# HG changeset patch # User berghofe # Date 1184851890 -7200 # Node ID 7da8f260d9208a48f3c647f47fb5960a57a54cb7 # Parent 4cd60e5d29996d3171b35f718c7046b8624949c6 LaTeX code is now generated directly from theory files. diff -r 4cd60e5d2999 -r 7da8f260d920 doc-src/TutorialI/Inductive/advanced-examples.tex --- a/doc-src/TutorialI/Inductive/advanced-examples.tex Thu Jul 19 15:30:35 2007 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,356 +0,0 @@ -% $Id$ -The premises of introduction rules may contain universal quantifiers and -monotone functions. A universal quantifier lets the rule -refer to any number of instances of -the inductively defined set. A monotone function lets the rule refer -to existing constructions (such as ``list of'') over the inductively defined -set. The examples below show how to use the additional expressiveness -and how to reason from the resulting definitions. - -\subsection{Universal Quantifiers in Introduction Rules} -\label{sec:gterm-datatype} - -\index{ground terms example|(}% -\index{quantifiers!and inductive definitions|(}% -As a running example, this section develops the theory of \textbf{ground -terms}: terms constructed from constant and function -symbols but not variables. To simplify matters further, we regard a -constant as a function applied to the null argument list. Let us declare a -datatype \isa{gterm} for the type of ground terms. It is a type constructor -whose argument is a type of function symbols. -\begin{isabelle} -\isacommand{datatype}\ 'f\ gterm\ =\ Apply\ 'f\ "'f\ gterm\ list" -\end{isabelle} -To try it out, we declare a datatype of some integer operations: -integer constants, the unary minus operator and the addition -operator. -\begin{isabelle} -\isacommand{datatype}\ integer_op\ =\ Number\ int\ |\ UnaryMinus\ |\ Plus -\end{isabelle} -Now the type \isa{integer\_op gterm} denotes the ground -terms built over those symbols. - -The type constructor \texttt{gterm} can be generalized to a function -over sets. It returns -the set of ground terms that can be formed over a set \isa{F} of function symbols. For -example, we could consider the set of ground terms formed from the finite -set \isa{\isacharbraceleft Number 2, UnaryMinus, -Plus\isacharbraceright}. - -This concept is inductive. If we have a list \isa{args} of ground terms -over~\isa{F} and a function symbol \isa{f} in \isa{F}, then we -can apply \isa{f} to \isa{args} to obtain another ground term. -The only difficulty is that the argument list may be of any length. Hitherto, -each rule in an inductive definition referred to the inductively -defined set a fixed number of times, typically once or twice. -A universal quantifier in the premise of the introduction rule -expresses that every element of \isa{args} belongs -to our inductively defined set: is a ground term -over~\isa{F}. The function \isa{set} denotes the set of elements in a given -list. -\begin{isabelle} -\isacommand{consts}\ gterms\ ::\ "'f\ set\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline -\isacommand{inductive}\ "gterms\ F"\isanewline -\isakeyword{intros}\isanewline -step[intro!]:\ "\isasymlbrakk \isasymforall t\ \isasymin \ set\ args.\ t\ \isasymin \ gterms\ F;\ \ f\ \isasymin \ F\isasymrbrakk \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ gterms\ -F" -\end{isabelle} - -To demonstrate a proof from this definition, let us -show that the function \isa{gterms} -is \textbf{monotone}. We shall need this concept shortly. -\begin{isabelle} -\isacommand{lemma}\ gterms_mono:\ "F\isasymsubseteq G\ \isasymLongrightarrow \ gterms\ F\ \isasymsubseteq \ gterms\ G"\isanewline -\isacommand{apply}\ clarify\isanewline -\isacommand{apply}\ (erule\ gterms.induct)\isanewline -\isacommand{apply}\ blast\isanewline -\isacommand{done} -\end{isabelle} -Intuitively, this theorem says that -enlarging the set of function symbols enlarges the set of ground -terms. The proof is a trivial rule induction. -First we use the \isa{clarify} method to assume the existence of an element of -\isa{gterms~F}. (We could have used \isa{intro subsetI}.) We then -apply rule induction. Here is the resulting subgoal: -\begin{isabelle} -\ 1.