) \\ r|] ==> (a,c) \\ r"; -by (Fast_tac 1); -qed "transE"; - -Goal "[| monotone f A r; x \\ A; y \\ A; (x, y) \\ r |] ==> (f x, f y) \\ r"; -by (afs [monotone_def] 1); -qed "monotoneE"; - -Goal "S <= A ==> (| pset = S, order = induced S r |) \\ PartialOrder"; -by (simp_tac (simpset() addsimps [PartialOrder_def]) 1); -by Auto_tac; -(* refl *) -by (afs [refl_def,induced_def] 1); -by (blast_tac (claset() addIs [PartialOrderE1 RS reflE]) 1); -(* antisym *) -by (afs [antisym_def,induced_def] 1); -by (blast_tac (claset() addIs [PartialOrderE2 RS antisymE]) 1); -(* trans *) -by (afs [trans_def,induced_def] 1); -by (blast_tac (claset() addIs [PartialOrderE3 RS transE]) 1); -qed "po_subset_po"; - -Goal "[| (x, y) \\ induced S r; S <= A |] ==> (x, y) \\ r"; -by (afs [induced_def] 1); -qed "indE"; - -Goal "[| (x, y) \\ r; x \\ S; y \\ S |] ==> (x, y) \\ induced S r"; -by (afs [induced_def] 1); -qed "indI"; - -(* with locales *) -Open_locale "CL"; - -Delsimps [simp_PO, thm "cl_po"]; - -val simp_CL = simplify (simpset() addsimps [CompleteLattice_def]) - (thm "cl_co"); -Addsimps [simp_CL, thm "cl_co"]; - -Goal "(EX L. islub S cl L) = islub S cl (lub S cl)"; -by (simp_tac (simpset() addsimps [lub_def, least_def, islub_def, - some_eq_ex RS sym]) 1); -qed "islub_lub"; - -Goal "(EX G. isglb S cl G) = isglb S cl (glb S cl)"; -by (simp_tac (simpset() addsimps [glb_def, greatest_def, isglb_def, - some_eq_ex RS sym]) 1); -qed "isglb_glb"; - -Goal "isglb S cl = islub S (dual cl)"; -by (afs [islub_def,isglb_def,dual_def,converse_def] 1); -qed "isglb_dual_islub"; - -Goal "islub S cl = isglb S (dual cl)"; -by (afs [islub_def,isglb_def,dual_def,converse_def] 1); -qed "islub_dual_isglb"; - -Goal "dual cl \\ PartialOrder"; -by (simp_tac (simpset() addsimps [PartialOrder_def, dual_def]) 1); -by (afs [simp_PO,refl_converse,trans_converse,antisym_converse] 1); -qed "dualPO"; - -Goal "\\S. (S <= A -->( \\L. islub S (| pset = A, order = r|) L)) \ -\ ==> \\S. (S <= A --> (\\G. isglb S (| pset = A, order = r|) G))"; -by (Step_tac 1); -by (res_inst_tac - [("x"," lub {y. y \\ A & (\\k \\ S. (y, k) \\ r)}(|pset = A, order = r|)")] - exI 1); -by (dres_inst_tac [("x","{y. y \\ A & (\\k \\ S. (y,k) \\ r)}")] spec 1); -by (dtac mp 1); -by (Fast_tac 1); -by (afs [islub_lub, isglb_def] 1); -by (afs [islub_def] 1); -by (Blast_tac 1); -qed "Rdual"; - -Goal "lub S cl = glb S (dual cl)"; -by (afs [lub_def,glb_def,least_def,greatest_def,dual_def,converse_def] 1); -qed "lub_dual_glb"; - -Goal "glb S cl = lub S (dual cl)"; -by (afs [lub_def,glb_def,least_def,greatest_def,dual_def,converse_def] 1); -qed "glb_dual_lub"; - -Goal "CompleteLattice <= PartialOrder"; -by (simp_tac (simpset() addsimps [PartialOrder_def, CompleteLattice_def]) 1); -by (Fast_tac 1); -qed "CL_subset_PO"; - -val CompleteLatticeE1 = CL_subset_PO RS subsetD; - -Goal "\\S. S <= A --> (\\L. islub S cl L)"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "CompleteLatticeE2"; - -Goal "\\S. S <= A --> (\\G. isglb S cl G)"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "CompleteLatticeE3"; - -Addsimps [CompleteLatticeE1 RS (export simp_PO)]; - -Goal "refl A r"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "CompleteLatticeE11"; - -Goal "antisym r"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "CompleteLatticeE12"; - -Goal "trans r"; -by (afs (PO_simp) 1); -qed "CompleteLatticeE13"; - -Goal "[| po \\ PartialOrder; (\\S. S <= po. --> (\\L. islub S po L));\ -\ (\\S. S <= po. --> (\\G. isglb S po G))|] ==> po \\ CompleteLattice"; -by (afs [CompleteLattice_def] 1); -qed "CompleteLatticeI"; - -Goal "dual cl \\ CompleteLattice"; -by (simp_tac (simpset() addsimps [CompleteLattice_def,dual_def]) 1); -by (fold_goals_tac [dual_def]); -by (simp_tac (simpset() addsimps [islub_dual_isglb RS sym, - isglb_dual_islub RS sym, - export dualPO]) 1); -qed "CL_dualCL"; - -Goal "(dual cl.) = cl."; -by (simp_tac (simpset() addsimps [dual_def]) 1); -qed "dualA_iff"; - -Goal "((x, y) \\ (dual cl.)) = ((y, x) \\ cl.)"; -by (simp_tac (simpset() addsimps [dual_def]) 1); -qed "dualr_iff"; - -Goal "monotone f (cl.) (cl.) ==> monotone f (dual cl.) (dual cl.)"; -by (afs [monotone_def,dualA_iff,dualr_iff] 1); -qed "monotone_dual"; - -Goal "[| x \\ A; y \\ A|] ==> interval r x y = interval (dual cl.) y x"; -by (simp_tac (simpset() addsimps [interval_def,dualr_iff]) 1); -by (fold_goals_tac [thm "r_def"]); -by (Fast_tac 1); -qed "interval_dual"; - -Goal "[| trans r; interval r a b \\ {} |] ==> (a, b) \\ r"; -by (afs [interval_def] 1); -by (rewtac trans_def); -by (Blast_tac 1); -qed "interval_not_empty"; - -Goal "x \\ interval r a b ==> (a, x) \\ r"; -by (afs [interval_def] 1); -qed "intervalE1"; - -Goal "[| a \\ A; b \\ A; interval r a b \\ {} |] ==> a \\ interval r a b"; -by (simp_tac (simpset() addsimps [interval_def]) 1); -by (afs [PartialOrderE3,interval_not_empty] 1); -by (afs [PartialOrderE1 RS reflE] 1); -qed "left_in_interval"; - -Goal "[| a \\ A; b \\ A; interval r a b \\ {} |] ==> b \\ interval r a b"; -by (simp_tac (simpset() addsimps [interval_def]) 1); -by (afs [PartialOrderE3,interval_not_empty] 1); -by (afs [PartialOrderE1 RS reflE] 1); -qed "right_in_interval"; - -Goal "[| (| pset = A, order = r |) \\ PartialOrder;\ -\ \\S. S <= A --> (\\L. islub S (| pset = A, order = r |) L) |] \ -\ ==> (| pset = A, order = r |) \\ CompleteLattice"; -by (afs [CompleteLatticeI, Rdual] 1); -qed "CompleteLatticeI_simp"; - -(* sublattice *) -Goal "S <<= cl ==> S <= A"; -by (afs [sublattice_def, CompleteLattice_def, thm "A_def"] 1); -qed "sublatticeE1"; - -Goal "S <<= cl ==> (| pset = S, order = induced S r |) \\ CompleteLattice"; -by (afs ([sublattice_def, CompleteLattice_def] @ PO_simp) 1); -qed "sublatticeE2"; - -Goal "[| S <= A; (| pset = S, order = induced S r |) \\ CompleteLattice |] ==> S <<= cl"; -by (afs ([sublattice_def] @ PO_simp) 1); -qed "sublatticeI"; - -(* lub *) -Goal "[| S <= A; islub S cl x; islub S cl L|] ==> x = L"; -by (rtac antisymE 1); -by (rtac CompleteLatticeE12 1); -by (auto_tac (claset(), simpset() addsimps [islub_def, thm "r_def"])); -qed "lub_unique"; - -Goal "[| S <= A |] ==> \\x \\ S. (x,lub S cl) \\ r"; -by (rtac exE 1); -by (rtac (CompleteLatticeE2 RS spec RS mp) 1); -by (assume_tac 1); -by (rewrite_goals_tac [lub_def,least_def]); -by (stac some_equality 1); -by (rtac conjI 1); -by (afs [islub_def] 2); -by (etac conjunct2 2); -by (afs [islub_def] 1); -by (rtac lub_unique 1); -by (afs [thm "A_def"] 1); -by (afs [islub_def] 1); -by (assume_tac 1); -by (afs [islub_def,thm "r_def"] 1); -qed "lubE1"; - -Goal "[| S <= A; L \\ A; \\x \\ S. (x,L) \\ r |] ==> (lub S cl, L) \\ r"; -by (rtac exE 1); -by (rtac (CompleteLatticeE2 RS spec RS mp) 1); -by (assume_tac 1); -by (rewrite_goals_tac [lub_def,least_def]); -by (stac some_equality 1); -by (rtac conjI 1); -by (afs [islub_def] 2); -by (etac conjunct2 2); -by (afs [islub_def] 1); -by (rtac lub_unique 1); -by (afs [thm "A_def"] 1); -by (afs [islub_def] 1); -by (assume_tac 1); -by (afs [islub_def] 1); -by (dtac conjunct2 1); -by (dtac conjunct2 1); -by (rotate_tac 3 1); -by (dtac bspec 1); -by (fold_goals_tac [thm "r_def"]); -by (etac mp 2); -by (afs [thm "A_def"] 1); -by (assume_tac 1); -qed "lubE2"; - -Goal "[| S <= A |] ==> lub S cl \\ A"; -by (rtac exE 1); -by (rtac (CompleteLatticeE2 RS spec RS mp) 1); -by (assume_tac 1); -by (rewrite_goals_tac [lub_def,least_def]); -by (stac some_equality 1); -by (afs [islub_def] 1); -by (afs [islub_def, thm "A_def"] 2); -by (rtac lub_unique 1); -by (afs [thm "A_def"] 1); -by (afs [islub_def] 1); -by (assume_tac 1); -qed "lub_in_lattice"; - -Goal "[| S <= A; L \\ A; \\x \\ S. (x,L) \\ r;\ -\ \\z \\ A. (\\y \\ S. (y,z) \\ r) --> (L,z) \\ r |] ==> L = lub S cl"; -by (rtac lub_unique 1); -by (assume_tac 1); -by (afs ([islub_def] @ PO_simp) 1); -by (rewtac islub_def); -by (rtac conjI 1); -by (fold_goals_tac PO_simp); -by (rtac lub_in_lattice 1); -by (assume_tac 1); -by (afs [lubE1, lubE2] 1); -qed "lubI"; - -Goal "[| S <= A; islub S cl L |] ==> L = lub S cl"; -by (afs ([lubI, islub_def] @ PO_simp) 1); -qed "lubIa"; - -Goal "islub S cl L ==> L \\ A"; -by (afs [islub_def, thm "A_def"] 1); -qed "islub_in_lattice"; - -Goal "islub S cl L ==> \\y \\ S. (y, L) \\ r"; -by (afs [islub_def, thm "r_def"] 1); -qed "islubE1"; - -Goal "[| islub S cl L; \ -\ z \\ A; \\y \\ S. (y, z) \\ r|] ==> (L, z) \\ r"; -by (afs ([islub_def] @ PO_simp) 1); -qed "islubE2"; - -Goal "[| S <= A |] ==> \\L. islub S cl L"; -by (afs [thm "A_def"] 1); -qed "islubE"; - -Goal "[| L \\ A; \\y \\ S. (y, L) \\ r; \ -\ (\\z \\ A. (\\y \\ S. (y, z):r) --> (L, z) \\ r)|] ==> islub S cl L"; -by (afs ([islub_def] @ PO_simp) 1); -qed "islubI"; - -(* glb *) -Goal "S <= A ==> glb S cl \\ A"; -by (stac glb_dual_lub 1); -by (afs [thm "A_def"] 1); -by (rtac (dualA_iff RS subst) 1); -by (rtac (export lub_in_lattice) 1); -by (rtac CL_dualCL 1); -by (afs [dualA_iff] 1); -qed "glb_in_lattice"; - -Goal "S <= A ==> \\x \\ S. (glb S cl, x) \\ r"; -by (stac glb_dual_lub 1); -by (rtac ballI 1); -by (afs [thm "r_def"] 1); -by (rtac (dualr_iff RS subst) 1); -by (rtac (export lubE1 RS bspec) 1); -by (rtac CL_dualCL 1); -by (afs [dualA_iff, thm "A_def"] 1); -by (assume_tac 1); -qed "glbE1"; - -(* Reduce the sublattice property by using substructural