# HG changeset patch # User paulson # Date 1531412618 -3600 # Node ID 79abf4201e8dd94448eb73644dae0cc000f8a9f8 # Parent 75129a73aca3b521857565944e8dd324889bf8cb# Parent 3db8520941a4d4db5517351d3f875d75564eabaf merged diff -r 75129a73aca3 -r 79abf4201e8d src/HOL/Nat.thy --- a/src/HOL/Nat.thy Thu Jul 12 11:23:46 2018 +0200 +++ b/src/HOL/Nat.thy Thu Jul 12 17:23:38 2018 +0100 @@ -2093,7 +2093,7 @@ lemma inj_on_diff_nat: fixes k :: nat - assumes "\n \ N. k \ n" + assumes "\n. n \ N \ k \ n" shows "inj_on (\n. n - k) N" proof (rule inj_onI) fix x y diff -r 75129a73aca3 -r 79abf4201e8d src/HOL/Set_Interval.thy --- a/src/HOL/Set_Interval.thy Thu Jul 12 11:23:46 2018 +0200 +++ b/src/HOL/Set_Interval.thy Thu Jul 12 17:23:38 2018 +0100 @@ -91,29 +91,27 @@ lemma Compl_lessThan [simp]: "!!k:: 'a::linorder. -lessThan k = atLeast k" -apply (auto simp add: lessThan_def atLeast_def) -done + by (auto simp add: lessThan_def atLeast_def) lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}" -by auto + by auto lemma (in ord) greaterThan_iff [iff]: "(i \ greaterThan k) = (k atLeast k) = (k<=i)" by (simp add: atLeast_def) -lemma Compl_atLeast [simp]: - "!!k:: 'a::linorder. -atLeast k = lessThan k" +lemma Compl_atLeast [simp]: "!!k:: 'a::linorder. -atLeast k = lessThan k" by (auto simp add: lessThan_def atLeast_def) lemma (in ord) atMost_iff [iff]: "(i \ atMost k) = (i<=k)" @@ -146,35 +144,25 @@ lemma greaterThan_subset_iff [iff]: "(greaterThan x \ greaterThan y) = (y \ (x::'a::linorder))" -apply (auto simp add: greaterThan_def) - apply (subst linorder_not_less [symmetric], blast) -done + unfolding greaterThan_def by (auto simp: linorder_not_less [symmetric]) lemma greaterThan_eq_iff [iff]: "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" -apply (rule iffI) - apply (erule equalityE) - apply simp_all -done + by (auto simp: elim!: equalityE) lemma atMost_subset_iff [iff]: "(atMost x \ atMost y) = (x \ (y::'a::order))" -by (blast intro: order_trans) + by (blast intro: order_trans) lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" -by (blast intro: order_antisym order_trans) + by (blast intro: order_antisym order_trans) lemma lessThan_subset_iff [iff]: "(lessThan x \ lessThan y) = (x \ (y::'a::linorder))" -apply (auto simp add: lessThan_def) - apply (subst linorder_not_less [symmetric], blast) -done + unfolding lessThan_def by (auto simp: linorder_not_less [symmetric]) lemma lessThan_eq_iff [iff]: "(lessThan x = lessThan y) = (x = (y::'a::linorder))" -apply (rule iffI) - apply (erule equalityE) - apply simp_all -done + by (auto simp: elim!: equalityE) lemma lessThan_strict_subset_iff: fixes m n :: "'a::linorder" @@ -195,21 +183,17 @@ context ord begin -lemma greaterThanLessThan_iff [simp]: - "(i \ {l<.. i < u)" -by (simp add: greaterThanLessThan_def) - -lemma atLeastLessThan_iff [simp]: - "(i \ {l.. i \ i < u)" -by (simp add: atLeastLessThan_def) - -lemma greaterThanAtMost_iff [simp]: - "(i \ {l<..u}) = (l < i \ i \ u)" -by (simp add: greaterThanAtMost_def) - -lemma atLeastAtMost_iff [simp]: - "(i \ {l..u}) = (l \ i \ i \ u)" -by (simp add: atLeastAtMost_def) +lemma greaterThanLessThan_iff [simp]: "(i \ {l<.. i < u)" + by (simp add: greaterThanLessThan_def) + +lemma atLeastLessThan_iff [simp]: "(i \ {l.. i \ i < u)" + by (simp add: atLeastLessThan_def) + +lemma greaterThanAtMost_iff [simp]: "(i \ {l<..u}) = (l < i \ i \ u)" + by (simp add: greaterThanAtMost_def) + +lemma