\ \isasymAnd x\ args\ f.\isanewline -\ \ \ \ \ \ \ \isasymlbrakk F\ \isasymsubseteq \ G;\ \isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F\ \isasymand \ t\ \isasymin \ gterms\ G;\ f\ \isasymin \ F\isasymrbrakk \isanewline -\ \ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ G% -\end{isabelle} -% -The assumptions state that \isa{f} belongs -to~\isa{F}, which is included in~\isa{G}, and that every element of the list \isa{args} is -a ground term over~\isa{G}. The \isa{blast} method finds this chain of reasoning easily. - -\begin{warn} -Why do we call this function \isa{gterms} instead -of {\isa{gterm}}? A constant may have the same name as a type. However, -name clashes could arise in the theorems that Isabelle generates. -Our choice of names keeps {\isa{gterms.induct}} separate from -{\isa{gterm.induct}}. -\end{warn} - -Call a term \textbf{well-formed} if each symbol occurring in it is applied -to the correct number of arguments. (This number is called the symbol's -\textbf{arity}.) We can express well-formedness by -generalizing the inductive definition of -\isa{gterms}. -Suppose we are given a function called \isa{arity}, specifying the arities -of all symbols. In the inductive step, we have a list \isa{args} of such -terms and a function symbol~\isa{f}. If the length of the list matches the -function's arity then applying \isa{f} to \isa{args} yields a well-formed -term. -\begin{isabelle} -\isacommand{consts}\ well_formed_gterm\ ::\ "('f\ \isasymRightarrow \ nat)\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline -\isacommand{inductive}\ "well_formed_gterm\ arity"\isanewline -\isakeyword{intros}\isanewline -step[intro!]:\ "\isasymlbrakk \isasymforall t\ \isasymin \ set\ args.\ t\ \isasymin \ well_formed_gterm\ arity;\ \ \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ well_formed_gterm\ -arity" -\end{isabelle} -% -The inductive definition neatly captures the reasoning above. -The universal quantification over the -\isa{set} of arguments expresses that all of them are well-formed.% -\index{quantifiers!and inductive definitions|)} - - -\subsection{Alternative Definition Using a Monotone Function} - -\index{monotone functions!and inductive definitions|(}% -An inductive definition may refer to the -inductively defined set through an arbitrary monotone function. To -demonstrate this powerful feature, let us -change the inductive definition above, replacing the -quantifier by a use of the function \isa{lists}. This -function, from the Isabelle theory of lists, is analogous to the -function \isa{gterms} declared above: if \isa{A} is a set then -{\isa{lists A}} is the set of lists whose elements belong to -\isa{A}. - -In the inductive definition of well-formed terms, examine the one -introduction rule. The first premise states that \isa{args} belongs to -the \isa{lists} of well-formed terms. This formulation is more -direct, if more obscure, than using a universal quantifier. -\begin{isabelle} -\isacommand{consts}\ well_formed_gterm'\ ::\ "('f\ \isasymRightarrow \ nat)\ \isasymRightarrow \ 'f\ gterm\ set"\isanewline -\isacommand{inductive}\ "well_formed_gterm'\ arity"\isanewline -\isakeyword{intros}\isanewline -step[intro!]:\ "\isasymlbrakk args\ \isasymin \ lists\ (well_formed_gterm'\ arity);\ \ \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isasymLongrightarrow \ (Apply\ f\ args)\ \isasymin \ well_formed_gterm'\ arity"\isanewline -\isakeyword{monos}\ lists_mono -\end{isabelle} - -We cite the theorem \isa{lists_mono} to justify -using the function \isa{lists}.% -\footnote{This particular theorem is installed by default already, but we -include the \isakeyword{monos} declaration in order to illustrate its syntax.