# HG changeset patch # User nipkow # Date 1242308369 -7200 # Node ID 7be8054639cdf5300bf3ad5d2894d6c69f8ffa5f # Parent 25a3a0dd4bdac7f4bfaf25bd47a48e3ecf884479# Parent 7ba7c1f8bc228712579ae2e2fa91b40b69246e5b merged diff -r 25a3a0dd4bda -r 7be8054639cd src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Thu May 14 11:00:42 2009 +0200 +++ b/src/HOL/Decision_Procs/Approximation.thy Thu May 14 15:39:29 2009 +0200 @@ -460,7 +460,7 @@ proof (cases "even n") case True obtain n' where "Suc n' = get_odd n" and "odd (Suc n')" using get_odd_ex by auto - hence "even n'" unfolding even_nat_Suc by auto + hence "even n'" unfolding even_Suc by auto have "arctan (real x) \ real (x * ub_arctan_horner prec (get_odd n) 1 (x * x))" unfolding `Suc n' = get_odd n`[symmetric] using arctan_0_1_bounds'[OF `0 \ real x` `real x \ 1` `even n'`] by auto moreover @@ -470,7 +470,7 @@ next case False hence "0 < n" by (rule odd_pos) from gr0_implies_Suc[OF this] obtain n' where "n = Suc n'" .. - from False[unfolded this even_nat_Suc] + from False[unfolded this even_Suc] have "even n'" and "even (Suc (Suc n'))" by auto have "get_odd n = Suc n'" unfolding get_odd_def if_P[OF False] using `n = Suc n'` . diff -r 25a3a0dd4bda -r 7be8054639cd src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Thu May 14 11:00:42 2009 +0200 +++ b/src/HOL/Library/Formal_Power_Series.thy Thu May 14 15:39:29 2009 +0200 @@ -917,8 +917,7 @@ proof- have eq: "(1 + X) * ?r = 1" unfolding minus_one_power_iff - apply (auto simp add: ring_simps fps_eq_iff) - by presburger+ + by (auto simp add: ring_simps fps_eq_iff) show ?thesis by (auto simp add: eq intro: fps_inverse_unique) qed @@ -2286,9 +2285,7 @@ (is "inverse ?l = ?r") proof- have th: "?l * ?r = 1" - apply (auto simp add: ring_simps fps_eq_iff X_mult_nth minus_one_power_iff) - apply presburger+ - done + by (auto simp add: ring_simps fps_eq_iff minus_one_power_iff) have th': "?l $ 0 \ 0" by (simp add: ) from fps_inverse_unique[OF th' th] show ?thesis . qed diff -r 25a3a0dd4bda -r 7be8054639cd src/HOL/MacLaurin.thy --- a/src/HOL/MacLaurin.thy Thu May 14 11:00:42 2009 +0200 +++ b/src/HOL/MacLaurin.thy Thu May 14 15:39:29 2009 +0200 @@ -552,10 +552,6 @@ "[|x = y; abs u \ (v::real) |] ==> \(x + u) - y\ \ v" by auto -text {* TODO: move to Parity.thy *} -lemma nat_odd_1 [simp]: "odd (1::nat)" - unfolding even_nat_def by simp - lemma Maclaurin_sin_bound: "abs(sin x - (\m=0.. inverse(real (fact n)) * \x\ ^ n" diff -r 25a3a0dd4bda -r 7be8054639cd src/HOL/Parity.thy --- a/src/HOL/Parity.thy Thu May 14 11:00:42 2009 +0200 +++ b/src/HOL/Parity.thy Thu May 14 15:39:29 2009 +0200 @@ -29,6 +29,18 @@ end +lemma even_zero_int[simp]: "even (0::int)" by presburger + +lemma odd_one_int[simp]: "odd (1::int)" by presburger + +lemma even_zero_nat[simp]: "even (0::nat)" by presburger + +lemma odd_zero_nat [simp]: "odd (1::nat)" by presburger + +declare even_def[of "number_of v", standard, simp] + +declare even_nat_def[of "number_of v", standard, simp] + subsection {* Even and odd are mutually exclusive *} lemma int_pos_lt_two_imp_zero_or_one: @@ -54,66 +66,47 @@ lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" by (simp add: even_def zmod_zmult1_eq) -lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)" +lemma even_product[simp,presburger]: "even((x::int) * y) = (even x | even y)" apply (auto simp add: even_times_anything anything_times_even) apply (rule ccontr) apply (auto simp add: odd_times_odd) done lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)" - by presburger +by presburger lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)" - by presburger +by presburger lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)" - by presburger +by presburger lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger -lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" - by presburger +lemma even_sum[simp,presburger]: + "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" +by presburger -lemma even_neg[presburger, algebra]: "even (-(x::int)) = even x" by presburger +lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x" +by presburger -lemma even_difference: +lemma even_difference[simp]: "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger -lemma even_pow_gt_zero: - "even (x::int) ==> 0 < n ==> even (x^n)" - by (induct n) (auto simp add: even_product) - -lemma odd_pow_iff[presburger, algebra]: - "odd ((x::int) ^ n) \ (n = 0 \ odd x)" - apply (induct n, simp_all) - apply presburger - apply (case_tac n, auto) - apply (simp_all add: even_product) - done +lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \ 0)" +by (induct n) auto -lemma odd_pow: "odd x ==> odd((x::int)^n)" by (simp add: odd_pow_iff) - -lemma even_power[presburger]: "even ((x::int)^n) = (even x & 0 < n)" - apply (auto simp add: even_pow_gt_zero) - apply (erule contrapos_pp, erule odd_pow) - apply (erule contrapos_pp, simp add: even_def) - done - -lemma even_zero[presburger]: "even (0::int)" by presburger - -lemma odd_one[presburger]: "odd (1::int)" by presburger - -lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero - odd_one even_product even_sum even_neg even_difference even_power +lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp subsection {* Equivalent definitions *} lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" - by presburger +by presburger -lemma two_times_odd_div_two_plus_one: "odd (x::int) ==> - 2 * (x div 2) + 1 = x" by presburger +lemma two_times_odd_div_two_plus_one: + "odd (x::int) ==> 2 * (x div 2) + 1 = x" +by presburger lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger @@ -122,45 +115,45 @@ subsection {* even and odd for nats *} lemma pos_int_even_equiv_nat_even: "0 \ x ==> even x = even (nat x)" - by (simp add: even_nat_def) - -lemma even_nat_product[presburger, algebra]: "even((x::nat) * y) = (even x | even y)" - by (simp add: even_nat_def int_mult) +by (simp add: even_nat_def) -lemma even_nat_sum[presburger, algebra]: "even ((x::nat) + y) = - ((even x & even y) | (odd x & odd y))" by presburger +lemma even_product_nat[simp,presburger,algebra]: + "even((x::nat) * y) = (even x | even y)" +by (simp add: even_nat_def int_mult) -lemma even_nat_difference[presburger, algebra]: - "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" +lemma even_sum_nat[simp,presburger,algebra]: + "even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))" by presburger -lemma even_nat_Suc[presburger, algebra]: "even (Suc x) = odd x" by presburger - -lemma even_nat_power[presburger, algebra]: "even ((x::nat)^y) = (even x & 0 < y)" - by (simp add: even_nat_def int_power) +lemma even_difference_nat[simp,presburger,algebra]: + "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" +by presburger -lemma even_nat_zero[presburger]: "even (0::nat)" by presburger +lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x" +by presburger -lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard] - even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power +lemma even_power_nat[simp,presburger,algebra]: + "even ((x::nat)^y) = (even x & 0 < y)" +by (simp add: even_nat_def int_power) subsection {* Equivalent definitions *} -lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==> - x = 0 | x = Suc 0" by presburger +lemma nat_lt_two_imp_zero_or_one: + "(x::nat) < Suc (Suc 0) ==> x = 0 | x = Suc 0" +by presburger lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0" - by presburger +by presburger lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0" by presburger lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" - by presburger +by presburger lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)" - by presburger +by presburger lemma even_nat_div_two_times_two: "even (x::nat) ==> Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger @@ -169,10 +162,10 @@ Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)" - by presburger +by presburger lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))" - by presburger +by presburger subsection {* Parity and powers *} @@ -183,7 +176,7 @@ apply (induct x) apply (rule conjI) apply simp - apply (insert even_nat_zero, blast) + apply (insert even_zero_nat, blast) apply (simp add: power_Suc) done diff -r 25a3a0dd4bda -r 7be8054639cd src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Thu May 14 11:00:42 2009 +0200 +++ b/src/HOL/Transcendental.thy Thu May 14 15:39:29 2009 +0200 @@ -173,7 +173,7 @@ have "(\ n. if even n then f (n div 2) else 0) sums y" unfolding sums_def setsum_shift_lb_Suc0_0_upt[where f="?s", OF `?s 0 = 0`, symmetric] image_Suc_atLeastLessThan[symmetric] setsum_reindex[OF inj_Suc, unfolded comp_def] - even_nat_Suc Suc_m1 if_eq . + even_Suc Suc_m1 if_eq . } from sums_add[OF g_sums this] show ?thesis unfolding if_sum . qed