# HG changeset patch # User wenzelm # Date 1380050620 -7200 # Node ID 78afb4c4e6838d56fd5dfbde399a5643f6590d64 # Parent e8430d668f44c8693536e39461fc52185842b41c tuned proofs; diff -r e8430d668f44 -r 78afb4c4e683 src/HOL/Multivariate_Analysis/Determinants.thy --- a/src/HOL/Multivariate_Analysis/Determinants.thy Tue Sep 24 20:41:28 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Determinants.thy Tue Sep 24 21:23:40 2013 +0200 @@ -20,20 +20,26 @@ done lemma setprod_add_split: - assumes mn: "(m::nat) <= n + 1" - shows "setprod f {m.. n+p} = setprod f {m .. n} * setprod f {n+1..n+p}" + fixes m n :: nat + assumes mn: "m \ n + 1" + shows "setprod f {m..n+p} = setprod f {m .. n} * setprod f {n+1..n+p}" proof - - let ?A = "{m .. n+p}" - let ?B = "{m .. n}" + let ?A = "{m..n+p}" + let ?B = "{m..n}" let ?C = "{n+1..n+p}" - from mn have un: "?B \ ?C = ?A" by auto - from mn have dj: "?B \ ?C = {}" by auto - have f: "finite ?B" "finite ?C" by simp_all + from mn have un: "?B \ ?C = ?A" + by auto + from mn have dj: "?B \ ?C = {}" + by auto + have f: "finite ?B" "finite ?C" + by simp_all from setprod_Un_disjoint[OF f dj, of f, unfolded un] show ?thesis . qed -lemma setprod_offset: "setprod f {(m::nat) + p .. n + p} = setprod (\i. f (i + p)) {m..n}" +lemma setprod_offset: + fixes m n :: nat + shows "setprod f {m + p .. n + p} = setprod (\i. f (i + p)) {m..n}" apply (rule setprod_reindex_cong[where f="op + p"]) apply (auto simp add: image_iff Bex_def inj_on_def) apply presburger @@ -44,7 +50,9 @@ lemma setprod_singleton: "setprod f {x} = f x" by simp -lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)" +lemma setprod_singleton_nat_seg: + fixes n :: "'a::order" + shows "setprod f {n..n} = f n" by simp lemma setprod_numseg: @@ -54,8 +62,9 @@ by (auto simp add: atLeastAtMostSuc_conv) lemma setprod_le: + fixes f g :: "'b \ 'a::linordered_idom" assumes fS: "finite S" - and fg: "\x\S. f x \ 0 \ f x \ (g x :: 'a::linordered_idom)" + and fg: "\x\S. f x \ 0 \ f x \ g x" shows "setprod f S \ setprod g S" using fS fg apply (induct S) @@ -65,7 +74,7 @@ apply (auto intro: setprod_nonneg) done - (* FIXME: In Finite_Set there is a useless further assumption *) +(* FIXME: In Finite_Set there is a useless further assumption *) lemma setprod_inversef: "finite A \ setprod (inverse \ f) A = (inverse (setprod f A) :: 'a:: field_inverse_zero)" apply (erule finite_induct) @@ -74,8 +83,9 @@ done lemma setprod_le_1: + fixes f :: "'b \ 'a::linordered_idom" assumes fS: "finite S" - and f: "\x\S. f x \ 0 \ f x \ (1::'a::linordered_idom)" + and f: "\x\S. f x \ 0 \ f x \ 1" shows "setprod f S \ 1" using setprod_le[OF fS f] unfolding setprod_1 . @@ -85,10 +95,10 @@ definition trace :: "'a::semiring_1^'n^'n \ 'a" where "trace A = setsum (\i. ((A$i)$i)) (UNIV::'n set)" -lemma trace_0: "trace(mat 0) = 0" +lemma trace_0: "trace (mat 0) = 0" by (simp add: trace_def mat_def) -lemma trace_I: "trace(mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))" +lemma trace_I: "trace (mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))" by (simp add: trace_def mat_def) lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B" @@ -97,37 +107,32 @@ lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B" by (simp add: trace_def setsum_subtractf) -lemma trace_mul_sym:"trace ((A::'a::comm_semiring_1^'n^'m) ** B) = trace (B**A)" +lemma trace_mul_sym: "trace ((A::'a::comm_semiring_1^'n^'m) ** B) = trace (B**A)" apply (simp add: trace_def matrix_matrix_mult_def) apply (subst setsum_commute) apply (simp add: mult_commute) done -(* ------------------------------------------------------------------------- *) -(* Definition of determinant. *) -(* ------------------------------------------------------------------------- *) +text {* Definition of determinant. *} definition det:: "'a::comm_ring_1^'n^'n \ 'a" where "det A = setsum (\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set)) {p. p permutes (UNIV :: 'n set)}" -(* ------------------------------------------------------------------------- *) -(* A