# HG changeset patch # User wenzelm # Date 1083954770 -7200 # Node ID 7d8d4c9b36fd7d44d0ea7d4e1ecd61a819c5ee88 # Parent 1846cc85ada1ece89d516a2654e35bc35c9fdc90 tuned notation; diff -r 1846cc85ada1 -r 7d8d4c9b36fd src/HOL/Induct/Ordinals.thy --- a/src/HOL/Induct/Ordinals.thy Fri May 07 20:32:40 2004 +0200 +++ b/src/HOL/Induct/Ordinals.thy Fri May 07 20:32:50 2004 +0200 @@ -64,13 +64,8 @@ "veblen (Limit f) = \(OpLim (\n. veblen (f n)))" constdefs - veb :: "ordinal => ordinal" "veb a == veblen a Zero" - -constdefs - epsilon0 :: ordinal ("\\<^sub>0") - "\\<^sub>0 == veb Zero" - Gamma0 :: ordinal ("\\<^sub>0") - "\\<^sub>0 == Limit (\n. iter veb n Zero)" + "\\<^isub>0 == veb Zero" + "\\<^isub>0 == Limit (\n. iter veb n Zero)" end diff -r 1846cc85ada1 -r 7d8d4c9b36fd src/HOL/Induct/Sigma_Algebra.thy --- a/src/HOL/Induct/Sigma_Algebra.thy Fri May 07 20:32:40 2004 +0200 +++ b/src/HOL/Induct/Sigma_Algebra.thy Fri May 07 20:32:50 2004 +0200 @@ -15,7 +15,7 @@ *} consts - sigma_algebra :: "'a set set => 'a set set" ("\'_algebra") + \_algebra :: "'a set set => 'a set set" inductive "\_algebra A" intros @@ -32,8 +32,8 @@ theorem sigma_algebra_empty: "{} \ \_algebra A" proof - - have "UNIV \ \_algebra A" by (rule sigma_algebra.UNIV) - hence "-UNIV \ \_algebra A" by (rule sigma_algebra.complement) + have "UNIV \ \_algebra A" by (rule \_algebra.UNIV) + hence "-UNIV \ \_algebra A" by (rule \_algebra.complement) also have "-UNIV = {}" by simp finally show ?thesis . qed @@ -42,9 +42,9 @@ "(!!i::nat. a i \ \_algebra A) ==> (\i. a i) \ \_algebra A" proof - assume "!!i::nat. a i \ \_algebra A" - hence "!!i::nat. -(a i) \ \_algebra A" by (rule sigma_algebra.complement) - hence "(\i. -(a i)) \ \_algebra A" by (rule sigma_algebra.Union) - hence "-(\i. -(a i)) \ \_algebra A" by (rule sigma_algebra.complement) + hence "!!i::nat. -(a i) \ \_algebra A" by (rule \_algebra.complement) + hence "(\i. -(a i)) \ \_algebra A" by (rule \_algebra.Union) + hence "-(\i. -(a i)) \ \_algebra A" by (rule \_algebra.complement) also have "-(\i. -(a i)) = (\i. a i)" by simp finally show ?thesis . qed