# HG changeset patch # User haftmann # Date 1364579867 -3600 # Node ID 7c59fe17f49511ed0b1cdc575b587df467bfd31b # Parent fcd5af4aac2b5592dad4e29fea9ca51e5e7b3004 reverted slip introduced in f738e6dbd844 diff -r fcd5af4aac2b -r 7c59fe17f495 src/HOL/Big_Operators.thy --- a/src/HOL/Big_Operators.thy Sat Mar 30 14:57:06 2013 +0100 +++ b/src/HOL/Big_Operators.thy Fri Mar 29 18:57:47 2013 +0100 @@ -1417,7 +1417,7 @@ then show ?thesis by (simp add: * insert_commute) qed -lemma subsumption: +lemma in_idem: assumes "finite A" and "x \ A" shows "x * F A = F A" proof - @@ -1429,7 +1429,7 @@ lemma insert [simp]: assumes "finite A" and "A \ {}" shows "F (insert x A) = x * F A" - using assms by (cases "x \ A") (simp_all add: insert_absorb subsumption insert_not_elem) + using assms by (cases "x \ A") (simp_all add: insert_absorb in_idem insert_not_elem) lemma union: assumes "finite A" "A \ {}" and "finite B" "B \ {}" @@ -1564,7 +1564,7 @@ from assms show ?thesis by (simp add: eq_fold) qed -lemma subsumption: +lemma in_idem: assumes "finite A" and "x \ A" shows "x * F A = F A" proof -