atLeastAtMost_iff [simp]: "(i \ {l..u}) = (l \ i \ i \ u)" + by (simp add: atLeastAtMost_def) text \The above four lemmas could be declared as iffs. Unfortunately this breaks many proofs. Since it only helps blast, it is better to leave them @@ -467,11 +451,11 @@ lemma (in linorder) atLeastLessThan_subset_iff: "{a.. {c.. b \ a \ c\a \ b\d" -apply (auto simp:subset_eq Ball_def) -apply(frule_tac x=a in spec) -apply(erule_tac x=d in allE) -apply (simp add: less_imp_le) -done + apply (auto simp:subset_eq Ball_def not_le) + apply(frule_tac x=a in spec) + apply(erule_tac x=d in allE) + apply (auto simp: ) + done lemma atLeastLessThan_inj: fixes a b c d :: "'a::linorder" @@ -718,17 +702,15 @@ subsubsection \The Constant @{term greaterThan}\ lemma greaterThan_0: "greaterThan 0 = range Suc" -apply (simp add: greaterThan_def) -apply (blast dest: gr0_conv_Suc [THEN iffD1]) -done + unfolding greaterThan_def + by (blast dest: gr0_conv_Suc [THEN iffD1]) lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}" -apply (simp add: greaterThan_def) -apply (auto elim: linorder_neqE) -done + unfolding greaterThan_def + by (auto elim: linorder_neqE) lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}" -by blast + by blast subsubsection \The Constant @{term atLeast}\ @@ -736,29 +718,24 @@ by (unfold atLeast_def UNIV_def, simp) lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}" -apply (simp add: atLeast_def) -apply (simp add: Suc_le_eq) -apply (simp add: order_le_less, blast) -done + unfolding atLeast_def by (auto simp: order_le_less Suc_le_eq) lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" -by blast + by blast subsubsection \The Constant @{term atMost}\ lemma atMost_0 [simp]: "atMost (0::nat) = {0}" -by (simp add: atMost_def) + by (simp add: atMost_def) lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" -apply (simp add: atMost_def) -apply (simp add: less_Suc_eq order_le_less, blast) -done + unfolding atMost_def by (auto simp add: less_Suc_eq order_le_less) lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" -by blast + by blast subsubsection \The Constant @{term atLeastLessThan}\ @@ -770,28 +747,24 @@ specific concept to a more general one.\ lemma atLeast0LessThan [code_abbrev]: "{0::nat.. j \ {i.. {j..Intervals and numerals\ @@ -1123,7 +1088,7 @@ by auto lemma image_add_int_atLeastLessThan: - "(%x. x + (l::int)) ` {0..x. x + (l::int)) ` {0..A bounded set of natural numbers is finite.\ lemma bounded_nat_set_is_finite: "(\i\N. i < (n::nat)) \ finite N" -apply (rule finite_subset) - apply (rule_tac [2] finite_lessThan, auto) -done + by (rule finite_subset [OF _ finite_lessThan]) auto text \A set of natural numbers is finite iff it is bounded.\ lemma finite_nat_set_iff_bounded: @@ -1195,11 +1158,9 @@ assume ?B show ?F using \?B\ by(blast intro:bounded_nat_set_is_finite) qed -lemma finite_nat_set_iff_bounded_le: - "finite(N::nat set) = (\m. \n\N. n<=m)" -apply(simp add:finite_nat_set_iff_bounded) -apply(blast dest:less_imp_le_nat le_imp_less_Suc) -done +lemma finite_nat_set_iff_bounded_le: "finite(N::nat set) = (\m. \n\N. n\m)" + unfolding finite_nat_set_iff_bounded + by (blast dest:less_imp_le_nat le_imp_less_Suc) lemma finite_less_ub: "!!f::nat=>nat. (!!n. n \ f n) ==> finite {n. f n \ u}" @@ -1298,10 +1259,9 @@ lemma UN_finite2_eq: "(\n::nat. (\i\{0..i\{0.. (\n. A n) = (\n. B n)" - apply (rule subset_antisym) - apply (rule