properties\\*) -(* abandoned see Tarski_4.ML *) - -Open_locale "CLF"; - -val simp_CLF = simplify (simpset() addsimps [CLF_def]) (thm "f_cl"); -Addsimps [simp_CLF, thm "f_cl"]; - -Goal "f \\ A funcset A"; -by (simp_tac (simpset() addsimps [thm "A_def"]) 1); -qed "CLF_E1"; - -Goal "monotone f A r"; -by (simp_tac (simpset() addsimps PO_simp) 1); -qed "CLF_E2"; - -Goal "f \\ CLF `` {cl} ==> f \\ CLF `` {dual cl}"; -by (afs [CLF_def, CL_dualCL, monotone_dual] 1); -by (afs [dualA_iff] 1); -qed "CLF_dual"; - -(* fixed points *) -Goal "P <= A"; -by (simp_tac (simpset() addsimps [thm "P_def", fix_def]) 1); -by (Fast_tac 1); -qed "fixfE1"; - -Goal "x \\ P ==> f x = x"; -by (afs [thm "P_def", fix_def] 1); -qed "fixfE2"; - -Goal "[| A <= B; x \\ fix (%y: A. f y) A |] ==> x \\ fix f B"; -by (forward_tac [export fixfE2] 1); -by (dtac ((export fixfE1) RS subsetD) 1); -by (asm_full_simp_tac (simpset() addsimps [fix_def, subsetD]) 1); -qed "fixf_subset"; - -(* lemmas for Tarski, lub *) -Goal "H = {x. (x, f x) \\ r & x \\ A} ==> (lub H cl, f (lub H cl)) \\ r"; -by (rtac lubE2 1); -by (Fast_tac 1); -by (rtac (CLF_E1 RS funcset_mem) 1); -by (rtac lub_in_lattice 1); -by (Fast_tac 1); -(* \\x:H. (x, f (lub H r)) \\ r *) -by (rtac ballI 1); -by (rtac transE 1); -by (rtac CompleteLatticeE13 1); -(* instantiates (x, ???z) \\ cl. to (x, f x), because of the def of H *) -by (Fast_tac 1); -(* so it remains to show (f x, f (lub H cl)) \\ r *) -by (res_inst_tac [("f","f")] monotoneE 1); -by (rtac CLF_E2 1); -by (Fast_tac 1); -by (rtac lub_in_lattice 1); -by (Fast_tac 1); -by (rtac (lubE1 RS bspec) 1); -by (Fast_tac 1); -by (assume_tac 1); -qed "lubH_le_flubH"; - -Goal "[| H = {x. (x, f x) \\ r & x \\ A} |] ==> (f (lub H cl), lub H cl) \\ r"; -by (rtac (lubE1 RS bspec) 1); -by (Fast_tac 1); -by (res_inst_tac [("t","H")] ssubst 1); -by (assume_tac 1); -by (rtac CollectI 1); -by (rtac conjI 1); -by (rtac (CLF_E1 RS funcset_mem) 2); -by (rtac lub_in_lattice 2); -by (Fast_tac 2); -by (res_inst_tac [("f","f")] monotoneE 1); -by (rtac CLF_E2 1); -by (afs [lubH_le_flubH] 3); -by (rtac (CLF_E1 RS funcset_mem) 2); -by (rtac lub_in_lattice 2); -by (Fast_tac 2); -by (rtac lub_in_lattice 1); -by (Fast_tac 1); -qed "flubH_le_lubH"; - -Goal "H = {x. (x, f x) \\ r & x \\ A} ==> lub H cl \\ P"; -by (simp_tac (simpset() addsimps [thm "P_def", fix_def]) 1); -by (rtac conjI 1); -by (rtac lub_in_lattice 1); -by (Fast_tac 1); -by (rtac antisymE 1); -by (rtac CompleteLatticeE12 1); -by (afs [flubH_le_lubH] 1); -by (afs [lubH_le_flubH] 1); -qed "lubH_is_fixp"; - -Goal "[| H = {x. (x, f x) \\ r & x \\ A}; x \\ P |] ==> x \\ H"; -by (etac ssubst 1); -by (Simp_tac 1); -by (rtac conjI 1); -by (ftac fixfE2 1); -by (etac ssubst 1); -by (rtac reflE 1); -by (rtac CompleteLatticeE11 1); -by (etac (fixfE1 RS subsetD) 1); -by (etac (fixfE1 RS subsetD) 1); -qed "fix_in_H"; - -Goal "H = {x. (x, f x) \\ r & x \\ A} ==> \\x \\ P. (x, lub H cl) \\ r"; -by (rtac ballI 1); -by (rtac (lubE1 RS bspec) 1); -by (Fast_tac 1); -by (rtac fix_in_H 1); -by (REPEAT (atac 1)); -qed "fixf_le_lubH"; - -Goal "H = {x. (x, f x) \\ r & x \\ A} ==> \\L. (\\y \\ P. (y,L) \\ r) --> (lub H cl, L) \\ r"; -by (rtac allI 1); -by (rtac impI 1); -by (etac bspec 1); -by (rtac lubH_is_fixp 1); -by (assume_tac 1); -qed "lubH_least_fixf"; - -(* Tarski fixpoint theorem 1, first part *) -Goal "lub P cl = lub {x. (x, f x) \\ r & x \\ A} cl"; -by (rtac sym 1); -by (rtac lubI 1); -by (rtac fixfE1 1); -by (rtac lub_in_lattice 1); -by (Fast_tac 1); -by (afs [fixf_le_lubH] 1); -by (afs [lubH_least_fixf] 1); -qed "T_thm_1_lub"; - -(* Tarski for glb *) -Goal "H = {x. (f x, x) \\ r & x \\ A} ==> glb H cl \\ P"; -by (full_simp_tac - (simpset() addsimps [glb_dual_lub, thm "P_def"] @ PO_simp) 1); -by (rtac (dualA_iff RS subst) 1); -by (rtac (CL_dualCL RS (export lubH_is_fixp)) 1); -by (rtac (thm "f_cl" RS CLF_dual) 1); -by (afs [dualr_iff, dualA_iff] 1); -qed "glbH_is_fixp"; - -Goal "glb P cl = glb {x. (f x, x) \\ r & x \\ A} cl"; -by (simp_tac (simpset() addsimps [glb_dual_lub, thm "P_def"] @ PO_simp) 1); -by (rtac (dualA_iff RS subst) 1); -by (rtac (CL_dualCL RS (export T_thm_1_lub) RS ssubst) 1); -by (rtac (thm "f_cl" RS CLF_dual) 1); -by (afs [dualr_iff] 1); -qed "T_thm_1_glb"; - -(* interval *) -Goal "refl A r ==> r <= A <*> A"; -by (afs [refl_def] 1); -qed "reflE1"; - -Goal "(x, y) \\ r ==> x \\ A"; -by (rtac SigmaD1 1); -by (rtac (reflE1 RS subsetD) 1); -by (rtac CompleteLatticeE11 1); -by (assume_tac 1); -qed "rel_imp_elem"; - -Goal "[| a \\ A; b \\ A |] ==> interval r a b <= A"; -by (simp_tac (simpset() addsimps [interval_def]) 1); -by (blast_tac (claset() addIs [rel_imp_elem]) 1); -qed "interval_subset"; - -Goal "[| (a, x) \\ r; (x, b) \\ r |] ==> x \\ interval r a b"; -by (afs [interval_def] 1); -qed "intervalI"; - -Goalw [interval_def] "[| S <= interval r a b; x \\ S |] ==> (a, x) \\ r"; -by (Fast_tac 1); -qed "interval_lemma1"; - -Goalw [interval_def] "[| S <= interval r a b; x \\ S |] ==> (x, b) \\ r"; -by (Fast_tac 1); -qed "interval_lemma2"; - -Goal "[| S <= A; S \\ {};\ -\ \\x \\ S. (a,x) \\ r; \\y \\ S. (y, L) \\ r |] ==> (a,L) \\ r"; -by (blast_tac (claset() addIs [transE, PartialOrderE3]) 1); -qed "a_less_lub"; - -Goal "[| S <= A; S \\ {};\ -\ \\x \\ S. (x,b) \\ r; \\y \\ S. (G, y) \\ r |] ==> (G,b) \\ r"; -by (blast_tac (claset() addIs [transE, PartialOrderE3]) 1); -qed "glb_less_b"; - -Goal "[| a \\ A; b \\ A; S <= interval r a b |]==> S <= A"; -by (afs [interval_subset RSN(2, subset_trans)] 1); -qed "S_intv_cl"; - -Goal "[| a \\ A; b \\ A; S <= interval r a b; \ -\ S \\ {}; islub S cl L; interval r a b \\ {} |] ==> L \\ interval r a b"; -by (rtac intervalI 1); -by (rtac a_less_lub 1); -by (assume_tac 2); -by (afs [S_intv_cl] 1); -by (rtac ballI 1); -by (afs [interval_lemma1] 1); -by (afs [islubE1] 1); -(* (L, b) \\ r *) -by (rtac islubE2 1); -by (assume_tac 1); -by (assume_tac 1); -by (rtac ballI 1); -by (afs [interval_lemma2] 1); -qed "L_in_interval"; - -Goal "[| a \\ A; b \\ A; interval r a b \\ {}; S <= interval r a b; isglb S cl G; \ -\ S \\ {} |] ==> G \\ interval r a b"; -by (afs [interval_dual] 1); -by (rtac (export L_in_interval) 