few general lemmas we need below. *) -(* ------------------------------------------------------------------------- *) +text {* A few general lemmas we need below. *} lemma setprod_permute: assumes p: "p permutes S" - shows "setprod f S = setprod (f o p) S" + shows "setprod f S = setprod (f \ p) S" using assms by (fact setprod.permute) lemma setproduct_permute_nat_interval: - "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}" + fixes m n :: nat + shows "p permutes {m..n} \ setprod f {m..n} = setprod (f \ p) {m..n}" by (blast intro!: setprod_permute) -(* ------------------------------------------------------------------------- *) -(* Basic determinant properties. *) -(* ------------------------------------------------------------------------- *) +text {* Basic determinant properties. *} lemma det_transpose: "det (transpose A) = det (A::'a::comm_ring_1 ^'n^'n)" proof - @@ -137,15 +142,18 @@ { fix p assume p: "p \ {p. p permutes ?U}" - from p have pU: "p permutes ?U" by blast + from p have pU: "p permutes ?U" + by blast have sth: "sign (inv p) = sign p" by (metis sign_inverse fU p mem_Collect_eq permutation_permutes) from permutes_inj[OF pU] - have pi: "inj_on p ?U" by (blast intro: subset_inj_on) + have pi: "inj_on p ?U" + by (blast intro: subset_inj_on) from permutes_image[OF pU] have "setprod (\i. ?di (transpose A) i (inv p i)) ?U = - setprod (\i. ?di (transpose A) i (inv p i)) (p ` ?U)" by simp - also have "\ = setprod ((\i. ?di (transpose A) i (inv p i)) o p) ?U" + setprod (\i. ?di (transpose A) i (inv p i)) (p ` ?U)" + by simp + also have "\ = setprod ((\i. ?di (transpose A) i (inv p i)) \ p) ?U" unfolding setprod_reindex[OF pi] .. also have "\ = setprod (\i. ?di A i (p i)) ?U" proof - @@ -153,14 +161,16 @@ fix i assume i: "i \ ?U" from i permutes_inv_o[OF pU] permutes_in_image[OF pU] - have "((\i. ?di (transpose A) i (inv p i)) o p) i = ?di A i (p i)" + have "((\i. ?di (transpose A) i (inv p i)) \ p) i = ?di A i (p i)" unfolding transpose_def by (simp add: fun_eq_iff) } - then show "setprod ((\i. ?di (transpose A) i (inv p i)) o p) ?U = - setprod (\i. ?di A i (p i)) ?U" by (auto intro: setprod_cong) + then show "setprod ((\i. ?di (transpose A) i (inv p i)) \ p) ?U = + setprod (\i. ?di A i (p i)) ?U" + by (auto intro: setprod_cong) qed finally have "of_int (sign (inv p)) * (setprod (\i. ?di (transpose A) i (inv p i)) ?U) = - of_int (sign p) * (setprod (\i. ?di A i (p i)) ?U)" using sth by simp + of_int (sign p) * (setprod (\i. ?di A i (p i)) ?U)" + using sth by simp } then show ?thesis unfolding det_def @@ -178,12 +188,14 @@ let ?U = "UNIV:: 'n set" let ?PU = "{p. p permutes ?U}" let ?pp = "\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set)" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from finite_permutations[OF fU] have fPU: "finite ?PU" . - have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + have id0: "{id} \ ?PU" + by (auto simp add: permutes_id) { fix p - assume p: "p \ ?PU -{id}" + assume p: "p \ ?PU - {id}" from p have pU: "p permutes ?U" and pid: "p \ id" by blast+ from permutes_natset_le[OF pU] pid obtain i where i: "p i > i" @@ -193,7 +205,7 @@ from setprod_zero[OF fU ex] have "?pp p = 0" by simp } - then have p0: "\p \ ?PU -{id}. ?pp p = 0" + then have p0: "\p \ ?PU - {id}. ?pp p = 0" by blast from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis unfolding det_def by (simp add: sign_id) @@ -207,18 +219,22 @@ let ?U = "UNIV:: 'n set" let ?PU = "{p. p permutes ?U}" let ?pp = "(\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set))" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from finite_permutations[OF fU] have fPU: "finite ?PU" . - have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + have id0: "{id} \ ?PU" + by (auto simp add: permutes_id) { fix p - assume p: "p \ ?PU -{id}" + assume p: "p \ ?PU - {id}" from p have pU: "p permutes ?U" and pid: "p \ id" by blast+ from permutes_natset_ge[OF pU] pid obtain i where i: "p i < i" by (metis not_le) - from ld[OF