# HG changeset patch # User nipkow # Date 1251481399 -7200 # Node ID 7a91c7bcfe7e7425e1ff8d18982911c1cd1a343b # Parent 620a5d8cfa78dfe1b516f0156ec9fb58dcda21de tuned proofs diff -r 620a5d8cfa78 -r 7a91c7bcfe7e src/HOL/Word/BinBoolList.thy --- a/src/HOL/Word/BinBoolList.thy Fri Aug 28 19:35:49 2009 +0200 +++ b/src/HOL/Word/BinBoolList.thy Fri Aug 28 19:43:19 2009 +0200 @@ -918,8 +918,8 @@ apply (frule asm_rl) apply (drule spec) apply (erule trans) - apply (drule_tac x = "bin_cat y n a" in spec) - apply (simp add : bin_cat_assoc_sym min_def) + apply (drule_tac x = "bin_cat y n a" in spec) + apply (simp add : bin_cat_assoc_sym) done lemma bin_rcat_bl: diff -r 620a5d8cfa78 -r 7a91c7bcfe7e src/HOL/Word/BinGeneral.thy --- a/src/HOL/Word/BinGeneral.thy Fri Aug 28 19:35:49 2009 +0200 +++ b/src/HOL/Word/BinGeneral.thy Fri Aug 28 19:43:19 2009 +0200 @@ -493,7 +493,7 @@ lemma sbintrunc_sbintrunc_l: "n <= m ==> (sbintrunc m (sbintrunc n w) = sbintrunc n w)" - by (rule bin_eqI) (auto simp: nth_sbintr min_def) + by (rule bin_eqI) (auto simp: nth_sbintr) lemma bintrunc_bintrunc_ge: "n <= m ==> (bintrunc n (bintrunc m w) = bintrunc n w)" @@ -501,14 +501,12 @@ lemma bintrunc_bintrunc_min [simp]: "bintrunc m (bintrunc n w) = bintrunc (min m n) w" - apply (unfold min_def) apply (rule bin_eqI) apply (auto simp: nth_bintr) done lemma sbintrunc_sbintrunc_min [simp]: "sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w" - apply (unfold min_def) apply (rule bin_eqI) apply (auto simp: nth_sbintr) done diff -r 620a5d8cfa78 -r 7a91c7bcfe7e src/HOL/Word/WordDefinition.thy --- a/src/HOL/Word/WordDefinition.thy Fri Aug 28 19:35:49 2009 +0200 +++ b/src/HOL/Word/WordDefinition.thy Fri Aug 28 19:43:19 2009 +0200 @@ -380,7 +380,7 @@ "n >= size w ==> bintrunc n (uint w) = uint w" apply (unfold word_size) apply (subst word_ubin.norm_Rep [symmetric]) - apply (simp only: bintrunc_bintrunc_min word_size min_def) + apply (simp only: bintrunc_bintrunc_min word_size) apply simp done @@ -388,7 +388,7 @@ "wb = word_of_int bin ==> n >= size wb ==> word_of_int (bintrunc n bin) = wb" unfolding word_size - by (clarsimp simp add : word_ubin.norm_eq_iff [symmetric] min_def) + by (clarsimp simp add : word_ubin.norm_eq_iff [symmetric]) lemmas bintr_uint = bintr_uint' [unfolded word_size] lemmas wi_bintr = wi_bintr' [unfolded word_size] diff -r 620a5d8cfa78 -r 7a91c7bcfe7e src/HOL/Word/WordShift.thy --- a/src/HOL/Word/WordShift.thy Fri Aug 28 19:35:49 2009 +0200 +++ b/src/HOL/Word/WordShift.thy Fri Aug 28 19:43:19 2009 +0200 @@ -319,7 +319,7 @@ lemma bl_shiftl: "to_bl (w << n) = drop n (to_bl w) @ replicate (min (size w) n) False" - by (simp add: shiftl_bl word_rep_drop word_size min_def) + by (simp add: shiftl_bl word_rep_drop word_size) lemma shiftl_zero_size: fixes x :: "'a::len0 word" @@ -1018,8 +1018,7 @@ word_of_int (bin_cat w (size b) (uint b))" apply (unfold word_cat_def word_size) apply (clarsimp simp add : word_ubin.norm_eq_iff [symmetric] - word_ubin.eq_norm bintr_cat min_def) - apply arith + word_ubin.eq_norm bintr_cat) done lemma word_cat_split_alt: