# HG changeset patch # User clasohm # Date 786976792 -3600 # Node ID 7b60621e2bada94d17358b341a237e697690fc89 # Parent ea19f22ed23c0ad05282afc1ae784e1205ada7f0 removed ZF_Lemmas and added qed_goal diff -r ea19f22ed23c -r 7b60621e2bad src/ZF/ZF.ML --- a/src/ZF/ZF.ML Fri Dec 09 13:05:03 1994 +0100 +++ b/src/ZF/ZF.ML Fri Dec 09 13:39:52 1994 +0100 @@ -8,107 +8,33 @@ open ZF; -signature ZF_LEMMAS = - sig - val ballE : thm - val ballI : thm - val ball_cong : thm - val ball_simp : thm - val ball_tac : int -> tactic - val bexCI : thm - val bexE : thm - val bexI : thm - val bex_cong : thm - val bspec : thm - val cantor : thm - val CollectD1 : thm - val CollectD2 : thm - val CollectE : thm - val CollectI : thm - val Collect_cong : thm - val emptyE : thm - val empty_subsetI : thm - val equalityCE : thm - val equalityD1 : thm - val equalityD2 : thm - val equalityE : thm - val equalityI : thm - val equality_iffI : thm - val equals0D : thm - val equals0I : thm - val InterD : thm - val InterE : thm - val InterI : thm - val Inter_iff : thm - val INT_E : thm - val INT_I : thm - val INT_cong : thm - val INT_iff : thm - val lemmas_cs : claset - val PowD : thm - val PowI : thm - val RepFunE : thm - val RepFunI : thm - val RepFun_eqI : thm - val RepFun_cong : thm - val RepFun_iff : thm - val ReplaceE : thm - val ReplaceE2 : thm - val ReplaceI : thm - val Replace_iff : thm - val Replace_cong : thm - val rev_ballE : thm - val rev_bspec : thm - val rev_subsetD : thm - val separation : thm - val setup_induction : thm - val set_mp_tac : int -> tactic - val subset0_cs : claset - val subsetCE : thm - val subsetD : thm - val subsetI : thm - val subset_iff : thm - val subset_refl : thm - val subset_trans : thm - val UnionE : thm - val UnionI : thm - val Union_in_Pow : thm - val UN_E : thm - val UN_I : thm - val UN_cong : thm - val UN_iff : thm - end; - - -structure ZF_Lemmas : ZF_LEMMAS = -struct (*** Bounded universal quantifier ***) -val ballI = prove_goalw ZF.thy [Ball_def] +qed_goalw "ballI" ZF.thy [Ball_def] "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)" (fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]); -val bspec = prove_goalw ZF.thy [Ball_def] +qed_goalw "bspec" ZF.thy [Ball_def] "[| ALL x:A. P(x); x: A |] ==> P(x)" (fn major::prems=> [ (rtac (major RS spec RS mp) 1), (resolve_tac prems 1) ]); -val ballE = prove_goalw ZF.thy [Ball_def] +qed_goalw "ballE" ZF.thy [Ball_def] "[| ALL x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q" (fn major::prems=> [ (rtac (major RS allE) 1), (REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]); (*Used in the datatype package*) -val rev_bspec = prove_goal ZF.thy +qed_goal "rev_bspec" ZF.thy "!!x A P. [| x: A; ALL x:A. P(x) |] ==> P(x)" (fn _ => [ REPEAT (ares_tac [bspec] 1) ]); (*Instantiates x first: better for automatic theorem proving?*) -val rev_ballE = prove_goal ZF.thy +qed_goal "rev_ballE" ZF.thy "[| ALL x:A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q" (fn major::prems=> [ (rtac (major RS ballE) 1), @@ -118,28 +44,28 @@ val ball_tac = dtac bspec THEN' assume_tac; (*Trival rewrite rule; (ALL x:A.P)<->P holds only if A is nonempty!