# HG changeset patch # User huffman # Date 1176234608 -7200 # Node ID 7a6c8ed516ab14745fb680ac2c684d64cd2c6158 # Parent 5fcee5b319a205e148c739fa8a91be9e9433c95f removed unnecessary premise from power_le_imp_le_base diff -r 5fcee5b319a2 -r 7a6c8ed516ab src/HOL/Power.thy --- a/src/HOL/Power.thy Tue Apr 10 18:09:58 2007 +0200 +++ b/src/HOL/Power.thy Tue Apr 10 21:50:08 2007 +0200 @@ -291,8 +291,7 @@ lemma power_le_imp_le_base: assumes le: "a ^ Suc n \ b ^ Suc n" - and xnonneg: "(0::'a::{ordered_semidom,recpower}) \ a" - and ynonneg: "0 \ b" + and ynonneg: "(0::'a::{ordered_semidom,recpower}) \ b" shows "a \ b" proof (rule ccontr) assume "~ a \ b" diff -r 5fcee5b319a2 -r 7a6c8ed516ab src/HOL/Real/RealPow.thy --- a/src/HOL/Real/RealPow.thy Tue Apr 10 18:09:58 2007 +0200 +++ b/src/HOL/Real/RealPow.thy Tue Apr 10 21:50:08 2007 +0200 @@ -228,7 +228,7 @@ proof - from sq have "x ^ Suc (Suc 0) \ y ^ Suc (Suc 0)" by (simp only: numeral_2_eq_2) - thus "x \ y" using xgt0 ygt0 + thus "x \ y" using ygt0 by (rule power_le_imp_le_base) qed