} -\begin{isabelle} -A\ \isasymsubseteq\ B\ \isasymLongrightarrow \ lists\ A\ \isasymsubseteq -\ lists\ B\rulenamedx{lists_mono} -\end{isabelle} -% -Why must the function be monotone? An inductive definition describes -an iterative construction: each element of the set is constructed by a -finite number of introduction rule applications. For example, the -elements of \isa{even} are constructed by finitely many applications of -the rules -\begin{isabelle} -0\ \isasymin \ even\isanewline -n\ \isasymin \ even\ \isasymLongrightarrow \ (Suc\ (Suc\ n))\ \isasymin -\ even -\end{isabelle} -All references to a set in its -inductive definition must be positive. Applications of an -introduction rule cannot invalidate previous applications, allowing the -construction process to converge. -The following pair of rules do not constitute an inductive definition: -\begin{isabelle} -0\ \isasymin \ even\isanewline -n\ \isasymnotin \ even\ \isasymLongrightarrow \ (Suc\ n)\ \isasymin -\ even -\end{isabelle} -% -Showing that 4 is even using these rules requires showing that 3 is not -even. It is far from trivial to show that this set of rules -characterizes the even numbers. - -Even with its use of the function \isa{lists}, the premise of our -introduction rule is positive: -\begin{isabelle} -args\ \isasymin \ lists\ (well_formed_gterm'\ arity) -\end{isabelle} -To apply the rule we construct a list \isa{args} of previously -constructed well-formed terms. We obtain a -new term, \isa{Apply\ f\ args}. Because \isa{lists} is monotone, -applications of the rule remain valid as new terms are constructed. -Further lists of well-formed -terms become available and none are taken away.% -\index{monotone functions!and inductive definitions|)} - - -\subsection{A Proof of Equivalence} - -We naturally hope that these two inductive definitions of ``well-formed'' -coincide. The equality can be proved by separate inclusions in -each direction. Each is a trivial rule induction. -\begin{isabelle} -\isacommand{lemma}\ "well_formed_gterm\ arity\ \isasymsubseteq \ well_formed_gterm'\ arity"\isanewline -\isacommand{apply}\ clarify\isanewline -\isacommand{apply}\ (erule\ well_formed_gterm.induct)\isanewline -\isacommand{apply}\ auto\isanewline -\isacommand{done} -\end{isabelle} - -The \isa{clarify} method gives -us an element of \isa{well_formed_gterm\ arity} on which to perform -induction. The resulting subgoal can be proved automatically: -\begin{isabelle} -{\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline -\ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}t{\isasymin}set\ args{\isachardot}\isanewline -\ \ \ \ \ \ \ \ \ \ t\ {\isasymin}\ well\_formed\_gterm\ arity\ {\isasymand}\ t\ {\isasymin}\ well\_formed\_gterm{\isacharprime}\ arity{\isacharsemicolon}\isanewline -\ \ \ \ \ \ \ length\ args\ {\isacharequal}\ arity\ f{\isasymrbrakk}\isanewline -\ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ well\_formed\_gterm{\isacharprime}\ arity% -\end{isabelle} -% -This proof resembles the one given in -{\S}\ref{sec:gterm-datatype} above, especially in the form of the -induction hypothesis. Next, we consider the opposite inclusion: -\begin{isabelle} -\isacommand{lemma}\ "well_formed_gterm'\ arity\ \isasymsubseteq \ well_formed_gterm\ arity"\isanewline -\isacommand{apply}\ clarify\isanewline -\isacommand{apply}\ (erule\ well_formed_gterm'.induct)\isanewline -\isacommand{apply}\ auto\isanewline -\isacommand{done} -\end{isabelle} -% -The proof script is identical, but the subgoal after applying induction may -be surprising: -\begin{isabelle} -1.\ \isasymAnd x\ args\ f.\isanewline -\ \ \ \ \ \ \isasymlbrakk args\ \isasymin \ lists\ (well_formed_gterm'\ arity\ \isasyminter\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \isacharbraceleft u.