1); -by (rtac dualPO 1); -by (afs [dualA_iff, thm "A_def"] 1); -by (afs [dualA_iff, thm "A_def"] 1); -by (assume_tac 1); -by (afs [isglb_dual_islub] 1); -by (afs [isglb_dual_islub] 1); -by (assume_tac 1); -qed "G_in_interval"; - -Goal "[| a \\ A; b \\ A; interval r a b \\ {} |]\ -\ ==> (| pset = interval r a b, order = induced (interval r a b) r |) \\ PartialOrder"; -by (rtac po_subset_po 1); -by (afs [interval_subset] 1); -qed "intervalPO"; - -Goal "[| a \\ A; b \\ A;\ -\ interval r a b \\ {} |] ==> \\S. S <= interval r a b -->\ -\ (\\L. islub S (| pset = interval r a b, order = induced (interval r a b) r |) L)"; -by (strip_tac 1); -by (forward_tac [S_intv_cl RS islubE] 1); -by (assume_tac 2); -by (assume_tac 1); -by (etac exE 1); -(* define the lub for the interval as *) -by (res_inst_tac [("x","if S = {} then a else L")] exI 1); -by (rtac (export islubI) 1); -(* (if S = {} then a else L) \\ interval r a b *) -by (asm_full_simp_tac - (simpset() addsimps [CompleteLatticeE1,L_in_interval]) 1); -by (afs [left_in_interval] 1); -(* lub prop 1 *) -by (case_tac "S = {}" 1); -(* S = {}, y \\ S = False => everything *) -by (Fast_tac 1); -(* S \\ {} *) -by (Asm_full_simp_tac 1); -(* \\y:S. (y, L) \\ induced (interval r a b) r *) -by (rtac ballI 1); -by (afs [induced_def, L_in_interval] 1); -by (rtac conjI 1); -by (rtac subsetD 1); -by (afs [S_intv_cl] 1); -by (assume_tac 1); -by (afs [islubE1] 1); -(* \\z:interval r a b. (\\y:S. (y, z) \\ induced (interval r a b) r --> - (if S = {} then a else L, z) \\ induced (interval r a b) r *) -by (rtac ballI 1); -by (rtac impI 1); -by (case_tac "S = {}" 1); -(* S = {} *) -by (Asm_full_simp_tac 1); -by (afs [induced_def, interval_def] 1); -by (rtac conjI 1); -by (rtac reflE 1); -by (rtac CompleteLatticeE11 1); -by (assume_tac 1); -by (rtac interval_not_empty 1); -by (rtac CompleteLatticeE13 1); -by (afs [interval_def] 1); -(* S \\ {} *) -by (Asm_full_simp_tac 1); -by (afs [induced_def, L_in_interval] 1); -by (rtac islubE2 1); -by (assume_tac 1); -by (rtac subsetD 1); -by (assume_tac 2); -by (afs [S_intv_cl] 1); -by (Fast_tac 1); -qed "intv_CL_lub"; - -val intv_CL_glb = intv_CL_lub RS Rdual; - -Goal "[| a \\ A; b \\ A; interval r a b \\ {} |]\ -\ ==> interval r a b <<= cl"; -by (rtac sublatticeI 1); -by (afs [interval_subset] 1); -by (rtac CompleteLatticeI 1); -by (afs [intervalPO] 1); -by (afs [intv_CL_lub] 1); -by (afs [intv_CL_glb] 1); -qed "interval_is_sublattice"; - -val interv_is_compl_latt = interval_is_sublattice RS sublatticeE2; - -(* Top and Bottom *) -Goal "Top cl = Bot (dual cl)"; -by (afs [Top_def,Bot_def,least_def,greatest_def,dualA_iff, dualr_iff] 1); -qed "Top_dual_Bot"; - -Goal "Bot cl = Top (dual cl)"; -by (afs [Top_def,Bot_def,least_def,greatest_def,dualA_iff, dualr_iff] 1); -qed "Bot_dual_Top"; - -Goal "Bot cl \\ A"; -by (simp_tac (simpset() addsimps [Bot_def,least_def]) 1); -by (rtac someI2 1); -by (fold_goals_tac [thm "A_def"]); -by (etac conjunct1 2); -by (rtac conjI 1); -by (rtac glb_in_lattice 1); -by (rtac subset_refl 1); -by (fold_goals_tac [thm "r_def"]); -by (afs [glbE1] 