UN_finite2_subset, blast) - apply (rule UN_finite2_subset [where k=k]) - apply (force simp add: atLeastLessThan_add_Un [of 0]) + apply (rule subset_antisym [OF UN_finite_subset UN_finite2_subset]) + apply auto + apply (force simp add: atLeastLessThan_add_Un [of 0])+ done @@ -1315,7 +1275,7 @@ lemma card_atLeastLessThan [simp]: "card {l..x. x + l) ` {.. \h. bij_betw h {0.. \h. bij_betw h M {0.. finite B \ card A = card B \ \h. bij_betw h A B" -apply(drule ex_bij_betw_finite_nat) -apply(drule ex_bij_betw_nat_finite) -apply(auto intro!:bij_betw_trans) -done + apply(drule ex_bij_betw_finite_nat) + apply(drule ex_bij_betw_nat_finite) + apply(auto intro!:bij_betw_trans) + done lemma ex_bij_betw_nat_finite_1: "finite M \ \h. bij_betw h {1 .. card M} M" -by (rule finite_same_card_bij) auto + by (rule finite_same_card_bij) auto lemma bij_betw_iff_card: assumes "finite A" "finite B" @@ -1428,26 +1388,21 @@ lemma image_atLeastZeroLessThan_int: "0 \ u ==> {(0::int).. u") - apply (subst image_atLeastZeroLessThan_int, assumption) - apply (rule finite_imageI) - apply auto - done +proof (cases "0 \ u") + case True + then show ?thesis + by (auto simp: image_atLeastZeroLessThan_int) +qed auto lemma finite_atLeastLessThan_int [iff]: "finite {l..Cardinality\ lemma card_atLeastZeroLessThan_int: "card {(0::int).. u") - apply (subst image_atLeastZeroLessThan_int, assumption) - apply (subst card_image) - apply (auto simp add: inj_on_def) - done +proof (cases "0 \ u") + case True + then show ?thesis + by (auto simp: image_atLeastZeroLessThan_int card_image inj_on_def) +qed auto lemma card_atLeastLessThan_int [simp]: "card {l.. k < (i::nat)}" proof - @@ -1496,43 +1452,44 @@ qed lemma card_less: -assumes zero_in_M: "0 \ M" -shows "card {k \ M. k < Suc i} \ 0" + assumes zero_in_M: "0 \ M" + shows "card {k \ M. k < Suc i} \ 0" proof - from zero_in_M have "{k \ M. k < Suc i} \ {}" by auto with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) qed -lemma card_less_Suc2: "0 \ M \ card {k. Suc k \ M \ k < i} = card {k \ M. k < Suc i}" -apply (rule card_bij_eq [of Suc _ _ "\x. x - Suc 0"]) -apply auto -apply (rule inj_on_diff_nat) -apply auto -apply (case_tac x) -apply auto -apply (case_tac xa) -apply auto -apply (case_tac xa) -apply auto -done +lemma card_less_Suc2: + assumes "0 \ M" shows "card {k. Suc k \ M \ k < i} = card {k \ M. k < Suc i}" +proof - + have *: "\j \ M; j < Suc i\ \ j - Suc 0 < i \ Suc (j - Suc 0) \ M \ Suc 0 \ j" for j + by (cases j) (use assms in auto) + show ?thesis + proof (rule card_bij_eq) + show "inj_on Suc {k. Suc k \ M \ k < i}" + by force + show "inj_on (\x. x - Suc 0) {k \ M. k < Suc i}" + by (rule inj_on_diff_nat) (use * in blast) + qed (use * in auto) +qed lemma card_less_Suc: - assumes zero_in_M: "0 \ M" + assumes "0 \ M" shows "Suc (card {k. Suc k \ M \ k < i}) = card {k \ M. k < Suc i}" proof - - from assms have a: "0 \ {k \ M. k < Suc i}" by simp - hence c: "{k \ M. k < Suc i} = insert 0 ({k \ M. k < Suc i} - {0})" - by (auto simp only: insert_Diff) - have b: "{k \ M. k < Suc i} - {0} = {k \ M - {0}. k < Suc i}" by auto - from finite_M_bounded_by_nat[of "\x. x \ M" "Suc i"] - have "Suc (card {k. Suc k \ M \ k < i}) = card (insert 0 ({k \ M. k < Suc i} - {0}))" - apply (subst card_insert) - apply simp_all - apply (subst b) - apply (subst card_less_Suc2[symmetric]) - apply simp_all - done - with c show ?thesis by simp + have "Suc (card {k. Suc k \ M \ k < i}) = Suc (card {k. Suc k \ M - {0} \ k < i})" + by simp + also have "\ = Suc (card {k \ M - {0}. k < Suc i})" + apply (subst card_less_Suc2) + using assms by auto + also have "\ = Suc (card ({k \ M. k < Suc i} - {0}))" + by (force intro: arg_cong [where f=card]) + also have "\ = card (insert 0 ({k \ M. k < Suc i} - {0}))" + by (simp add: card_insert) + also have "... = card {k \ M. k < Suc i}" + using assms + by (force simp add: intro: arg_cong [where f=card]) + finally show ?thesis. qed @@ -1549,41 +1506,41 @@ "{.. {l} Un {l<.. {l<.. {l} Un {l<..u} = {l..u}" - "(l::'a::linorder) <= u ==> {l.. u ==> {l} Un {l<..u} = {l..u}" + "(l::'a::linorder) \ u ==> {l..One- and two-sided intervals\ lemma ivl_disj_un_one: "(l::'a::linorder) < u ==> {..l} Un {l<.. {.. {..l} Un {l<..u} = {..u}" - "(l::'a::linorder) <= u ==> {.. {l<..u} Un {u<..} = {l<..}" + "(l::'a::linorder) \ u ==> {.. u ==> {..l} Un {l<..u} = {..u}" + "(l::'a::linorder) \ u ==> {.. u ==> {l<..u} Un {u<..} = {l<..}" "(l::'a::linorder) < u ==> {l<.. {l..u} Un {u<..} = {l..}" - "(l::'a::linorder) <= u ==> {l.. u ==> {l..u} Un {u<..} = {l..}" + "(l::'a::linorder) \ u ==> {l..Two- and two-sided intervals\ lemma ivl_disj_un_two: - "[| (l::'a::linorder) < m; m <= u |] ==> {l<.. {l<..m} Un {m<.. {l.. {l..m} Un {m<.. {l<.. {l<..m} Un {m<..u} = {l<..u}" - "[| (l::'a::linorder) <= m; m <= u |] ==> {l.. {l..m} Un {m<..u} = {l..u}" + "[| (l::'a::linorder) < m; m \ u |] ==> {l<.. m; m < u |] ==> {l<..m} Un {m<.. m; m \ u |] ==> {l.. m; m < u |] ==> {l..m} Un {m<.. u |] ==> {l<.. m; m \ u |] ==> {l<..m} Un {m<..u} = {l<..u}" + "[| (l::'a::linorder) \ m; m \ u |] ==> {l.. m; m \ u |] ==> {l..m} Un {m<..u} = {l..u}" by auto lemma ivl_disj_un_two_touch: "[| (l::'a::linorder) < m; m < u |] ==> {l<..m} Un {m.. {l..m} Un {m.. {l<..m} Un {m..u} = {l<..u}" - "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m..u} = {l..u}" + "[| (l::'a::linorder) \ m; m < u |] ==> {l..m} Un {m.. u |] ==> {l<..m} Un {m..u} = {l<..u}" + "[| (l::'a::linorder) \ m; m \ u |] ==> {l..m} Un {m..u} = {l..u}" by auto lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two ivl_disj_un_two_touch @@ -1635,14 +1592,11 @@ subsubsection \Some Subset Conditions\ -lemma ivl_subset [simp]: - "({i.. {m.. i \ m \ i \ j \ (n::'a::linorder))" -apply(auto simp:linorder_not_le) -apply(rule ccontr) -apply(insert linorder_le_less_linear[of i n]) -apply(clarsimp simp:linorder_not_le) -apply(fastforce) -done +lemma ivl_subset [simp]: "({i.. {m.. i \ m \ i \ j \ (n::'a::linorder))" + using linorder_class.le_less_linear[of i n] + apply (auto simp: linorder_not_le) + apply (force intro: leI)+ + done subsection \Generic big monoid operation over intervals\ @@ -1866,14 +1820,14 @@ "sum f {m.. +lemma sum_cl_ivl_add_one_nat: "(n::nat) \ m + 1 ==> (\i=n..m+1. f i) = (\i=n..m. f i) + f(m + 1)" by (auto simp:ac_simps atLeastAtMostSuc_conv) *) lemma sum_head: fixes n :: nat - assumes mn: "m <= n" + assumes mn: "m \ n" shows "(\x\{m..n}. P x) = P m + (\x\{m<..n}. P x)" (is "?lhs = ?rhs") proof - from mn @@ -1904,24 +1858,25 @@ lemmas sum_add_nat_ivl = sum.atLeastLessThan_concat lemma sum_diff_nat_ivl: -fixes f :: "nat \ 'a::ab_group_add" -shows "\ m \ n; n \ p \ \ - sum f {m.. 