*) -val ball_simp = prove_goal ZF.thy "(ALL x:A. True) <-> True" +qed_goal "ball_simp" ZF.thy "(ALL x:A. True) <-> True" (fn _=> [ (REPEAT (ares_tac [TrueI,ballI,iffI] 1)) ]); (*Congruence rule for rewriting*) -val ball_cong = prove_goalw ZF.thy [Ball_def] +qed_goalw "ball_cong" ZF.thy [Ball_def] "[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> Ball(A,P) <-> Ball(A',P')" (fn prems=> [ (simp_tac (FOL_ss addsimps prems) 1) ]); (*** Bounded existential quantifier ***) -val bexI = prove_goalw ZF.thy [Bex_def] +qed_goalw "bexI" ZF.thy [Bex_def] "[| P(x); x: A |] ==> EX x:A. P(x)" (fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]); (*Not of the general form for such rules; ~EX has become ALL~ *) -val bexCI = prove_goal ZF.thy +qed_goal "bexCI" ZF.thy "[| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A.P(x)" (fn prems=> [ (rtac classical 1), (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]); -val bexE = prove_goalw ZF.thy [Bex_def] +qed_goalw "bexE" ZF.thy [Bex_def] "[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q \ \ |] ==> Q" (fn major::prems=> @@ -148,25 +74,25 @@ (*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*) -val bex_cong = prove_goalw ZF.thy [Bex_def] +qed_goalw "bex_cong" ZF.thy [Bex_def] "[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) \ \ |] ==> Bex(A,P) <-> Bex(A',P')" (fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ]); (*** Rules for subsets ***) -val subsetI = prove_goalw ZF.thy [subset_def] +qed_goalw "subsetI" ZF.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B" (fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]); (*Rule in Modus Ponens style [was called subsetE] *) -val subsetD = prove_goalw ZF.thy [subset_def] "[| A <= B; c:A |] ==> c:B" +qed_goalw "subsetD" ZF.thy [subset_def] "[| A <= B; c:A |] ==> c:B" (fn major::prems=> [ (rtac (major RS bspec) 1), (resolve_tac prems 1) ]); (*Classical elimination rule*) -val subsetCE = prove_goalw ZF.thy [subset_def] +qed_goalw "subsetCE" ZF.thy [subset_def] "[| A <= B; c~:A ==> P; c:B ==> P |] ==> P" (fn major::prems=> [ (rtac (major RS ballE) 1), @@ -176,17 +102,17 @@ val set_mp_tac = dtac subsetD THEN' assume_tac; (*Sometimes useful with premises in this order*) -val rev_subsetD = prove_goal ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B" +qed_goal "rev_subsetD" ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B" (fn _=> [REPEAT (ares_tac [subsetD] 1)]); -val subset_refl = prove_goal ZF.thy "A <= A" +qed_goal "subset_refl" ZF.thy "A <= A" (fn _=> [ (rtac subsetI 1), atac 1 ]); -val subset_trans = prove_goal ZF.thy "[| A<=B; B<=C |] ==> A<=C" +qed_goal "subset_trans" ZF.thy "[| A<=B; B<=C |] ==> A<=C" (fn prems=> [ (REPEAT (ares_tac ([subsetI]@(prems RL [subsetD])) 1)) ]); (*Useful for proving A<=B by rewriting in some cases*) -val subset_iff = prove_goalw ZF.thy [subset_def,Ball_def] +qed_goalw "subset_iff" ZF.thy [subset_def,Ball_def] "A<=B <-> (ALL x. x:A --> x:B)" (fn _=> [ (rtac iff_refl 1) ]); @@ -194,30 +120,30 @@ (*** Rules for equality ***) (*Anti-symmetry of the subset relation*) -val equalityI = prove_goal ZF.thy "[| A <= B; B <= A |] ==> A = B" +qed_goal "equalityI" ZF.thy "[| A <= B; B <= A |] ==> A = B" (fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]); -val equality_iffI = prove_goal ZF.thy "(!!x. x:A <-> x:B) ==> A = B" +qed_goal "equality_iffI" ZF.thy "(!!x. x:A <-> x:B) ==> A = B" (fn [prem] => [ (rtac equalityI 1), (REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]); -val equalityD1 = prove_goal ZF.thy "A = B ==> A<=B" +qed_goal "equalityD1" ZF.thy "A = B ==> A<=B" (fn prems=> [ (rtac (extension RS iffD1 RS conjunct1) 1), (resolve_tac prems 1) ]); -val equalityD2 = prove_goal ZF.thy "A = B ==> B<=A" +qed_goal "equalityD2" ZF.thy "A = B ==> B<=A" (fn prems=> [ (rtac (extension RS iffD1 RS conjunct2) 1), (resolve_tac prems 1) ]); -val equalityE = prove_goal ZF.thy +qed_goal "equalityE" ZF.thy "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" (fn prems=> [ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]); -val equalityCE = prove_goal ZF.thy +qed_goal "equalityCE" ZF.thy "[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P" (fn major::prems=> [ (rtac (major RS equalityE) 1), @@ -227,7 +153,7 @@ To make the induction hypotheses usable, apply "spec" or "bspec" to put universal quantifiers over the free variables in p. Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*) -val setup_induction = prove_goal ZF.thy +qed_goal "setup_induction" ZF.thy "[| p: A; !!z. z: A ==> p=z --> R |] ==> R" (fn prems=> [ (rtac mp 1), @@ -236,7 +162,7 @@ (*** Rules for Replace -- the derived form of replacement ***) -val Replace_iff = prove_goalw ZF.thy [Replace_def] +qed_goalw "Replace_iff" ZF.thy [Replace_def] "b : {y. x:A, P(x,y)} <-> (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))" (fn _=> [ (rtac (replacement RS iff_trans) 1), @@ -244,7 +170,7 @@ ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]); (*Introduction; there must be a unique y such that P(x,y), namely y=b. *) -val ReplaceI = prove_goal ZF.thy +qed_goal "ReplaceI" ZF.thy "[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> \ \ b : {y. x:A, P(x,y)}" (fn prems=> @@ -252,7 +178,7 @@ (REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]); (*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) -val ReplaceE = prove_goal ZF.thy +qed_goal "ReplaceE" ZF.thy "[| b : {y. x:A, P(x,y)}; \ \ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R \ \ |] ==> R" @@ -262,7 +188,7 @@ (REPEAT (ares_tac prems 1)) ]); (*As above but without the (generally useless) 3rd assumption*) -val ReplaceE2 = prove_goal ZF.thy +qed_goal "ReplaceE2" ZF.thy "[| b : {y. x:A, P(x,y)}; \ \ !!x. [| x: A; P(x,b) |] ==> R \ \ |] ==> R" @@ -270,7 +196,7 @@ [ (rtac (major RS ReplaceE) 1), (REPEAT (ares_tac prems 1)) ]); -val Replace_cong = prove_goal ZF.thy +qed_goal "Replace_cong" ZF.thy "[| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \ \ Replace(A,P) = Replace(B,Q)" (fn prems=> @@ -284,16 +210,16 @@ (*** Rules for RepFun ***) -val RepFunI = prove_goalw ZF.thy [RepFun_def] +qed_goalw "RepFunI" ZF.thy [RepFun_def] "!!a A. a : A ==> f(a) : {f(x). x:A}" (fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]); (*Useful for coinduction proofs*) -val RepFun_eqI = prove_goal ZF.thy +qed_goal "RepFun_eqI" ZF.thy "!!b a f. [| b=f(a); a : A |] ==> b : {f(x). x:A}" (fn _ => [ etac ssubst 1, etac RepFunI 1 ]); -val RepFunE = prove_goalw ZF.thy [RepFun_def] +qed_goalw "RepFunE" ZF.thy [RepFun_def] "[| b : {f(x). x:A}; \ \ !!x.[| x:A; b=f(x) |] ==> P |] ==> \ \ P" @@ -301,11 +227,11 @@ [ (rtac (major RS ReplaceE) 1), (REPEAT (ares_tac prems 1)) ]); -val RepFun_cong = prove_goalw ZF.thy [RepFun_def] +qed_goalw "RepFun_cong" ZF.thy [RepFun_def] "[| A=B; !