\ u\ \isasymin \ well_formed_gterm\ arity\isacharbraceright );\isanewline -\ \ \ \ \ \ \ length\ args\ =\ arity\ f\isasymrbrakk \isanewline -\ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ well_formed_gterm\ arity% -\end{isabelle} -The induction hypothesis contains an application of \isa{lists}. Using a -monotone function in the inductive definition always has this effect. The -subgoal may look uninviting, but fortunately -\isa{lists} distributes over intersection: -\begin{isabelle} -lists\ (A\ \isasyminter \ B)\ =\ lists\ A\ \isasyminter \ lists\ B -\rulename{lists_Int_eq} -\end{isabelle} -% -Thanks to this default simplification rule, the induction hypothesis -is quickly replaced by its two parts: -\begin{isabelle} -\ \ \ \ \ \ \ args\ \isasymin \ lists\ (well_formed_gterm'\ arity)\isanewline -\ \ \ \ \ \ \ args\ \isasymin \ lists\ (well_formed_gterm\ arity) -\end{isabelle} -Invoking the rule \isa{well_formed_gterm.step} completes the proof. The -call to -\isa{auto} does all this work. - -This example is typical of how monotone functions -\index{monotone functions} can be used. In particular, many of them -distribute over intersection. Monotonicity implies one direction of -this set equality; we have this theorem: -\begin{isabelle} -mono\ f\ \isasymLongrightarrow \ f\ (A\ \isasyminter \ B)\ \isasymsubseteq \ -f\ A\ \isasyminter \ f\ B% -\rulename{mono_Int} -\end{isabelle} - - -\subsection{Another Example of Rule Inversion} - -\index{rule inversion|(}% -Does \isa{gterms} distribute over intersection? We have proved that this -function is monotone, so \isa{mono_Int} gives one of the inclusions. The -opposite inclusion asserts that if \isa{t} is a ground term over both of the -sets -\isa{F} and~\isa{G} then it is also a ground term over their intersection, -\isa{F\isasyminter G}. -\begin{isabelle} -\isacommand{lemma}\ gterms_IntI:\isanewline -\ \ \ \ \ "t\ \isasymin \ gterms\ F\ \isasymLongrightarrow \ t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\isasyminter -G)" -\end{isabelle} -Attempting this proof, we get the assumption -\isa{Apply\ f\ args\ \isasymin\ gterms\ G}, which cannot be broken down. -It looks like a job for rule inversion: -\begin{isabelle} -\commdx{inductive\protect\_cases}\ gterm_Apply_elim\ [elim!]:\ "Apply\ f\ args\ -\isasymin\ gterms\ F" -\end{isabelle} -% -Here is the result. -\begin{isabelle} -\isasymlbrakk Apply\ f\ args\ \isasymin \ gterms\ F;\isanewline -\ \isasymlbrakk -\isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F;\ f\ \isasymin -\ F\isasymrbrakk \ \isasymLongrightarrow \ P\isasymrbrakk\isanewline -\isasymLongrightarrow \ P% -\rulename{gterm_Apply_elim} -\end{isabelle} -This rule replaces an assumption about \isa{Apply\ f\ args} by -assumptions about \isa{f} and~\isa{args}. -No cases are discarded (there was only one to begin -with) but the rule applies specifically to the pattern \isa{Apply\ f\ args}. -It can be applied repeatedly as an elimination rule without looping, so we -have given the -\isa{elim!}\ attribute. - -Now we can prove the other half of that distributive law. -\begin{isabelle} -\isacommand{lemma}\ gterms_IntI\ [rule_format,\ intro!]:\isanewline -\ \ \ \ \ "t\ \isasymin \ gterms\ F\ \isasymLongrightarrow \ t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\isasyminter G)"\isanewline -\isacommand{apply}\ (erule\ gterms.induct)\isanewline -\isacommand{apply}\ blast\isanewline -\isacommand{done} -\end{isabelle} -% -The proof begins with rule induction over the definition of -\isa{gterms}, which leaves a single subgoal: -\begin{isabelle} -1.\ \isasymAnd args\ f.\isanewline -\ \ \ \ \ \ \isasymlbrakk \isasymforall t\isasymin set\ args.