i] have ex:"\i \ ?U. A$i$p i = 0" by blast - from setprod_zero[OF fU ex] have "?pp p = 0" by simp + from ld[OF i] have ex:"\i \ ?U. A$i$p i = 0" + by blast + from setprod_zero[OF fU ex] have "?pp p = 0" + by simp } then have p0: "\p \ ?PU -{id}. ?pp p = 0" by blast @@ -236,15 +252,22 @@ let ?pp = "\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set)" have fU: "finite ?U" by simp from finite_permutations[OF fU] have fPU: "finite ?PU" . - have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + have id0: "{id} \ ?PU" + by (auto simp add: permutes_id) { fix p assume p: "p \ ?PU - {id}" - then have "p \ id" by simp - then obtain i where i: "p i \ i" unfolding fun_eq_iff by auto - from ld [OF i [symmetric]] have ex:"\i \ ?U. A$i$p i = 0" by blast - from setprod_zero [OF fU ex] have "?pp p = 0" by simp} - then have p0: "\p \ ?PU - {id}. ?pp p = 0" by blast + then have "p \ id" + by simp + then obtain i where i: "p i \ i" + unfolding fun_eq_iff by auto + from ld [OF i [symmetric]] have ex:"\i \ ?U. A$i$p i = 0" + by blast + from setprod_zero [OF fU ex] have "?pp p = 0" + by simp + } + then have p0: "\p \ ?PU - {id}. ?pp p = 0" + by blast from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis unfolding det_def by (simp add: sign_id) qed @@ -257,18 +280,21 @@ { fix i assume i: "i \ ?U" - have "?f i i = 1" using i by (vector mat_def) + have "?f i i = 1" + using i by (vector mat_def) } then have th: "setprod (\i. ?f i i) ?U = setprod (\x. 1) ?U" by (auto intro: setprod_cong) { fix i j assume i: "i \ ?U" and j: "j \ ?U" and ij: "i \ j" - have "?f i j = 0" using i j ij by (vector mat_def) + have "?f i j = 0" using i j ij + by (vector mat_def) } - then have "det ?A = setprod (\i. ?f i i) ?U" using det_diagonal - by blast - also have "\ = 1" unfolding th setprod_1 .. + then have "det ?A = setprod (\i. ?f i i) ?U" + using det_diagonal by blast + also have "\ = 1" + unfolding th setprod_1 .. finally show ?thesis . qed @@ -278,7 +304,7 @@ lemma det_permute_rows: fixes A :: "'a::comm_ring_1^'n^'n" assumes p: "p permutes (UNIV :: 'n::finite set)" - shows "det(\ i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A" + shows "det (\ i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A" apply (simp add: det_def setsum_right_distrib mult_assoc[symmetric]) apply (subst sum_permutations_compose_right[OF p]) proof (rule setsum_cong2) @@ -286,21 +312,22 @@ let ?PU = "{p. p permutes ?U}" fix q assume qPU: "q \ ?PU" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from qPU have q: "q permutes ?U" by blast from p q have pp: "permutation p" and qp: "permutation q" by (metis fU permutation_permutes)+ from permutes_inv[OF p] have ip: "inv p permutes ?U" . - have "setprod (\i. A$p i$ (q o p) i) ?U = setprod ((\i. A$p i$(q o p) i) o inv p) ?U" + have "setprod (\i. A$p i$ (q \ p) i) ?U = setprod ((\i. A$p i$(q \ p) i) \ inv p) ?U" by (simp only: setprod_permute[OF ip, symmetric]) - also have "\ = setprod (\i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U" + also have "\ = setprod (\i. A $ (p \ inv p) i $ (q \ (p \ inv p)) i) ?U" by (simp only: o_def) also have "\ = setprod (\i. A$i$q i) ?U" by (simp only: o_def permutes_inverses[OF p]) - finally have thp: "setprod (\i. A$p i$ (q o p) i) ?U = setprod (\i. A$i$q i) ?U" + finally have thp: "setprod (\i. A$p i$ (q \ p) i) ?U = setprod (\i. A$i$q i) ?U" by blast - show "of_int (sign (q o p)) * setprod (\i. A$ p i$ (q o p) i) ?U = + show "of_int (sign (q \ p)) * setprod (\i. A$ p i$ (q \ p) i) ?U = of_int (sign p) * of_int (sign q) * setprod (\i. A$i$q i) ?U" by (simp only: thp sign_compose[OF qp pp] mult_commute of_int_mult) qed @@ -317,7 +344,8 @@ moreover have "?Ap = transpose (\ i. transpose A $ p i)" by (simp add: transpose_def vec_eq_iff) - ultimately show ?thesis by simp + ultimately show ?thesis + by simp qed lemma det_identical_rows: @@ -372,7 +400,7 @@ shows "det((\ i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) = det((\ i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) + det((\ i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)" - unfolding det_def vec_lambda_beta setsum_addf[symmetric] + unfolding det_def vec_lambda_beta setsum_addf[symmetric] proof (rule setsum_cong2) let ?U = "UNIV :: 'n set" let ?pU = "{p. p permutes ?U}" @@ -382,8 +410,10 @@ fix p assume p: "p \ ?pU" let ?Uk = "?U - {k}" - from p have pU: "p permutes ?U" by blast - have kU: "?U = insert k ?Uk" by blast + from p have pU: "p permutes ?U" + by blast + have kU: "?U = insert k ?Uk" + by blast { fix j assume j: "j \ ?Uk" @@ -395,10 +425,11 @@ apply - apply (rule setprod_cong, simp_all)+ done - have th3: "finite ?Uk" "k \ ?Uk" by auto + have th3: "finite ?Uk" "k \ ?Uk" + by auto have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?f i $ p i) (insert k ?Uk)" unfolding kU[symmetric] .. - also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" + also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" apply (rule setprod_insert) apply simp apply blast @@ -409,8 +440,8 @@ by (metis th1 th2) also have "\ = setprod (\i. ?g i $ p i) (insert k ?Uk) + setprod (\i. ?h i $ p i) (insert k ?Uk)" unfolding setprod_insert[OF th3] by simp - finally have "setprod (\i. ?f i $ p i) ?U = - setprod (\i. ?g i $ p i) ?U + setprod (\i. ?h i $ p i) ?U" unfolding kU[symmetric] . + finally have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?g i $ p i) ?U + setprod (\i. ?h i $ p i) ?U" + unfolding kU[symmetric] . then show "of_int (sign p) * setprod (\i. ?f i $ p i) ?U = of_int (sign p) * setprod (\i. ?g i $ p i) ?U + of_int (sign p) * setprod (\i. ?h i $ p i) ?U" by (simp add: field_simps) @@ -429,19 +460,23 @@ fix p assume p: "p \ ?pU" let ?Uk = "?U - {k}" - from p have pU: "p permutes ?U" by blast - have kU: "?U = insert k ?Uk" by blast + from p have pU: "p permutes ?U" + by blast + have kU: "?U = insert k ?Uk" + by blast { fix j assume j: "j \ ?Uk" - from j have "?f j $ p j = ?g j $ p j" by simp + from j have "?f j $ p j = ?g j $ p j" + by simp } then have th1: "setprod (\i. ?f i $ p i) ?Uk = setprod (\i. ?g i $ p i) ?Uk" apply - apply (rule setprod_cong) apply simp_all done - have th3: "finite ?Uk" "k \ ?Uk" by auto + have th3: "finite ?Uk" "k \ ?Uk" + by auto have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?f i $ p i) (insert k ?Uk)" unfolding kU[symmetric] .. also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" @@ -495,7 +530,8 @@ let ?P = "\x. ?d (row i A + x) = det A" { fix k - have "(if k = i then row i A + 0 else row k A) = row k A" by simp + have "(if k = i then row i A + 0 else row k A) = row k A" + by simp } then have P0: "?P 0" apply - @@ -506,9 +542,11 @@ { fix c z y assume zS: "z \ ?S" and Py: "?P y" - from zS obtain j where j: "z = row j A" "i \ j" by blast + from zS obtain j where j: "z = row j A" "i \ j" + by blast let ?w = "row i A + y" - have th0: "row i A + (c*s z + y) = ?w + c*s z" by vector + have th0: "row i A + (c*s z + y) = ?w + c*s z" + by vector have thz: "?d z = 0" apply (rule det_identical_rows[OF j(2)]) using j @@ -528,10 +566,10 @@ done qed -(* ------------------------------------------------------------------------- *) -(* May as well do this, though it's a bit unsatisfactory since it ignores *) -(* exact duplicates by considering the rows/columns as a set. *) -(* ------------------------------------------------------------------------- *) +text {* + May as well do this, though it's a bit unsatisfactory since it ignores + exact duplicates by considering the rows/columns as a set. +*} lemma det_dependent_rows: fixes A:: "real^'n^'n" @@ -571,9 +609,7 @@ shows "det A = 0" by (metis d det_dependent_rows rows_transpose det_transpose) -(* ------------------------------------------------------------------------- *) -(* Multilinearity and the multiplication formula. *) -(* ------------------------------------------------------------------------- *) +text {* Multilinearity and the multiplication formula. *} lemma Cart_lambda_cong: "(\x. f x = g x) \ (vec_lambda f::'a^'n) = (vec_lambda g :: 'a^'n)" by (rule iffD1[OF vec_lambda_unique]) vector @@ -600,8 +636,10 @@ shows "finite {f. (\i \ {1.. (k::nat)}. f i \ S) \ (\i. i \ {1 .. k} \ f i = i)}" proof (induct k) case 0 - have th: "{f. \i. f i = i} = {id}" by auto - show ?case by (auto simp add: th) + have th: "{f. \i. f i = i} = {id}" + by auto + show ?case + by (auto simp add: th) next case (Suc k) let ?f = "\(y::nat,g) i. if i = Suc k then y else g i" @@ -613,15 +651,18 @@ apply auto done with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f] - show ?case by metis + show ?case + by metis qed -lemma eq_id_iff[simp]: "(\x. f x = x) = (f = id)" by auto +lemma eq_id_iff[simp]: "(\x. f x = x) \ f = id" + by auto lemma det_linear_rows_setsum_lemma: - assumes fS: "finite S" and fT: "finite T" - shows "det((\ i. if i \ T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) = + assumes fS: "finite S" + and fT: "finite T" + shows "det ((\ i. if i \ T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) = setsum (\f. det((\ i. if i \ T then a i (f i) else c i)::'a^'n^'n)) {f. (\i \ T. f i \ S) \ (\i. i \ T \ f i = i)}" using fT @@ -629,7 +670,8 @@ case empty have th0: "\x y. (\ i. if i \ {} then x i else y i) = (\ i. y i)" by vector - from empty.prems show ?case unfolding th0 by simp + from empty.prems show ?case + unfolding th0 by simp next case (insert z T a c) let ?F = "\T. {f. (\i \ T. f i \ S) \ (\i. i \ T \ f i = i)}" @@ -671,7 +713,8 @@ qed lemma det_linear_rows_setsum: - assumes fS: "finite (S::'n::finite set)" + fixes S :: "'n::finite set" + assumes fS: "finite S" shows "det (\ i. setsum (a i) S) = setsum (\f. det (\ i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. \i. f i \ S}" proof - @@ -700,7 +743,8 @@ have "setprod (\i. c i * a i $ p i) ?U = setprod c ?U * setprod (\i. a i $ p i) ?U" unfolding setprod_timesf .. then show "?s * (\xa\?U. c xa * a xa $ p xa) = - setprod c ?U * (?s* (\xa\?U. a xa $ p xa))" by (simp add: field_simps) + setprod c ?U * (?s* (\xa\?U. a xa $ p xa))" + by (simp add: field_simps) qed lemma det_mul: @@ -710,19 +754,22 @@ let ?U = "UNIV :: 'n set" let ?F = "{f. (\i\ ?U. f i \ ?U) \ (\i. i \ ?U \ f i = i)}" let ?PU = "{p. p permutes ?U}" - have fU: "finite ?U" by simp - have fF: "finite ?F" by (rule finite) + have fU: "finite ?U" + by simp + have fF: "finite ?F" + by (rule finite) { fix p assume p: "p permutes ?U" have "p \ ?F" unfolding mem_Collect_eq permutes_in_image[OF p] using p[unfolded permutes_def] by simp } - then have PUF: "?PU \ ?F" by blast + then have PUF: "?PU \ ?F" by blast { fix f assume fPU: "f \ ?F - ?PU" - have fUU: "f ` ?U \ ?U" using fPU by auto + have fUU: "f ` ?U \ ?U" + using fPU by auto from fPU have f: "\i \ ?U. f i \ ?U" "\i. i \ ?U \ f i = i" "\(\y. \!x. f x = y)" unfolding permutes_def by auto @@ -733,7 +780,8 @@ then obtain i j where ij: "f i = f j" "i \ j" unfolding inj_on_def by blast from ij - have rth: "row i ?B = row j ?B" by (vector row_def) + have rth: "row i ?B = row j ?B" + by (vector row_def) from det_identical_rows[OF ij(2) rth] have "det (\ i. A$i$f i *s B$f i) = 0" unfolding det_rows_mul by simp @@ -744,48 +792,56 @@ from f fi have fith: "\i j. f i = f j \ i = j" unfolding inj_on_def by metis note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]] - { fix y - from fs f have "\x. f x = y" by blast - then obtain x where x: "f x = y" by blast + from fs f have "\x. f x = y" + by blast + then obtain x where x: "f x = y" + by blast { fix z assume z: "f z = y" - from fith x z have "z = x" by metis + from fith x z have "z = x" + by metis } - with x have "\!x. f x = y" by blast + with x have "\!x. f x = y" + by blast } - with f(3) have "det (\ i. A$i$f i *s B$f i) = 0" by blast + with f(3) have "det (\ i. A$i$f i *s B$f i) = 0" + by blast } - ultimately have "det (\ i. A$i$f i *s B$f i) = 0" by blast + ultimately have "det (\ i. A$i$f i *s B$f i) = 0" + by blast } - hence zth: "\ f\ ?F - ?PU. det (\ i. A$i$f i *s B$f i) = 0" + then have zth: "\ f\ ?F - ?PU. det (\ i. A$i$f i *s B$f i) = 0" by simp { fix p assume