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" (fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]); -val RepFun_iff = prove_goalw ZF.thy [Bex_def] +qed_goalw "RepFun_iff" ZF.thy [Bex_def] "b : {f(x). x:A} <-> (EX x:A. b=f(x))" (fn _ => [ (fast_tac (FOL_cs addIs [RepFunI] addSEs [RepFunE]) 1) ]); @@ -313,46 +239,46 @@ (*** Rules for Collect -- forming a subset by separation ***) (*Separation is derivable from Replacement*) -val separation = prove_goalw ZF.thy [Collect_def] +qed_goalw "separation" ZF.thy [Collect_def] "a : {x:A. P(x)} <-> a:A & P(a)" (fn _=> [ (fast_tac (FOL_cs addIs [bexI,ReplaceI] addSEs [bexE,ReplaceE]) 1) ]); -val CollectI = prove_goal ZF.thy +qed_goal "CollectI" ZF.thy "[| a:A; P(a) |] ==> a : {x:A. P(x)}" (fn prems=> [ (rtac (separation RS iffD2) 1), (REPEAT (resolve_tac (prems@[conjI]) 1)) ]); -val CollectE = prove_goal ZF.thy +qed_goal "CollectE" ZF.thy "[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> R |] ==> R" (fn prems=> [ (rtac (separation RS iffD1 RS conjE) 1), (REPEAT (ares_tac prems 1)) ]); -val CollectD1 = prove_goal ZF.thy "a : {x:A. P(x)} ==> a:A" +qed_goal "CollectD1" ZF.thy "a : {x:A. P(x)} ==> a:A" (fn [major]=> [ (rtac (major RS CollectE) 1), (assume_tac 1) ]); -val CollectD2 = prove_goal ZF.thy "a : {x:A. P(x)} ==> P(a)" +qed_goal "CollectD2" ZF.thy "a : {x:A. P(x)} ==> P(a)" (fn [major]=> [ (rtac (major RS CollectE) 1), (assume_tac 1) ]); -val Collect_cong = prove_goalw ZF.thy [Collect_def] +qed_goalw "Collect_cong" ZF.thy [Collect_def] "[| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)" (fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]); (*** Rules for Unions ***) (*The order of the premises presupposes that C is rigid; A may be flexible*) -val UnionI = prove_goal ZF.thy "[| B: C; A: B |] ==> A: Union(C)" +qed_goal "UnionI" ZF.thy "[| B: C; A: B |] ==> A: Union(C)" (fn prems=> [ (resolve_tac [Union_iff RS iffD2] 1), (REPEAT (resolve_tac (prems @ [bexI]) 1)) ]); -val UnionE = prove_goal ZF.thy +qed_goal "UnionE" ZF.thy "[| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R" (fn prems=> [ (resolve_tac [Union_iff RS iffD1 RS bexE] 1), @@ -361,27 +287,27 @@ (*** Rules for Inter ***) (*Not obviously useful towards proving InterI, InterD, InterE*) -val Inter_iff = prove_goalw ZF.thy [Inter_def,Ball_def] +qed_goalw "Inter_iff" ZF.thy [Inter_def,Ball_def] "A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)" (fn _=> [ (rtac (separation RS iff_trans) 1), (fast_tac (FOL_cs addIs [UnionI] addSEs [UnionE]) 1) ]); (* Intersection is well-behaved only if the family is non-empty! *) -val InterI = prove_goalw ZF.thy [Inter_def] +qed_goalw "InterI" ZF.thy [Inter_def] "[| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)" (fn prems=> [ (DEPTH_SOLVE (ares_tac ([CollectI,UnionI,ballI] @ prems) 1)) ]); (*A "destruct" rule -- every B in C contains A as an element, but A:B can hold when B:C does not! This rule is analogous to "spec". *) -val InterD = prove_goalw ZF.thy [Inter_def] +qed_goalw "InterD" ZF.thy [Inter_def] "[| A : Inter(C); B : C |] ==> A : B" (fn [major,minor]=> [ (rtac (major RS CollectD2 RS bspec) 1), (rtac minor 1) ]); (*"Classical" elimination rule -- does not require exhibiting B:C *) -val InterE = prove_goalw ZF.thy [Inter_def] +qed_goalw "InterE" ZF.thy [Inter_def] "[| A : Inter(C); A:B ==> R; B~:C ==> R |] ==> R" (fn major::prems=> [ (rtac (major RS CollectD2 RS ballE) 1), @@ -390,23 +316,23 @@ (*** Rules for Unions of families ***) (* UN x:A. B(x) abbreviates Union({B(x). x:A}) *) -val UN_iff = prove_goalw ZF.thy [Bex_def] +qed_goalw "UN_iff" ZF.thy [Bex_def] "b : (UN x:A. B(x)) <-> (EX x:A. b : B(x))" (fn _=> [ (fast_tac (FOL_cs addIs [UnionI, RepFunI] addSEs [UnionE, RepFunE]) 1) ]); (*The order of the premises presupposes that A is rigid; b may be flexible*) -val