\ t\ \isasymin \ gterms\ F\ \isasymand\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (t\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ t\ \isasymin \ gterms\ (F\ \isasyminter \ G));\isanewline -\ \ \ \ \ \ \ f\ \isasymin \ F\isasymrbrakk \isanewline -\ \ \ \ \ \ \isasymLongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ G\ \isasymlongrightarrow \ Apply\ f\ args\ \isasymin \ gterms\ (F\ \isasyminter \ G) -\end{isabelle} -% -To prove this, we assume \isa{Apply\ f\ args\ \isasymin \ -gterms\ G}. Rule inversion, in the form of \isa{gterm_Apply_elim}, infers -that every element of \isa{args} belongs to -\isa{gterms~G}; hence (by the induction hypothesis) it belongs -to \isa{gterms\ (F\ \isasyminter \ G)}. Rule inversion also yields -\isa{f\ \isasymin\ G} and hence \isa{f\ \isasymin \ F\ \isasyminter \ G}. -All of this reasoning is done by \isa{blast}. - -\smallskip -Our distributive law is a trivial consequence of previously-proved results: -\begin{isabelle} -\isacommand{theorem}\ gterms_Int_eq\ [simp]:\isanewline -\ \ \ \ \ "gterms\ (F\isasyminter G)\ =\ gterms\ F\ \isasyminter \ gterms\ G"\isanewline -\isacommand{by}\ (blast\ intro!:\ mono_Int\ monoI\ gterms_mono) -\end{isabelle} -\index{rule inversion|)}% -\index{ground terms example|)} - - -\begin{exercise} -A function mapping function symbols to their -types is called a \textbf{signature}. Given a type -ranging over type symbols, we can represent a function's type by a -list of argument types paired with the result type. -Complete this inductive definition: -\begin{isabelle} -\isacommand{consts}\ well_typed_gterm::\ "('f\ \isasymRightarrow \ 't\ list\ *\ 't)\ \isasymRightarrow \ ('f\ gterm\ *\ 't)set"\isanewline -\isacommand{inductive}\ "well_typed_gterm\ sig"\isanewline -\end{isabelle} -\end{exercise} diff -r 4cd60e5d2999 -r 7da8f260d920 doc-src/TutorialI/Inductive/even-example.tex --- a/doc-src/TutorialI/Inductive/even-example.tex Thu Jul 19 15:30:35 2007 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,324 +0,0 @@ -% $Id$ -\section{The Set of Even Numbers} - -\index{even numbers!defining inductively|(}% -The set of even numbers can be inductively defined as the least set -containing 0 and closed under the operation $+2$. Obviously, -\emph{even} can also be expressed using the divides relation (\isa{dvd}). -We shall prove below that the two formulations coincide. On the way we -shall examine the primary means of reasoning about inductively defined -sets: rule induction. - -\subsection{Making an Inductive Definition} - -Using \isacommand{consts}, we declare the constant \isa{even} to be a set -of natural numbers. The \commdx{inductive} declaration gives it the -desired properties. -\begin{isabelle} -\isacommand{consts}\ even\ ::\ "nat\ set"\isanewline -\isacommand{inductive}\ even\isanewline -\isakeyword{intros}\isanewline -zero[intro!]:\ "0\ \isasymin \ even"\isanewline -step[intro!]:\ "n\ \isasymin \ even\ \isasymLongrightarrow \ (Suc\ (Suc\ -n))\ \isasymin \ even" -\end{isabelle} - -An inductive definition consists of introduction rules. The first one -above states that 0 is even; the second states that if $n$ is even, then so -is~$n+2$. Given this declaration, Isabelle generates a fixed point -definition for \isa{even} and proves theorems about it, -thus following the definitional approach (see {\S}\ref{sec:definitional}). -These theorems -include the introduction rules specified in the declaration, an elimination -rule for case analysis and an induction rule. We can refer to these -theorems by automatically-generated names. Here are two examples: -% -\begin{isabelle} -0\ \isasymin \ even -\rulename{even.zero} -\par\smallskip -n\ \isasymin \ even\ \isasymLongrightarrow \ Suc\ (Suc\ n)\ \isasymin \ -even% -\rulename{even.step} -\end{isabelle} - -The introduction rules can be given attributes. Here -both rules are specified as \isa{intro!},% -\index{intro"!@\isa {intro"!