'a::ab_group_add" + shows "\ m \ n; n \ p \ \ sum f {m.. ('a::ab_group_add)" shows "sum (\k. f k - f(k + 1)) {(m::nat) .. n} = - (if m <= n then f m - f(n + 1) else 0)" + (if m \ n then f m - f(n + 1) else 0)" by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) lemma sum_nat_group: "(\m 0 < k", auto) - apply (induct "n") - apply (simp_all add: sum_add_nat_ivl add.commute atLeast0LessThan[symmetric]) - done +proof (cases k) + case (Suc l) + then have "k > 0" + by auto + then show ?thesis + by (induct n) (simp_all add: sum_add_nat_ivl add.commute atLeast0LessThan[symmetric]) +qed auto lemma sum_triangle_reindex: fixes n :: nat @@ -1971,19 +1926,19 @@ subsubsection \Shifting bounds\ lemma sum_shift_bounds_nat_ivl: - "sum f {m+k..i. f(i + k)){m..i. f(i + k)){m..n::nat}" by (rule sum.reindex_bij_witness[where i="\i. i + k" and j="\i. i - k"]) auto corollary sum_shift_bounds_cl_Suc_ivl: - "sum f {Suc m..Suc n} = sum (%i. f(Suc i)){m..n}" + "sum f {Suc m..Suc n} = sum (\i. f(Suc i)){m..n}" by (simp add:sum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) corollary sum_shift_bounds_Suc_ivl: - "sum f {Suc m..i. f(Suc i)){m..f 0 = 0\ by simp qed -lemma sum_shift_lb_Suc0_0: - "sum f {Suc 0..k} = sum f {0..k}" +lemma sum_shift_lb_Suc0_0: "sum f {Suc 0..k} = sum f {0..k}" proof (cases k) case 0 with \f 0 = 0\ show ?thesis @@ -2054,7 +2008,7 @@ shows "(\i\n. f i) = f 0 + (\i (\i = m..n. f i) = f n + (\i = m.. n \ (\i = m..n. f i) = f n + (\i = m..Shifting bounds\ lemma prod_shift_bounds_nat_ivl: - "prod f {m+k..i. f(i + k)){m..i. f(i + k)){m..n::nat}" by (rule prod.reindex_bij_witness[where i="\i. i + k" and j="\i. i - k"]) auto corollary prod_shift_bounds_cl_Suc_ivl: - "prod f {Suc m..Suc n} = prod (%i. f(Suc i)){m..n}" + "prod f {Suc m..Suc n} = prod (\i. f(Suc i)){m..n}" by (simp add:prod_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) corollary prod_shift_bounds_Suc_ivl: - "prod f {Suc m..i. f(Suc i)){m..Reflexive-transitive closure\ lemma reflcl_set_eq [pred_set_conv]: "(sup (\x y. (x, y) \ r) (=)) = (\x y. (x, y) \ r \ Id)" - by (auto simp add: fun_eq_iff) + by (auto simp: fun_eq_iff) lemma r_into_rtrancl [intro]: "\p. p \ r \ p \ r\<^sup>*" \ \\rtrancl\ of \r\ contains \r\\ @@ -156,18 +156,16 @@ (base) "a = b" | (step) y where "(a, y) \ r\<^sup>*" and "(y, b) \ r" \ \elimination of \rtrancl\ -- by induction on a special formula\ - apply (subgoal_tac "a = b \ (\y. (a, y) \ r\<^sup>* \ (y, b) \ r)") - apply (rule_tac [2] major [THEN rtrancl_induct]) - prefer 2 apply blast - prefer 2 apply blast - apply (erule asm_rl exE disjE conjE base step)+ - done +proof - + have "a = b \ (\y. (a, y) \ r\<^sup>* \ (y, b) \ r)" + by (rule major [THEN rtrancl_induct]) blast+ + then show ?thesis + by (auto intro: base step) +qed lemma rtrancl_Int_subset: "Id \ s \ (r\<^sup>* \ s) O r \ s \ r\<^sup>* \ s" - apply (rule subsetI) - apply auto - apply (erule rtrancl_induct) - apply auto + apply clarify + apply (erule rtrancl_induct, auto) done lemma converse_rtranclp_into_rtranclp: "r a b \ r\<^sup>*\<^sup>* b c \ r\<^sup>*\<^sup>* a c" @@ -193,14 +191,11 @@ done lemma rtrancl_subset_rtrancl: "r \ s\<^sup>* \ r\<^sup>* \ s\<^sup>*" - apply (drule rtrancl_mono) - apply simp - done +by (drule rtrancl_mono, simp) lemma rtranclp_subset: "R \ S \ S \ R\<^sup>*\<^sup>* \ S\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" apply (drule rtranclp_mono) - apply (drule rtranclp_mono) - apply simp + apply (drule rtranclp_mono, simp) done lemmas rtrancl_subset = rtranclp_subset [to_set] @@ -216,21 +211,10 @@ lemmas rtrancl_reflcl [simp] = rtranclp_reflclp [to_set] lemma rtrancl_r_diff_Id: "(r - Id)\<^sup>* = r\<^sup>*" - apply (rule sym) - apply (rule rtrancl_subset) - apply blast - apply clarify - apply (rename_tac a b) - apply (case_tac "a = b") - apply blast - apply blast - done + by (rule rtrancl_subset [symmetric]) auto lemma rtranclp_r_diff_Id: "(inf r (\))\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" - apply (rule sym) - apply (rule rtranclp_subset) - apply blast+ - done + by (rule rtranclp_subset [symmetric]) auto theorem rtranclp_converseD: assumes "(r\\)\<^sup>*\<^sup>* x y" @@ -272,12 +256,12 @@ assumes major: "r\<^sup>*\<^sup>* x z" and cases: "x = z \ P" "\y. r x y \ r\<^sup>*\<^sup>* y z \ P" shows P - apply (subgoal_tac "x = z \ (\y. r x y \ r\<^sup>*\<^sup>* y z)") - apply (rule_tac [2] major [THEN converse_rtranclp_induct]) - prefer 2 apply iprover - prefer 2 apply iprover - apply (erule asm_rl exE disjE conjE cases)+ - done +proof - + have "x = z \ (\y. r x y \ r\<^sup>*\<^sup>* y z)" + by (rule_tac major [THEN converse_rtranclp_induct]) iprover+ + then show ?thesis + by (auto intro: cases) +qed lemmas converse_rtranclE = converse_rtranclpE [to_set] @@ -360,8 +344,7 @@ lemma rtranclp_into_tranclp2: "r a b \ r\<^sup>*\<^sup>* b c \ r\<^sup>+\<^sup>+ a c" \ \intro rule from \r\ and \rtrancl\\ - apply (erule rtranclp.cases) - apply iprover + apply (erule rtranclp.cases, iprover) apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1]) apply (simp | rule r_into_rtranclp)+ done @@ -401,10 +384,8 @@ using assms by cases simp_all lemma trancl_Int_subset: "r \ s \ (r\<^sup>+ \ s) O r \ s \ r\<^sup>+ \ s" - apply (rule subsetI) - apply auto - apply (erule trancl_induct) - apply auto + apply clarify + apply (erule trancl_induct, auto) done lemma trancl_unfold: "r\<^sup>+ = r \ r\<^sup>+ O r" @@ -438,10 +419,8 @@ lemma trancl_id [simp]: "trans r \ r\<^sup>+ = r" apply auto - apply (erule trancl_induct) - apply assumption - apply (unfold trans_def) - apply blast + apply (erule trancl_induct, assumption) + apply (unfold trans_def, blast) done lemma rtranclp_tranclp_tranclp: @@ -485,16 +464,14 @@ and cases: "\y. r y b \ P y" "\y z. r y z \ r\<^sup>+\<^sup>+ z b \ P z \ P y" shows "P a" apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major]) - apply (rule cases) - apply (erule conversepD) + apply (blast intro: cases) apply (blast intro: assms dest!: tranclp_converseD) done lemmas converse_trancl_induct = converse_tranclp_induct [to_set] lemma tranclpD: "R\<^sup>+\<^sup>+ x y \ \z. R x z \ R\<^sup>*\<^sup>* z y" - apply (erule converse_tranclp_induct) - apply auto + apply (erule converse_tranclp_induct, auto) apply (blast intro: rtranclp_trans) done @@ -537,8 +514,7 @@ by (induct rule: rtrancl_induct) auto lemma trancl_subset_Sigma: "r \ A \ A \ r\<^sup>+ \ A \ A" - apply (rule subsetI) - apply (simp only: split_tupled_all) + apply (clarsimp simp:) apply (erule tranclE) apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ done @@ -552,13 +528,19 @@ lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set] lemma trancl_reflcl [simp]: "(r\<^sup>=)\<^sup>+ = r\<^sup>*" - apply safe - apply (drule trancl_into_rtrancl, simp) - apply (erule rtranclE, safe) - apply (rule r_into_trancl, simp) - apply (rule rtrancl_into_trancl1) - apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast) - done +proof - + have "(a, b) \ (r\<^sup>=)\<^sup>+ \ (a, b) \ r\<^sup>*" for a b + by (force