1); -qed "Bot_in_lattice"; - -Goal "Top cl \\ A"; -by (simp_tac (simpset() addsimps [Top_dual_Bot, thm "A_def"]) 1); -by (rtac (dualA_iff RS subst) 1); -by (afs [export Bot_in_lattice,CL_dualCL] 1); -qed "Top_in_lattice"; - -Goal "x \\ A ==> (x, Top cl) \\ r"; -by (simp_tac (simpset() addsimps [Top_def,greatest_def]) 1); -by (rtac someI2 1); -by (fold_goals_tac [thm "r_def", thm "A_def"]); -by (Fast_tac 2); -by (rtac conjI 1); -by (rtac lubE1 2); -by (afs [lub_in_lattice] 1); -by (rtac subset_refl 1); -qed "Top_prop"; - -Goal "x \\ A ==> (Bot cl, x) \\ r"; -by (simp_tac (simpset() addsimps [Bot_dual_Top, thm "r_def"]) 1); -by (rtac (dualr_iff RS subst) 1); -by (rtac (export Top_prop) 1); -by (rtac CL_dualCL 1); -by (afs [dualA_iff, thm "A_def"] 1); -qed "Bot_prop"; - -Goal "x \\ A ==> interval r x (Top cl) \\ {}"; -by (rtac notI 1); -by (dres_inst_tac [("a","Top cl")] equals0D 1); -by (afs [interval_def] 1); -by (afs [refl_def,Top_in_lattice,Top_prop] 1); -qed "Top_intv_not_empty"; - -Goal "x \\ A ==> interval r (Bot cl) x \\ {}"; -by (simp_tac (simpset() addsimps [Bot_dual_Top]) 1); -by (stac interval_dual 1); -by (assume_tac 2); -by (afs [thm "A_def"] 1); -by (rtac (dualA_iff RS subst) 1); -by (rtac (export Top_in_lattice) 1); -by (rtac CL_dualCL 1); -by (afs [export Top_intv_not_empty,CL_dualCL,dualA_iff, thm "A_def"] 1); -qed "Bot_intv_not_empty"; - -(* fixed points form a partial order *) -Goal "(| pset = P, order = induced P r|) \\ PartialOrder"; -by (rtac po_subset_po 1); -by (rtac fixfE1 1); -qed "fixf_po"; - -Open_locale "Tarski"; - -Goal "Y <= A"; -by (rtac (fixfE1 RSN(2,subset_trans)) 1); -by (rtac (thm "Y_ss") 1); -qed "Y_subset_A"; - -Goal "lub Y cl \\ A"; -by (afs [Y_subset_A RS lub_in_lattice] 1); -qed "lubY_in_A"; - -Goal "(lub Y cl, f (lub Y cl)) \\ r"; -by (rtac lubE2 1); -by (rtac Y_subset_A 1); -by (rtac (CLF_E1 RS funcset_mem) 1); -by (rtac lubY_in_A 1); -(* Y <= P ==> f x = x *) -by (rtac ballI 1); -by (res_inst_tac [("t","x")] (fixfE2 RS subst) 1); -by (etac (thm "Y_ss" RS subsetD) 1); -(* reduce (f x, f (lub Y cl)) \\ r to (x, lub Y cl) \\ r by monotonicity *) -by (res_inst_tac [("f","f")] monotoneE 1); -by (rtac CLF_E2 1); -by (afs [Y_subset_A RS subsetD] 1); -by (rtac lubY_in_A 1); -by (afs [lubE1, Y_subset_A] 1); -qed "lubY_le_flubY"; - -Goalw [thm "intY1_def"] "intY1 <= A"; -by (rtac interval_subset 1); -by (rtac lubY_in_A 1); -by (rtac Top_in_lattice 1); -qed "intY1_subset"; - -val intY1_elem = intY1_subset RS subsetD; - -Goal "x \\ intY1 \\ f x \\ intY1"; -by (afs [thm "intY1_def", interval_def] 1); -by (rtac conjI 1); -by (rtac transE 1); -by (rtac CompleteLatticeE13 1); -by (rtac lubY_le_flubY 1); -(* (f (lub Y cl), f x) \\ r *) -by (res_inst_tac [("f","f")]monotoneE 1); -by (rtac CLF_E2 1); -by (rtac lubY_in_A 1); -by (afs [thm "intY1_def",interval_def, intY1_elem] 1); -by (afs [thm "intY1_def", interval_def] 1); -(* (f x, Top cl) \\ r *) -by (rtac Top_prop 1); -by (rtac (CLF_E1 RS funcset_mem) 1); -by (afs [thm "intY1_def",interval_def, intY1_elem] 1); -qed "intY1_f_closed"; - -Goal "(%x: intY1. f