} (attribute)} -directing the classical reasoner to -apply them aggressively. Obviously, regarding 0 as even is safe. The -\isa{step} rule is also safe because $n+2$ is even if and only if $n$ is -even. We prove this equivalence later. - -\subsection{Using Introduction Rules} - -Our first lemma states that numbers of the form $2\times k$ are even. -Introduction rules are used to show that specific values belong to the -inductive set. Such proofs typically involve -induction, perhaps over some other inductive set. -\begin{isabelle} -\isacommand{lemma}\ two_times_even[intro!]:\ "2*k\ \isasymin \ even" -\isanewline -\isacommand{apply}\ (induct_tac\ k)\isanewline -\ \isacommand{apply}\ auto\isanewline -\isacommand{done} -\end{isabelle} -% -The first step is induction on the natural number \isa{k}, which leaves -two subgoals: -\begin{isabelle} -\ 1.\ 2\ *\ 0\ \isasymin \ even\isanewline -\ 2.\ \isasymAnd n.\ 2\ *\ n\ \isasymin \ even\ \isasymLongrightarrow \ 2\ *\ Suc\ n\ \isasymin \ even -\end{isabelle} -% -Here \isa{auto} simplifies both subgoals so that they match the introduction -rules, which are then applied automatically. - -Our ultimate goal is to prove the equivalence between the traditional -definition of \isa{even} (using the divides relation) and our inductive -definition. One direction of this equivalence is immediate by the lemma -just proved, whose \isa{intro!} attribute ensures it is applied automatically. -\begin{isabelle} -\isacommand{lemma}\ dvd_imp_even:\ "2\ dvd\ n\ \isasymLongrightarrow \ n\ \isasymin \ even"\isanewline -\isacommand{by}\ (auto\ simp\ add:\ dvd_def) -\end{isabelle} - -\subsection{Rule Induction} -\label{sec:rule-induction} - -\index{rule induction|(}% -From the definition of the set -\isa{even}, Isabelle has -generated an induction rule: -\begin{isabelle} -\isasymlbrakk xa\ \isasymin \ even;\isanewline -\ P\ 0;\isanewline -\ \isasymAnd n.\ \isasymlbrakk n\ \isasymin \ even;\ P\ n\isasymrbrakk \ -\isasymLongrightarrow \ P\ (Suc\ (Suc\ n))\isasymrbrakk\isanewline -\ \isasymLongrightarrow \ P\ xa% -\rulename{even.induct} -\end{isabelle} -A property \isa{P} holds for every even number provided it -holds for~\isa{0} and is closed under the operation -\isa{Suc(Suc \(\cdot\))}. Then \isa{P} is closed under the introduction -rules for \isa{even}, which is the least set closed under those rules. -This type of inductive argument is called \textbf{rule induction}. - -Apart from the double application of \isa{Suc}, the induction rule above -resembles the familiar mathematical induction, which indeed is an instance -of rule induction; the natural numbers can be defined inductively to be -the least set containing \isa{0} and closed under~\isa{Suc}. - -Induction is the usual way of proving a property of the elements of an -inductively defined set. Let us prove that all members of the set -\isa{even} are multiples of two. -\begin{isabelle} -\isacommand{lemma}\ even_imp_dvd:\ "n\ \isasymin \ even\ \isasymLongrightarrow \ 2\ dvd\ n" -\end{isabelle} -% -We begin by applying induction. Note that \isa{even.induct} has the form -of an elimination rule, so we use the method \isa{erule}. We get two -subgoals: -\begin{isabelle} -\isacommand{apply}\ (erule\ even.induct) -\isanewline\isanewline -\ 1.\ 2\ dvd\ 0\isanewline -\ 2.\ \isasymAnd n.\ \isasymlbrakk n\ \isasymin \ even;\ 2\ dvd\ n\isasymrbrakk \ \isasymLongrightarrow \ 2\ dvd\ Suc\ (Suc\ n) -\end{isabelle} -% -We unfold the definition of \isa{dvd} in both subgoals, proving the first -one and simplifying the second: -\begin{isabelle} -\isacommand{apply}\ (simp_all\ add:\ dvd_def) -\isanewline\isanewline -\ 1.\ \isasymAnd n.\ \isasymlbrakk n\ \isasymin \ even;\ \isasymexists k.\ -n\ =\ 2\ *\ k\isasymrbrakk \ \isasymLongrightarrow \ \isasymexists k.\ -Suc\ (Suc\ n)\ =\ 2\ *\ k -\end{isabelle} -% -The next command eliminates the existential quantifier from the assumption -and replaces \isa{n} by \isa{2\ *\ k}. -\begin{isabelle} -\isacommand{apply}\ clarify -\isanewline\isanewline -\ 1.\ \isasymAnd n\ k.\ 2\ *\ k\ \isasymin \ even\ \isasymLongrightarrow \ \isasymexists ka.