UN_I = prove_goal ZF.thy "[| a: A; b: B(a) |] ==> b: (UN x:A. B(x))" +qed_goal "UN_I" ZF.thy "[| a: A; b: B(a) |] ==> b: (UN x:A. B(x))" (fn prems=> [ (REPEAT (resolve_tac (prems@[UnionI,RepFunI]) 1)) ]); -val UN_E = prove_goal ZF.thy +qed_goal "UN_E" ZF.thy "[| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" (fn major::prems=> [ (rtac (major RS UnionE) 1), (REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]); -val UN_cong = prove_goal ZF.thy +qed_goal "UN_cong" ZF.thy "[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (UN x:A.C(x)) = (UN x:B.D(x))" (fn prems=> [ (simp_tac (FOL_ss addcongs [RepFun_cong] addsimps prems) 1) ]); @@ -414,35 +340,35 @@ (*** Rules for Intersections of families ***) (* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *) -val INT_iff = prove_goal ZF.thy +qed_goal "INT_iff" ZF.thy "b : (INT x:A. B(x)) <-> (ALL x:A. b : B(x)) & (EX x. x:A)" (fn _=> [ (simp_tac (FOL_ss addsimps [Inter_def, Ball_def, Bex_def, separation, Union_iff, RepFun_iff]) 1), (fast_tac FOL_cs 1) ]); -val INT_I = prove_goal ZF.thy +qed_goal "INT_I" ZF.thy "[| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))" (fn prems=> [ (REPEAT (ares_tac (prems@[InterI,RepFunI]) 1 ORELSE eresolve_tac [RepFunE,ssubst] 1)) ]); -val INT_E = prove_goal ZF.thy +qed_goal "INT_E" ZF.thy "[| b : (INT x:A. B(x)); a: A |] ==> b : B(a)" (fn [major,minor]=> [ (rtac (major RS InterD) 1), (rtac (minor RS RepFunI) 1) ]); -val INT_cong = prove_goal ZF.thy +qed_goal "INT_cong" ZF.thy "[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (INT x:A.C(x)) = (INT x:B.D(x))" (fn prems=> [ (simp_tac (FOL_ss addcongs [RepFun_cong] addsimps prems) 1) ]); (*** Rules for Powersets ***) -val PowI = prove_goal ZF.thy "A <= B ==> A : Pow(B)" +qed_goal "PowI" ZF.thy "A <= B ==> A : Pow(B)" (fn [prem]=> [ (rtac (prem RS (Pow_iff RS iffD2)) 1) ]); -val PowD = prove_goal ZF.thy "A : Pow(B) ==> A<=B" +qed_goal "PowD" ZF.thy "A : Pow(B) ==> A<=B" (fn [major]=> [ (rtac (major RS (Pow_iff RS iffD1)) 1) ]); @@ -450,7 +376,7 @@ (*The set {x:0.False} is empty; by foundation it equals 0 See Suppes, page 21.*) -val emptyE = prove_goal ZF.thy "a:0 ==> P" +qed_goal "emptyE" ZF.thy "a:0 ==> P" (fn [major]=> [ (rtac (foundation RS disjE) 1), (etac (equalityD2 RS subsetD RS CollectD2 RS FalseE) 1), @@ -458,15 +384,15 @@ (etac bexE 1), (etac (CollectD2 RS FalseE) 1) ]); -val empty_subsetI = prove_goal ZF.thy "0 <= A" +qed_goal "empty_subsetI" ZF.thy "0 <= A" (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]); -val equals0I = prove_goal ZF.thy "[| !!y. y:A ==> False |] ==> A=0" +qed_goal "equals0I" ZF.thy "[| !!y. y:A ==> False |] ==> A=0" (fn prems=> [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]); -val equals0D = prove_goal ZF.thy "[| A=0; a:A |] ==> P" +qed_goal "equals0D" ZF.thy "[| A=0; a:A |] ==> P" (fn [major,minor]=> [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]); @@ -489,14 +415,10 @@ (*The search is undirected; similar proof attempts may fail. b represents ANY map, such as (lam x:A.b(x)): A->Pow(A). *) -val cantor = prove_goal ZF.thy "EX S: Pow(A). ALL x:A. b(x) ~= S" +qed_goal "cantor" ZF.thy "EX S: Pow(A). ALL x:A. b(x) ~= S" (fn _ => [best_tac cantor_cs 1]); (*Lemma for the inductive definition in Zorn.thy*) -val Union_in_Pow = prove_goal ZF.thy +qed_goal "Union_in_Pow" ZF.thy "!!Y. Y : Pow(Pow(A)) ==> Union(Y) : Pow(A)" (fn _ => [fast_tac lemmas_cs 1]); - -end; - -open ZF_Lemmas;