x) \\ intY1 funcset intY1"; -by (rtac restrictI 1); -by (etac intY1_f_closed 1); -qed "intY1_func"; - -Goal "monotone (%x: intY1. f x) intY1 (induced intY1 r)"; -by (auto_tac (claset(), - simpset() addsimps [monotone_def, induced_def, intY1_f_closed])); -by (blast_tac (claset() addIs [intY1_elem, CLF_E2 RS monotoneE]) 1); -qed "intY1_mono"; - -Goalw [thm "intY1_def"] - "(| pset = intY1, order = induced intY1 r |) \\ CompleteLattice"; -by (rtac interv_is_compl_latt 1); -by (rtac lubY_in_A 1); -by (rtac Top_in_lattice 1); -by (rtac Top_intv_not_empty 1); -by (rtac lubY_in_A 1); -qed "intY1_is_cl"; - -Goalw [thm "P_def"] "v \\ P"; -by (res_inst_tac [("A","intY1")] fixf_subset 1); -by (rtac intY1_subset 1); -by (rewrite_goals_tac [thm "v_def"]); -by (rtac (simplify (simpset()) (intY1_is_cl RS export glbH_is_fixp)) 1); -by (afs [CLF_def, intY1_is_cl, intY1_func, intY1_mono] 1); -by (Simp_tac 1); -qed "v_in_P"; - -Goalw [thm "intY1_def"] - "[| z \\ P; \\y\\Y. (y, z) \\ induced P r |] ==> z \\ intY1"; -by (rtac intervalI 1); -by (etac (fixfE1 RS subsetD RS Top_prop) 2); -by (rtac lubE2 1); -by (rtac Y_subset_A 1); -by (fast_tac (claset() addSEs [fixfE1 RS subsetD]) 1); -by (rtac ballI 1); -by (dtac bspec 1); -by (assume_tac 1); -by (afs [induced_def] 1); -qed "z_in_interval"; - -Goal "[| z \\ P; \\y\\Y. (y, z) \\ induced P r |]\ -\ ==> ((%x: intY1. f x) z, z) \\ induced intY1 r"; -by (afs [induced_def, intY1_f_closed, z_in_interval] 1); -by (afs [fixfE2, fixfE1 RS subsetD, CompleteLatticeE11 RS reflE] 1); -qed "f'z_in_int_rel"; - -Goal "\\L. islub Y (| pset = P, order = induced P r |) L"; -by (res_inst_tac [("x","v")] exI 1); -by (simp_tac (simpset() addsimps [islub_def]) 1); -(* v \\ P *) -by (afs [v_in_P] 1); -by (rtac conjI 1); -(* v is lub *) -(* 1. \\y:Y. (y, v) \\ induced P r *) -by (rtac ballI 1); -by (afs [induced_def, subsetD, v_in_P] 1); -by (rtac conjI 1); -by (etac (thm "Y_ss" RS subsetD) 1); -by (res_inst_tac [("b","lub Y cl")] transE 1); -by (rtac CompleteLatticeE13 1); -by (rtac (lubE1 RS bspec) 1); -by (rtac Y_subset_A 1); -by (assume_tac 1); -by (res_inst_tac [("b","Top cl")] intervalE1 1); -by (afs [thm "v_def"] 1); -by (fold_goals_tac [thm "intY1_def"]); -by (rtac (simplify (simpset()) (intY1_is_cl RS export glb_in_lattice)) 1); -by (Force_tac 1); -(* v is LEAST ub *) -by (Clarify_tac 1); -by (rtac indI 1); -by (afs [v_in_P] 2); -by (assume_tac 2); -by (rewrite_goals_tac [thm "v_def"]); -by (rtac indE 1); -by (rtac intY1_subset 2); -by (rtac (simplify (simpset()) (intY1_is_cl RS export (glbE1 RS bspec))) 1); -by (Force_tac 1); -by (afs [induced_def, intY1_f_closed, z_in_interval] 1); -by (afs [fixfE2, fixfE1 RS subsetD, CompleteLatticeE11 RS reflE] 1); -qed "tarski_full_lemma"; -val Tarski_full_lemma = Export tarski_full_lemma; - -Close_locale "Tarski"; - -Goal "(| pset = P, order = induced P r|) \\ CompleteLattice"; -by (rtac CompleteLatticeI_simp 1); -by (afs [fixf_po] 1); -by (Clarify_tac 1); -by (etac Tarski_full_lemma 1); -qed "Tarski_full"; - - -Close_locale "CLF"; -Close_locale "CL"; -Close_locale "PO"; - - -