dest: trancl_into_rtrancl) + moreover have "(a, b) \ (r\<^sup>=)\<^sup>+" if "(a, b) \ r\<^sup>*" for a b + using that + proof (cases a b rule: rtranclE) + case step + show ?thesis + by (rule rtrancl_into_trancl1) (use step in auto) + qed auto + ultimately show ?thesis + by auto +qed lemma rtrancl_trancl_reflcl [code]: "r\<^sup>* = (r\<^sup>+)\<^sup>=" by simp @@ -570,7 +552,7 @@ by (rule subst [OF reflcl_trancl]) simp lemma rtranclpD: "R\<^sup>*\<^sup>* a b \ a = b \ a \ b \ R\<^sup>+\<^sup>+ a b" - by (force simp add: reflclp_tranclp [symmetric] simp del: reflclp_tranclp) + by (force simp: reflclp_tranclp [symmetric] simp del: reflclp_tranclp) lemmas rtranclD = rtranclpD [to_set] @@ -585,19 +567,20 @@ lemma trancl_insert: "(insert (y, x) r)\<^sup>+ = r\<^sup>+ \ {(a, b). (a, y) \ r\<^sup>* \ (x, b) \ r\<^sup>*}" \ \primitive recursion for \trancl\ over finite relations\ - apply (rule equalityI) - apply (rule subsetI) - apply (simp only: split_tupled_all) - apply (erule trancl_induct, blast) - apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl trancl_trans) - apply (rule subsetI) - apply (blast intro: trancl_mono rtrancl_mono - [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2) - done +proof - + have "\a b. (a, b) \ (insert (y, x) r)\<^sup>+ \ + (a, b) \ r\<^sup>+ \ {(a, b). (a, y) \ r\<^sup>* \ (x, b) \ r\<^sup>*}" + by (erule trancl_induct) (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl trancl_trans)+ + moreover have "r\<^sup>+ \ {(a, b). (a, y) \ r\<^sup>* \ (x, b) \ r\<^sup>*} \ (insert (y, x) r)\<^sup>+" + by (blast intro: trancl_mono rtrancl_mono [THEN [2] rev_subsetD] + rtrancl_trancl_trancl rtrancl_into_trancl2) + ultimately show ?thesis + by auto +qed lemma trancl_insert2: "(insert (a, b) r)\<^sup>+ = r\<^sup>+ \ {(x, y). ((x, a) \ r\<^sup>+ \ x = a) \ ((b, y) \ r\<^sup>+ \ y = b)}" - by (auto simp add: trancl_insert rtrancl_eq_or_trancl) + by (auto simp: trancl_insert rtrancl_eq_or_trancl) lemma rtrancl_insert: "(insert (a,b) r)\<^sup>* = r\<^sup>* \ {(x, y). (x, a) \ r\<^sup>* \ (b, y) \ r\<^sup>*}" using trancl_insert[of a b r] @@ -636,28 +619,30 @@ lemma trancl_range [simp]: "Range (r\<^sup>+) = Range r" unfolding Domain_converse [symmetric] by (simp add: trancl_converse [symmetric]) -lemma Not_Domain_rtrancl: "x \ Domain R \ (x, y) \ R\<^sup>* \ x = y" - apply auto - apply (erule rev_mp) - apply (erule rtrancl_induct) - apply auto - done +lemma Not_Domain_rtrancl: + assumes "x \ Domain R" shows "(x, y) \ R\<^sup>* \ x = y" +proof - +have "(x, y) \ R\<^sup>* \ x = y" + by (erule rtrancl_induct) (use assms in auto) + then show ?thesis + by auto +qed lemma trancl_subset_Field2: "r\<^sup>+ \ Field r \ Field r" apply clarify apply (erule trancl_induct) - apply (auto simp add: Field_def) + apply (auto simp: Field_def) done lemma finite_trancl[simp]: "finite (r\<^sup>+) = finite r" - apply auto - prefer 2 +proof + show "finite (r\<^sup>+) \ finite r" + by (blast intro: r_into_trancl' finite_subset) + show "finite r \ finite (r\<^sup>+)" apply (rule trancl_subset_Field2 [THEN finite_subset]) - apply (rule finite_SigmaI) - prefer 3 - apply (blast intro: r_into_trancl' finite_subset) - apply (auto simp add: finite_Field) + apply (auto simp: finite_Field) done +qed lemma finite_rtrancl_Image[simp]: assumes "finite R" "finite A" shows "finite (R\<^sup>* `` A)" proof (rule ccontr) @@ -670,13 +655,20 @@ be merged with main body.