# HG changeset patch # User nipkow # Date 1515177176 -3600 # Node ID 7905adb28bdcf0fd31e70d9e4b8a99b87b1bacb2 # Parent df79ef3b3a41d973ad02e70c130f56a5dd145f97 tuned op's diff -r df79ef3b3a41 -r 7905adb28bdc src/HOL/Algebra/Group.thy --- a/src/HOL/Algebra/Group.thy Fri Jan 05 18:41:42 2018 +0100 +++ b/src/HOL/Algebra/Group.thy Fri Jan 05 19:32:56 2018 +0100 @@ -773,7 +773,7 @@ text_raw \\label{sec:subgroup-lattice}\ theorem (in group) subgroups_partial_order: - "partial_order \carrier = {H. subgroup H G}, eq = op =, le = op \\" + "partial_order \carrier = {H. subgroup H G}, eq = op =, le = (op \)\" by standard simp_all lemma (in group) subgroup_self: @@ -818,7 +818,7 @@ qed theorem (in group) subgroups_complete_lattice: - "complete_lattice \carrier = {H. subgroup H G}, eq = op =, le = op \\" + "complete_lattice \carrier = {H. subgroup H G}, eq = op =, le = (op \)\" (is "complete_lattice ?L") proof (rule partial_order.complete_lattice_criterion1) show "partial_order ?L" by (rule subgroups_partial_order)