pU: "p \ ?PU" - from pU have p: "p permutes ?U" by blast + from pU have p: "p permutes ?U" + by blast let ?s = "\p. of_int (sign p)" let ?f = "\q. ?s p * (\i\ ?U. A $ i $ p i) * (?s q * (\i\ ?U. B $ i $ q i))" have "(setsum (\q. ?s q * (\i\ ?U. (\ i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) = (setsum (\q. ?s p * (\i\ ?U. A $ i $ p i) * (?s q * (\i\ ?U. B $ i $ q i))) ?PU)" unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f] - proof(rule setsum_cong2) + proof (rule setsum_cong2) fix q assume qU: "q \ ?PU" - hence q: "q permutes ?U" by blast + then have q: "q permutes ?U" + by blast from p q have pp: "permutation p" and pq: "permutation q" unfolding permutation_permutes by auto have th00: "of_int (sign p) * of_int (sign p) = (1::'a)" "\a. of_int (sign p) * (of_int (sign p) * a) = a" - unfolding mult_assoc[symmetric] unfolding of_int_mult[symmetric] + unfolding mult_assoc[symmetric] + unfolding of_int_mult[symmetric] by (simp_all add: sign_idempotent) - have ths: "?s q = ?s p * ?s (q o inv p)" + have ths: "?s q = ?s p * ?s (q \ inv p)" using pp pq permutation_inverse[OF pp] sign_inverse[OF pp] by (simp add: th00 mult_ac sign_idempotent sign_compose) - have th001: "setprod (\i. B$i$ q (inv p i)) ?U = setprod ((\i. B$i$ q (inv p i)) o p) ?U" + have th001: "setprod (\i. B$i$ q (inv p i)) ?U = setprod ((\i. B$i$ q (inv p i)) \ p) ?U" by (rule setprod_permute[OF p]) have thp: "setprod (\i. (\ i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = setprod (\i. A$i$p i) ?U * setprod (\i. B$i$ q (inv p i)) ?U" @@ -795,7 +851,7 @@ apply vector done show "?s q * setprod (\i. (((\ i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = - ?s p * (setprod (\i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\i. B$i$(q o inv p) i) ?U)" + ?s p * (setprod (\i. A$i$p i) ?U) * (?s (q \ inv p) * setprod (\i. B$i$(q \ inv p) i) ?U)" using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp] by (simp add: sign_nz th00 field_simps sign_idempotent sign_compose) qed @@ -804,16 +860,15 @@ unfolding det_def setsum_product by (rule setsum_cong2) have "det (A**B) = setsum (\f. det (\ i. A $ i $ f i *s B $ f i)) ?F" - unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] by simp + unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] + by simp also have "\ = setsum (\f. det (\ i. A$i$f i *s B$f i)) ?PU" using setsum_mono_zero_cong_left[OF fF PUF zth, symmetric] unfolding det_rows_mul by auto finally show ?thesis unfolding th2 . qed -(* ------------------------------------------------------------------------- *) -(* Relation to invertibility. *) -(* ------------------------------------------------------------------------- *) +text {* Relation to invertibility. *} lemma invertible_left_inverse: fixes A :: "real^'n^'n" @@ -833,18 +888,23 @@ assume "invertible A" then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1" unfolding invertible_righ_inverse by blast - hence "det (A ** B) = det (mat 1 :: real ^'n^'n)" by simp - hence "det A \ 0" by (simp add: det_mul det_I) algebra + then have "det (A ** B) = det (mat 1 :: real ^'n^'n)" + by simp + then have "det A \ 0" + by (simp add: det_mul det_I) algebra } moreover { assume H: "\ invertible A" let ?U = "UNIV :: 'n set" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from H obtain c i where c: "setsum (\i. c i *s row i A) ?U = 0" - and iU: "i \ ?U" and ci: "c i \ 0" + and iU: "i \ ?U" + and ci: "c i \ 0" unfolding invertible_righ_inverse - unfolding matrix_right_invertible_independent_rows by blast + unfolding matrix_right_invertible_independent_rows + by blast have *: "\(a::real^'n) b. a + b = 0 \ -a = b" apply (drule_tac f="op + (- a)" in cong[OF refl]) apply (simp only: ab_left_minus add_assoc[symmetric]) @@ -856,7 +916,9 @@ apply - apply (rule vector_mul_lcancel_imp[OF ci]) apply (auto simp add: field_simps) - unfolding * .. + unfolding * + apply rule + done have thr: "- row i A \ span {row j A| j. j \ i}" unfolding thr0 apply (rule span_setsum) @@ -872,27 +934,31 @@ unfolding