\ lemma single_valued_confluent: - "single_valued r \ (x, y) \ r\<^sup>* \ (x, z) \ r\<^sup>* \ (y, z) \ r\<^sup>* \ (z, y) \ r\<^sup>*" - apply (erule rtrancl_induct) - apply simp - apply (erule disjE) - apply (blast elim:converse_rtranclE dest:single_valuedD) - apply (blast intro:rtrancl_trans) - done + assumes "single_valued r" and xy: "(x, y) \ r\<^sup>*" and xz: "(x, z) \ r\<^sup>*" + shows "(y, z) \ r\<^sup>* \ (z, y) \ r\<^sup>*" + using xy +proof (induction rule: rtrancl_induct) + case base + show ?case + by (simp add: assms) +next + case (step y z) + with xz \single_valued r\ show ?case + apply (auto simp: elim: converse_rtranclE dest: single_valuedD) + apply (blast intro: rtrancl_trans) + done +qed lemma r_r_into_trancl: "(a, b) \ R \ (b, c) \ R \ (a, c) \ R\<^sup>+" by (fast intro: trancl_trans) @@ -824,16 +816,18 @@ by (fact relpow_Suc_D2' [to_pred]) lemma relpow_E2: - "(x, z) \ R ^^ n \ - (n = 0 \ x = z \ P) \ - (\y m. n = Suc m \ (x, y) \ R \ (y, z) \ R ^^ m \ P) \ P" - apply (cases n) - apply simp - apply (rename_tac nat) - apply (cut_tac n=nat and R=R in relpow_Suc_D2') - apply simp - apply blast - done + assumes "(x, z) \ R ^^ n" "n = 0 \ x = z \ P" + "\y m. n = Suc m \ (x, y) \ R \ (y, z) \ R ^^ m \ P" + shows "P" +proof (cases n) + case 0 + with assms show ?thesis + by simp +next + case (Suc m) + with assms relpow_Suc_D2' [of m R] show ?thesis + by force +qed lemma relpowp_E2: "(P ^^ n) x z \ @@ -915,22 +909,23 @@ by (simp add: rtranclp_is_Sup_relpowp) lemma trancl_power: "p \ R\<^sup>+ \ (\n > 0. p \ R ^^ n)" - apply (cases p) - apply simp - apply (rule iffI) - apply (drule tranclD2) - apply (clarsimp simp: rtrancl_is_UN_relpow) - apply (rule_tac x="Suc x" in exI) - apply (clarsimp simp: relcomp_unfold) - apply fastforce - apply clarsimp - apply (case_tac n) - apply simp - apply clarsimp - apply (drule relpow_imp_rtrancl) - apply (drule rtrancl_into_trancl1) - apply auto - done +proof - + have "((a, b) \ R\<^sup>+) = (\n>0. (a, b) \ R ^^ n)" for a b + proof safe + show "(a, b) \ R\<^sup>+ \ \n>0. (a, b) \ R ^^ n" + apply (drule tranclD2) + apply (fastforce simp: rtrancl_is_UN_relpow relcomp_unfold) + done + show "(a, b) \ R\<^sup>+" if "n > 0" "(a, b) \ R ^^ n" for n + proof (cases n) + case (Suc m) + with that show ?thesis + by (auto simp: dest: relpow_imp_rtrancl rtrancl_into_trancl1) + qed (use that in auto) + qed + then show ?thesis + by (cases p) auto +qed lemma tranclp_power: "(P\<^sup>+\<^sup>+) x y \ (\n > 0. (P ^^ n) x y)" using trancl_power [to_pred, of P "(x, y)"] by simp @@ -1070,8 +1065,7 @@ fixes R :: "('a \ 'a) set" assumes "finite R" shows "R^^k \ (UN n:{n. n \ card R}. R^^n)" - apply (cases k) - apply force + apply (cases k, force) apply (use relpow_finite_bounded1[OF assms, of k] in auto) done @@ -1088,7 +1082,7 @@ shows "finite (R O S)" proof- have "R O S = (\(x, y)\R. \(u, v)\S. if u = y then {(x, v)} else {})" - by (force simp add: split_def image_constant_conv split: if_splits) + by (force simp: split_def image_constant_conv split: if_splits) then show ?thesis using assms by clarsimp qed @@ -1166,7 +1160,7 @@ by (auto simp: Let_def) lemma finite_trancl_ntranl: "finite R \ trancl R = ntrancl (card R - 1) R" - by (cases "card R") (auto simp add: trancl_finite_eq_relpow relpow_empty ntrancl_def) + by (cases "card R") (auto simp: trancl_finite_eq_relpow relpow_empty ntrancl_def) subsection \Acyclic relations\