# HG changeset patch # User wenzelm # Date 1002201931 -7200 # Node ID 79e5536af6c48129e53e6d56f4664a4755aebef0 # Parent 8e75b78f33f3ae353d70493023e539f20dbc59ba Theory of the natural numbers: Peano's axioms, primitive recursion. (Modernized version of Larry Paulson's theory "Nat".) diff -r 8e75b78f33f3 -r 79e5536af6c4 src/FOL/ex/Natural_Numbers.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOL/ex/Natural_Numbers.thy Thu Oct 04 15:25:31 2001 +0200 @@ -0,0 +1,69 @@ +(* Title: FOL/ex/Natural_Numbers.thy + ID: $Id$ + Author: Markus Wenzel, TU Munich + +Theory of the natural numbers: Peano's axioms, primitive recursion. +(Modernized version of Larry Paulson's theory "Nat".) +*) + +theory Natural_Numbers = FOL: + +typedecl nat +arities nat :: "term" + +consts + Zero :: nat ("0") + Suc :: "nat => nat" + rec :: "[nat, 'a, [nat, 'a] => 'a] => 'a" + +axioms + induct [induct type: nat]: + "P(0) \ (!!x. P(x) ==> P(Suc(x))) ==> P(n)" + Suc_inject: "Suc(m) = Suc(n) ==> m = n" + Suc_neq_0: "Suc(m) = 0 ==> R" + rec_0: "rec(0, a, f) = a" + rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))" + +lemma Suc_n_not_n: "Suc(k) \ k" +proof (induct k) + show "Suc(0) \ 0" + proof + assume "Suc(0) = 0" + thus False by (rule Suc_neq_0) + qed + fix n assume hyp: "Suc(n) \ n" + show "Suc(Suc(n)) \ Suc(n)" + proof + assume "Suc(Suc(n)) = Suc(n)" + hence "Suc(n) = n" by (rule Suc_inject) + with hyp show False by contradiction + qed +qed + + +constdefs + add :: "[nat, nat] => nat" (infixl "+" 60) + "m + n == rec(m, n, \x y. Suc(y))" + +lemma add_0 [simp]: "0 + n = n" + by (unfold add_def) (rule rec_0) + +lemma add_Suc [simp]: "Suc(m) + n = Suc(m + n)" + by (unfold add_def) (rule rec_Suc) + +lemma add_assoc: "(k + m) + n = k + (m + n)" + by (induct k) simp_all + +lemma add_0_right: "m + 0 = m" + by (induct m) simp_all + +lemma add_Suc_right: "m + Suc(n) = Suc(m + n)" + by (induct m) simp_all + +lemma "(!!n. f(Suc(n)) = Suc(f(n))) ==> f(i + j) = i + f(j)" +proof - + assume a: "!!n. f(Suc(n)) = Suc(f(n))" + show ?thesis by (induct i) (simp, simp add: a) (* FIXME tune *) +qed + +end