det_row_span[OF thr, symmetric] right_minus unfolding det_zero_row[OF thrb] .. } - ultimately show ?thesis by blast + ultimately show ?thesis + by blast qed -(* ------------------------------------------------------------------------- *) -(* Cramer's rule. *) -(* ------------------------------------------------------------------------- *) +text {* Cramer's rule. *} lemma cramer_lemma_transpose: - fixes A:: "real^'n^'n" and x :: "real^'n" + fixes A:: "real^'n^'n" + and x :: "real^'n" shows "det ((\ i. if i = k then setsum (\i. x$i *s row i A) (UNIV::'n set) - else row i A)::real^'n^'n) = x$k * det A" + else row i A)::real^'n^'n) = x$k * det A" (is "?lhs = ?rhs") proof - let ?U = "UNIV :: 'n set" let ?Uk = "?U - {k}" - have U: "?U = insert k ?Uk" by blast - have fUk: "finite ?Uk" by simp - have kUk: "k \ ?Uk" by simp + have U: "?U = insert k ?Uk" + by blast + have fUk: "finite ?Uk" + by simp + have kUk: "k \ ?Uk" + by simp have th00: "\k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s" by (vector field_simps) - have th001: "\f k . (\x. if x = k then f k else f x) = f" by auto + have th001: "\f k . (\x. if x = k then f k else f x) = f" + by auto have "(\ i. row i A) = A" by (vector row_def) then have thd1: "det (\ i. row i A) = det A" by simp @@ -925,7 +991,8 @@ let ?U = "UNIV :: 'n set" have *: "\c. setsum (\i. c i *s row i (transpose A)) ?U = setsum (\i. c i *s column i A) ?U" by (auto simp add: row_transpose intro: setsum_cong2) - show ?thesis unfolding matrix_mult_vsum + show ?thesis + unfolding matrix_mult_vsum unfolding cramer_lemma_transpose[of k x "transpose A", unfolded det_transpose, symmetric] unfolding *[of "\i. x$i"] apply (subst det_transpose[symmetric]) @@ -940,10 +1007,14 @@ shows "A *v x = b \ x = (\ k. det(\ i j. if j=k then b$i else A$i$j) / det A)" proof - from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1" - unfolding invertible_det_nz[symmetric] invertible_def by blast - have "(A ** B) *v b = b" by (simp add: B matrix_vector_mul_lid) - then have "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc) - then have xe: "\x. A*v x = b" by blast + unfolding invertible_det_nz[symmetric] invertible_def + by blast + have "(A ** B) *v b = b" + by (simp add: B matrix_vector_mul_lid) + then have "A *v (B *v b) = b" + by (simp add: matrix_vector_mul_assoc) + then have xe: "\x. A *v x = b" + by blast { fix x assume x: "A *v x = b" @@ -951,12 +1022,11 @@ unfolding x[symmetric] using d0 by (simp add: vec_eq_iff cramer_lemma field_simps) } - with xe show ?thesis by auto + with xe show ?thesis + by auto qed -(* ------------------------------------------------------------------------- *) -(* Orthogonality of a transformation and matrix. *) -(* ------------------------------------------------------------------------- *) +text {* Orthogonality of a transformation and matrix. *} definition "orthogonal_transformation f \ linear f \ (\v w. f v \ f w = v \ w)" @@ -1015,9 +1085,11 @@ by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvector_def th0 setsum_delta[OF fU] mat_def axis_def) } - then have "orthogonal_matrix ?mf" unfolding orthogonal_matrix + then have "orthogonal_matrix ?mf" + unfolding orthogonal_matrix by vector - with lf have ?rhs by blast + with lf have ?rhs + by blast } moreover { @@ -1029,7 +1101,8 @@ apply (simp add: dot_matrix_product matrix_mul_lid) done } - ultimately show ?thesis by blast + ultimately show ?thesis + by blast qed lemma det_orthogonal_matrix: @@ -1040,14 +1113,16 @@ have th: "\x::'a. x = 1 \ x = - 1 \ x*x = 1" (is "\x::'a. ?ths x") proof - fix x:: 'a - have th0: "x*x - 1 = (x - 1)*(x + 1)" + have th0: "x * x - 1 = (x - 1) * (x + 1)" by (simp add: field_simps) have th1: "\(x::'a) y. x = - y \ x + y = 0" apply (subst eq_iff_diff_eq_0) apply simp done - have "x * x = 1 \ x*x - 1 = 0" by simp - also have "\ \ x = 1 \ x = - 1" unfolding th0 th1 by simp + have "x * x = 1 \ x * x - 1 = 0" + by simp + also have "\ \ x = 1 \ x = - 1" + unfolding th0 th1 by simp finally show "?ths x" .. qed from