# HG changeset patch # User haftmann # Date 1366533678 -7200 # Node ID 7c1bc02633763ab881068cc8076265edb70e8da4 # Parent 80f9906ede19a70d1ff078593200d5e38449f55e follow Isabelle spacing praxis more thoroughly diff -r 80f9906ede19 -r 7c1bc0263376 src/HOL/Library/reflection.ML --- a/src/HOL/Library/reflection.ML Sun Apr 21 10:41:18 2013 +0200 +++ b/src/HOL/Library/reflection.ML Sun Apr 21 10:41:18 2013 +0200 @@ -22,89 +22,97 @@ structure Reflection : REFLECTION = struct - (* Make a congruence rule out of a defining equation for the interpretation *) - (* th is one defining equation of f, i.e. - th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)" *) - (* Cp is a constructor pattern and P is a pattern *) - - (* The result is: - [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn) *) - (* + the a list of names of the A1 .. An, Those are fresh in the ctxt*) - -fun mk_congeq ctxt fs th = - let - val Const (fN, _) = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq - |> fst |> strip_comb |> fst - val thy = Proof_Context.theory_of ctxt - val cert = Thm.cterm_of thy - val (((_,_),[th']), ctxt') = Variable.import true [th] ctxt - val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th')) - fun add_fterms (t as t1 $ t2) = - if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs then insert (op aconv) t - else add_fterms t1 #> add_fterms t2 - | add_fterms (t as Abs _) = - if exists_Const (fn (c, _) => c = fN) t then (fn _ => [t]) else (fn _ => []) - | add_fterms _ = I - val fterms = add_fterms rhs [] - val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt' - val tys = map fastype_of fterms - val vs = map Free (xs ~~ tys) - val env = fterms ~~ vs (*FIXME*) - fun replace_fterms (t as t1 $ t2) = - (case AList.lookup (op aconv) env t of - SOME v => v - | NONE => replace_fterms t1 $ replace_fterms t2) - | replace_fterms t = (case AList.lookup (op aconv) env t of - SOME v => v - | NONE => t) - - fun mk_def (Abs(x,xT,t),v) = HOLogic.mk_Trueprop ((HOLogic.all_const xT)$ Abs(x,xT,HOLogic.mk_eq(v$(Bound 0), t))) - | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t)) - fun tryext x = (x RS @{lemma "(\x. f x = g x) \ f = g" by blast} handle THM _ => x) - val cong = - (Goal.prove ctxt'' [] (map mk_def env) - (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs))) - (fn {context, prems, ...} => - Local_Defs.unfold_tac context (map tryext prems) THEN rtac th' 1)) RS sym - - val (cong' :: vars') = - Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o cert) vs) - val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars' - - in (vs', cong') end; - (* congs is a list of pairs (P,th) where th is a theorem for *) - (* [| f p1 = A1; ...; f pn = An|] ==> f (C p1 .. pn) = P *) - val FWD = curry (op OF); fun dest_listT (Type (@{type_name "list"}, [T])) = T; + +(* Make a congruence rule out of a defining equation for the interpretation + + th is one defining equation of f, + i.e. th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)" + Cp is a constructor pattern and P is a pattern + + The result is: + [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn) + + the a list of names of the A1 .. An, Those are fresh in the ctxt *) + +fun mk_congeq ctxt fs th = + let + val Const (fN, _) = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq + |> fst |> strip_comb |> fst; + val thy = Proof_Context.theory_of ctxt; + val cert = Thm.cterm_of thy; + val ((_, [th']), ctxt') = Variable.import true [th] ctxt; + val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th')); + fun add_fterms (t as t1 $ t2) = + if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs + then insert (op aconv) t + else add_fterms t1 #> add_fterms t2 + | add_fterms (t as Abs _) = + if exists_Const (fn (c, _) => c = fN) t + then K [t] + else K [] + | add_fterms _ = I; + val fterms = add_fterms rhs []; + val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt'; + val tys = map fastype_of fterms; + val vs = map Free (xs ~~ tys); + val env = fterms ~~ vs; (*FIXME*) + fun replace_fterms (t as t1 $ t2) = + (case AList.lookup (op aconv) env t of + SOME v => v + | NONE => replace_fterms t1 $ replace_fterms t2) + | replace_fterms t = + (case AList.lookup (op aconv) env t of + SOME v => v + | NONE => t); + fun mk_def (Abs (x, xT, t), v) = + HOLogic.mk_Trueprop (HOLogic.all_const xT $ Abs (x, xT, HOLogic.mk_eq (v $ Bound 0, t))) + | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t)); + fun tryext x = + (x RS @{lemma "(\x. f x = g x) \ f = g" by blast} handle THM _ => x); + val cong = + (Goal.prove ctxt'' [] (map mk_def env) + (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs))) + (fn {context, prems, ...} => + Local_Defs.unfold_tac context (map tryext prems) THEN rtac th' 1)) RS sym; + val (cong' :: vars') = + Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o cert) vs); + val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars'; + + in (vs', cong') end; + +(* congs is a list of pairs (P,th) where th is a theorem for + [| f p1 = A1; ...; f pn = An|] ==> f (C p1 .. pn) = P *) + fun rearrange congs = let fun P (_, th) = - let val @{term "Trueprop"}$(Const (@{const_name HOL.eq},_) $l$_) = concl_of th - in can dest_Var l end - val (yes,no) = List.partition P congs - in no @ yes end + let val @{term "Trueprop"} $ (Const (@{const_name HOL.eq}, _) $ l $ _) = concl_of th + in can dest_Var l end; + val (yes, no) = List.partition P congs; + in no @ yes end; fun gen_reify ctxt eqs t = let fun index_of t bds = let - val tt = HOLogic.listT (fastype_of t) + val tt = HOLogic.listT (fastype_of t); in - (case AList.lookup Type.could_unify bds tt of - NONE => error "index_of : type not found in environements!" - | SOME (tbs,tats) => - let - val i = find_index (fn t' => t' = t) tats - val j = find_index (fn t' => t' = t) tbs - in (if j = ~1 then - if i = ~1 - then (length tbs + length tats, - AList.update Type.could_unify (tt,(tbs,tats@[t])) bds) - else (i, bds) else (j, bds)) - end) + (case AList.lookup Type.could_unify bds tt of + NONE => error "index_of : type not found in environements!" + | SOME (tbs, tats) => + let + val i = find_index (fn t' => t' = t) tats; + val j = find_index (fn t' => t' = t) tbs; + in + if j = ~1 then + if i = ~1 + then (length tbs + length tats, AList.update Type.could_unify (tt, (tbs, tats @ [t])) bds) + else (i, bds) + else (j, bds) + end) end; (* Generic decomp for reification : matches the actual term with the @@ -116,122 +124,123 @@ (* da is the decomposition for atoms, ie. it returns ([],g) where g returns the right instance f (AtC n) = t , where AtC is the Atoms constructor and n is the number of the atom corresponding to t *) - fun decomp_genreif da cgns (t,ctxt) bds = + fun decomp_genreif da cgns (t, ctxt) bds = let - val thy = Proof_Context.theory_of ctxt - val cert = cterm_of thy - fun tryabsdecomp (s,ctxt) bds = + val