oQ have "Q ** transpose Q = mat 1" @@ -1059,9 +1134,8 @@ then show ?thesis unfolding th . qed -(* ------------------------------------------------------------------------- *) -(* Linearity of scaling, and hence isometry, that preserves origin. *) -(* ------------------------------------------------------------------------- *) +text {* Linearity of scaling, and hence isometry, that preserves origin. *} + lemma scaling_linear: fixes f :: "real ^'n \ real ^'n" assumes f0: "f 0 = 0" @@ -1088,9 +1162,7 @@ "f (0:: real^'n) = (0:: real^'n) \ \x y. dist(f x) (f y) = dist x y \ linear f" by (rule scaling_linear[where c=1]) simp_all -(* ------------------------------------------------------------------------- *) -(* Hence another formulation of orthogonal transformation. *) -(* ------------------------------------------------------------------------- *) +text {* Hence another formulation of orthogonal transformation. *} lemma orthogonal_transformation_isometry: "orthogonal_transformation f \ f(0::real^'n) = (0::real^'n) \ (\x y. dist(f x) (f y) = dist x y)" @@ -1108,9 +1180,7 @@ apply (simp add: dist_norm) done -(* ------------------------------------------------------------------------- *) -(* Can extend an isometry from unit sphere. *) -(* ------------------------------------------------------------------------- *) +text {* Can extend an isometry from unit sphere. *} lemma isometry_sphere_extend: fixes f:: "real ^'n \ real ^'n" @@ -1126,7 +1196,7 @@ "x' = norm x *\<^sub>R x0'" "y' = norm y *\<^sub>R y0'" "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1" "norm(x0' - y0') = norm(x0 - y0)" - hence *: "x0 \ y0 = x0' \ y0' + y0' \ x0' - y0 \ x0 " + then have *: "x0 \ y0 = x0' \ y0' + y0' \ x0' - y0 \ x0 " by (simp add: norm_eq norm_eq_1 inner_add inner_diff) have "norm(x' - y') = norm(x - y)" apply (subst H(1)) @@ -1135,7 +1205,8 @@ apply (subst H(4)) using H(5-9) apply (simp add: norm_eq norm_eq_1) - apply (simp add: inner_diff scalar_mult_eq_scaleR) unfolding * + apply (simp add: inner_diff scalar_mult_eq_scaleR) + unfolding * apply (simp add: field_simps) done } @@ -1144,16 +1215,19 @@ { fix x:: "real ^'n" assume nx: "norm x = 1" - have "?g x = f x" using nx by auto + have "?g x = f x" + using nx by auto } then have thfg: "\x. norm x = 1 \ ?g x = f x" by blast - have g0: "?g 0 = 0" by simp + have g0: "?g 0 = 0" + by simp { fix x y :: "real ^'n" { assume "x = 0" "y = 0" - then have "dist (?g x) (?g y) = dist x y" by simp + then have "dist (?g x) (?g y) = dist x y" + by simp } moreover { @@ -1192,7 +1266,8 @@ from z th0[OF th00] have "dist (?g x) (?g y) = dist x y" by (simp add: dist_norm) } - ultimately have "dist (?g x) (?g y) = dist x y" by blast + ultimately have "dist (?g x) (?g y) = dist x y" + by blast } note thd = this show ?thesis @@ -1203,9 +1278,7 @@ done qed -(* ------------------------------------------------------------------------- *) -(* Rotation, reflection, rotoinversion. *) -(* ------------------------------------------------------------------------- *) +text {* Rotation, reflection, rotoinversion. *} definition "rotation_matrix Q \ orthogonal_matrix Q \ det Q = 1" definition "rotoinversion_matrix Q \ orthogonal_matrix Q \ det Q = - 1" @@ -1215,9 +1288,7 @@ shows " orthogonal_matrix Q \ rotation_matrix Q \ rotoinversion_matrix Q" by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix) -(* ------------------------------------------------------------------------- *) -(* Explicit formulas for low dimensions. *) -(* ------------------------------------------------------------------------- *) +text {* Explicit formulas for low dimensions. *} lemma setprod_1: "setprod f {(1::nat)..1} = f 1" by simp @@ -1250,8 +1321,10 @@ A$1$2 * A$2$1 * A$3$3 - A$1$3 * A$2$2 * A$3$1" proof - - have f123: "finite {2::3, 3}" "1 \ {2::3, 3}" by auto - have f23: "finite {3::3}" "2 \ {3::3}" by auto + have f123: "finite {2::3, 3}" "1 \ {2::3, 3}" + by auto + have f23: "finite {3::3}" "2 \ {3::3}" + by auto show ?thesis unfolding det_def UNIV_3