thy = Proof_Context.theory_of ctxt; + val cert = cterm_of thy; + fun tryabsdecomp (s, ctxt) bds = (case s of - Abs(_, xT, ta) => ( - let - val ([raw_xn],ctxt') = Variable.variant_fixes ["x"] ctxt - val (xn,ta) = Syntax_Trans.variant_abs (raw_xn,xT,ta) (* FIXME !? *) - val x = Free(xn,xT) - val bds = (case AList.lookup Type.could_unify bds (HOLogic.listT xT) - of NONE => error "tryabsdecomp: Type not found in the Environement" - | SOME (bsT,atsT) => - (AList.update Type.could_unify (HOLogic.listT xT, ((x::bsT), atsT)) bds)) + Abs (_, xT, ta) => + let + val ([raw_xn], ctxt') = Variable.variant_fixes ["x"] ctxt; + val (xn, ta) = Syntax_Trans.variant_abs (raw_xn, xT, ta); (* FIXME !? *) + val x = Free(xn, xT); + val bds = (case AList.lookup Type.could_unify bds (HOLogic.listT xT) of + NONE => error "tryabsdecomp: Type not found in the Environement" + | SOME (bsT, atsT) => AList.update Type.could_unify (HOLogic.listT xT, (x :: bsT, atsT)) bds); in (([(ta, ctxt')], fn ([th], bds) => (hd (Variable.export ctxt' ctxt [(Thm.forall_intr (cert x) th) COMP allI]), - let val (bsT,asT) = the(AList.lookup Type.could_unify bds (HOLogic.listT xT)) - in AList.update Type.could_unify (HOLogic.listT xT,(tl bsT,asT)) bds + let + val (bsT, asT) = the (AList.lookup Type.could_unify bds (HOLogic.listT xT)); + in + AList.update Type.could_unify (HOLogic.listT xT,(tl bsT, asT)) bds end)), bds) - end) - | _ => da (s,ctxt) bds) + end + | _ => da (s, ctxt) bds) in (case cgns of - [] => tryabsdecomp (t,ctxt) bds - | ((vns,cong)::congs) => + [] => tryabsdecomp (t, ctxt) bds + | ((vns, cong) :: congs) => (let - val cert = cterm_of thy - val certy = ctyp_of thy + val cert = cterm_of thy; + val certy = ctyp_of thy; val (tyenv, tmenv) = Pattern.match thy ((fst o HOLogic.dest_eq o HOLogic.dest_Trueprop) (concl_of cong), t) - (Vartab.empty, Vartab.empty) - val (fnvs,invs) = List.partition (fn ((vn,_),_) => member (op =) vns vn) (Vartab.dest tmenv) - val (fts,its) = + (Vartab.empty, Vartab.empty); + val (fnvs, invs) = List.partition (fn ((vn, _),_) => member (op =) vns vn) (Vartab.dest tmenv); + val (fts, its) = (map (snd o snd) fnvs, - map (fn ((vn,vi),(tT,t)) => (cert(Var ((vn,vi),tT)), cert t)) invs) - val ctyenv = map (fn ((vn,vi),(s,ty)) => (certy (TVar((vn,vi),s)), certy ty)) (Vartab.dest tyenv) - in ((fts ~~ (replicate (length fts) ctxt), + map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t)) invs); + val ctyenv = map (fn ((vn, vi), (s, ty)) => (certy (TVar((vn, vi), s)), certy ty)) (Vartab.dest tyenv); + in + ((fts ~~ replicate (length fts) ctxt, apfst (FWD (Drule.instantiate_normalize (ctyenv, its) cong))), bds) end handle Pattern.MATCH => decomp_genreif da congs (t,ctxt) bds)) end; (* looks for the atoms equation and instantiates it with the right number *) - fun mk_decompatom eqs (t,ctxt) bds = (([], fn (_, bds) => + fun mk_decompatom eqs (t, ctxt) bds = (([], fn (_, bds) => let - val tT = fastype_of t + val tT = fastype_of t; fun isat eq = let - val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd + val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd; in exists_Const - (fn (n,ty) => n = @{const_name "List.nth"} - andalso - AList.defined Type.could_unify bds (domain_type ty)) rhs - andalso Type.could_unify (fastype_of rhs, tT) - end + (fn (n, ty) => n = @{const_name "List.nth"} + andalso AList.defined Type.could_unify bds (domain_type ty)) rhs + andalso Type.could_unify (fastype_of rhs, tT) + end; fun get_nths t acc = case t of - Const(@{const_name "List.nth"},_)$vs$n => insert (fn ((a,_),(b,_)) => a aconv b) (t,(vs,n)) acc - | t1$t2 => get_nths t1 (get_nths t2 acc) - | Abs(_,_,t') => get_nths t' acc - | _ => acc + Const(@{const_name "List.nth"}, _) $ vs $ n => insert (fn ((a, _), (b, _)) => a aconv b) (t, (vs, n)) acc + | t1 $ t2 => get_nths t1 (get_nths t2 acc) + | Abs (_ ,_ ,t') => get_nths t' acc + | _ => acc; - fun - tryeqs [] bds = error "Can not find the atoms equation" - | tryeqs (eq::eqs) bds = (( - let - val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd - val nths = get_nths rhs [] - val (vss,_ ) = fold_rev (fn (_, (vs, n)) => fn (vss, ns) => - (insert (op aconv) vs vss, insert (op aconv) n ns)) nths ([], []) - val (vsns, ctxt') = Variable.variant_fixes (replicate (length vss) "vs") ctxt - val (xns, ctxt'') = Variable.variant_fixes (replicate (length nths) "x") ctxt' - val thy = Proof_Context.theory_of ctxt'' - val cert = cterm_of thy - val certT = ctyp_of thy - val vsns_map = vss ~~ vsns - val xns_map = (fst (split_list nths)) ~~ xns - val subst = map (fn (nt, xn) => (nt, Var ((xn,0), fastype_of nt))) xns_map - val rhs_P = subst_free subst rhs - val (tyenv, tmenv) = Pattern.match thy (rhs_P, t) (Vartab.empty, Vartab.empty) - val sbst = Envir.subst_term (tyenv, tmenv) - val sbsT = Envir.subst_type tyenv - val subst_ty = map (fn (n,(s,t)) => (certT (TVar (n, s)), certT t)) - (Vartab.dest tyenv) - val tml = Vartab.dest tmenv - val (subst_ns, bds) = fold_map - (fn (Const _ $ _ $ n, Var (xn0, _)) => fn bds => + fun tryeqs [] bds = error "Can not find the atoms equation" + | tryeqs (eq :: eqs) bds = (( + let + val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd; + val nths = get_nths rhs []; + val (vss, _) = fold_rev (fn (_, (vs, n)) => fn (vss, ns) => + (insert (op aconv) vs vss, insert (op aconv) n ns)) nths ([], []); + val (vsns, ctxt') = Variable.variant_fixes (replicate (length vss) "vs") ctxt; + val (xns, ctxt'') = Variable.variant_fixes (replicate (length nths) "x") ctxt'; + val thy = Proof_Context.theory_of ctxt''; + val cert = cterm_of thy; + val certT = ctyp_of thy; + val vsns_map = vss ~~ vsns; + val xns_map = fst (split_list nths) ~~ xns; + val subst = map (fn (nt, xn) => (nt, Var ((xn, 0), fastype_of nt))) xns_map; + val rhs_P = subst_free subst rhs; + val (tyenv, tmenv) = Pattern.match thy (rhs_P, t) (Vartab.empty, Vartab.empty); + val sbst = Envir.subst_term (tyenv, tmenv); + val sbsT = Envir.subst_type tyenv; + val subst_ty = map (fn (n, (s, t)) => + (certT (TVar (n, s)), certT t)) (Vartab.dest tyenv) + val tml = Vartab.dest tmenv; + val (subst_ns, bds) = fold_map + (fn (Const _ $ _ $ n, Var (xn0, _)) => fn bds => + let + val name = snd (the (AList.lookup (op =) tml xn0)); + val (idx, bds) = index_of name bds; + in ((cert n, idx |> (HOLogic.mk_nat #> cert)), bds) end) subst bds; + val subst_vs = let - val name = snd (the (AList.lookup (op =) tml xn0)) - val (idx, bds) = index_of name bds - in ((cert n, idx |> (HOLogic.mk_nat #> cert)), bds) end) subst bds - val subst_vs = - let - fun h (Const _ $ (vs as Var (_, lT)) $ _, Var (_, T)) = + fun h (Const _ $ (vs as Var (_, lT)) $ _, Var (_, T)) = + let + val cns = sbst (Const (@{const_name "List.Cons"}, T --> lT --> lT)); + val lT' = sbsT lT; + val (bsT, _) = the (AList.lookup Type.could_unify bds lT); + val vsn = the (AList.lookup (op =) vsns_map vs); + val cvs = cert (fold_rev (fn x => fn xs => cns $ x $xs) bsT (Free (vsn, lT'))); + in (cert vs, cvs) end; + in map h subst end; + val cts = map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t)) + (fold (AList.delete (fn (((a : string), _), (b, _)) => a = b)) + (map (fn n => (n, 0)) xns) tml); + val substt = let - val cns = sbst (Const(@{const_name "List.Cons"}, T --> lT --> lT)) - val lT' = sbsT lT - val (bsT, _) = the (AList.lookup Type.could_unify bds lT) - val vsn = the (AList.lookup (op =) vsns_map vs) - val cvs = cert (fold_rev (fn x => fn xs => cns$x$xs) bsT (Free (vsn, lT'))) - in (cert vs, cvs) end - in map h subst end - val cts = map (fn ((vn,vi),(tT,t)) => (cert(Var ((vn,vi),tT)), cert t)) - (fold (AList.delete (fn (((a: string),_),(b,_)) => a = b)) - (map (fn n => (n,0)) xns) tml) - val substt = - let val ih = Drule.cterm_rule (Thm.instantiate (subst_ty,[])) - in map (fn (v,t) => (ih v, ih t)) (subst_ns@subst_vs@cts) end - val th = (Drule.instantiate_normalize (subst_ty, substt) eq) RS sym - in (hd (Variable.export ctxt'' ctxt [th]), bds) end) - handle Pattern.MATCH => tryeqs eqs bds) - in tryeqs (filter isat eqs) bds end), bds); + val ih = Drule.cterm_rule (Thm.instantiate (subst_ty, [])); + in map (fn (v, t) => (ih v, ih t)) (subst_ns @ subst_vs @ cts) end; + val th = (Drule.instantiate_normalize (subst_ty, substt) eq) RS sym; + in (hd (Variable.export ctxt'' ctxt [th]), bds) end) + handle Pattern.MATCH => tryeqs eqs bds) + in tryeqs (filter isat eqs) bds end), bds); (* Generic reification procedure: *) (* creates all needed cong rules and then just uses the theorem synthesis *) @@ -257,21 +266,21 @@ val bds = AList.make (K ([], [])) tys; in (ps ~~ Variable.export ctxt' ctxt congs, bds) end - val (congs, bds) = mk_congs ctxt eqs - val congs = rearrange congs - val (th, bds) = divide_and_conquer' (decomp_genreif (mk_decompatom eqs) congs) (t,ctxt) bds + val (congs, bds) = mk_congs ctxt eqs; + val congs = rearrange congs; + val (th, bds) = divide_and_conquer' (decomp_genreif (mk_decompatom eqs) congs) (t,ctxt) bds; fun is_listVar (Var (_, t)) = can dest_listT t - | is_listVar _ = false + | is_listVar _ = false; val vars = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd - |> strip_comb |> snd |> filter is_listVar - val cert = cterm_of (Proof_Context.theory_of ctxt) + |> strip_comb |> snd |> filter is_listVar; + val cert = cterm_of (Proof_Context.theory_of ctxt); val cvs = map (fn (v as Var(_, t)) => (cert v, - the (AList.lookup Type.could_unify bds t) |> snd |> HOLogic.mk_list (dest_listT t) |> cert)) vars - val th' = Drule.instantiate_normalize ([], cvs) th - val t' = (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) th' + the (AList.lookup Type.could_unify bds t) |> snd |> HOLogic.mk_list (dest_listT t) |> cert)) vars; + val th' = Drule.instantiate_normalize ([], cvs) th; + val t' = (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) th'; val th'' = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, t'))) - (fn _ => simp_tac ctxt 1) - in FWD trans [th'',th'] end + (fn _ => simp_tac ctxt 1) + in FWD trans [th'',th'] end; fun gen_reflect ctxt conv corr_thms eqs t = let @@ -287,7 +296,7 @@ thm |> simplify (put_simpset HOL_basic_ss ctxt addsimps [rth]) |> simplify (put_simpset HOL_basic_ss ctxt addsimps eqs addsimps @{thms nth_Cons_0 nth_Cons_Suc}) - end + end; fun tac_of_thm mk_thm to = SUBGOAL (fn (goal, i) => let