\ Suc\ (Suc\ (2\ *\ k))\ =\ 2\ *\ ka% -\end{isabelle} -% -To conclude, we tell Isabelle that the desired value is -\isa{Suc\ k}. With this hint, the subgoal falls to \isa{simp}. -\begin{isabelle} -\isacommand{apply}\ (rule_tac\ x\ =\ "Suc\ k"\ \isakeyword{in}\ exI, simp) -\end{isabelle} - - -\medskip -Combining the previous two results yields our objective, the -equivalence relating \isa{even} and \isa{dvd}. -% -%we don't want [iff]: discuss? -\begin{isabelle} -\isacommand{theorem}\ even_iff_dvd:\ "(n\ \isasymin \ even)\ =\ (2\ dvd\ n)"\isanewline -\isacommand{by}\ (blast\ intro:\ dvd_imp_even\ even_imp_dvd) -\end{isabelle} - - -\subsection{Generalization and Rule Induction} -\label{sec:gen-rule-induction} - -\index{generalizing for induction}% -Before applying induction, we typically must generalize -the induction formula. With rule induction, the required generalization -can be hard to find and sometimes requires a complete reformulation of the -problem. In this example, our first attempt uses the obvious statement of -the result. It fails: -% -\begin{isabelle} -\isacommand{lemma}\ "Suc\ (Suc\ n)\ \isasymin \ even\ -\isasymLongrightarrow \ n\ \isasymin \ even"\isanewline -\isacommand{apply}\ (erule\ even.induct)\isanewline -\isacommand{oops} -\end{isabelle} -% -Rule induction finds no occurrences of \isa{Suc(Suc\ n)} in the -conclusion, which it therefore leaves unchanged. (Look at -\isa{even.induct} to see why this happens.) We have these subgoals: -\begin{isabelle} -\ 1.\ n\ \isasymin \ even\isanewline -\ 2.\ \isasymAnd na.\ \isasymlbrakk na\ \isasymin \ even;\ n\ \isasymin \ even\isasymrbrakk \ \isasymLongrightarrow \ n\ \isasymin \ even% -\end{isabelle} -The first one is hopeless. Rule induction on -a non-variable term discards information, and usually fails. -How to deal with such situations -in general is described in {\S}\ref{sec:ind-var-in-prems} below. -In the current case the solution is easy because -we have the necessary inverse, subtraction: -\begin{isabelle} -\isacommand{lemma}\ even_imp_even_minus_2:\ "n\ \isasymin \ even\ \isasymLongrightarrow \ n-2\ \isasymin \ even"\isanewline -\isacommand{apply}\ (erule\ even.induct)\isanewline -\ \isacommand{apply}\ auto\isanewline -\isacommand{done} -\end{isabelle} -% -This lemma is trivially inductive. Here are the subgoals: -\begin{isabelle} -\ 1.\ 0\ -\ 2\ \isasymin \ even\isanewline -\ 2.\ \isasymAnd n.\ \isasymlbrakk n\ \isasymin \ even;\ n\ -\ 2\ \isasymin \ even\isasymrbrakk \ \isasymLongrightarrow \ Suc\ (Suc\ n)\ -\ 2\ \isasymin \ even% -\end{isabelle} -The first is trivial because \isa{0\ -\ 2} simplifies to \isa{0}, which is -even. The second is trivial too: \isa{Suc\ (Suc\ n)\ -\ 2} simplifies to -\isa{n}, matching the assumption.% -\index{rule induction|)} %the sequel isn't really about induction - -\medskip -Using our lemma, we can easily prove the result we originally wanted: -\begin{isabelle} -\isacommand{lemma}\ Suc_Suc_even_imp_even:\ "Suc\ (Suc\ n)\ \isasymin \ even\ \isasymLongrightarrow \ n\ \isasymin \ even"\isanewline -\isacommand{by}\ (drule\ even_imp_even_minus_2, simp) -\end{isabelle} - -We have just proved the converse of the introduction rule \isa{even.step}. -This suggests proving the following equivalence. We give it the -\attrdx{iff} attribute because of its obvious value for simplification. -\begin{isabelle} -\isacommand{lemma}\ [iff]:\ "((Suc\ (Suc\ n))\ \isasymin \ even)\ =\ (n\ -\isasymin \ even)"\isanewline -\isacommand{by}\ (blast\ dest:\ Suc_Suc_even_imp_even) -\end{isabelle} - - -\subsection{Rule Inversion}\label{sec:rule-inversion} - -\index{rule inversion|(}% -Case analysis on an inductive definition is called \textbf{rule -inversion}. It is frequently used in proofs about operational -semantics. It can be highly effective when it is applied -automatically. Let us look at how rule inversion is done in -Isabelle/HOL\@. - -Recall that \isa{even} is the minimal set closed under these two rules: -\begin{isabelle} -0\ \isasymin \ even\isanewline -n\ \isasymin \ even\ \isasymLongrightarrow \ Suc\ (Suc\ n)\ \isasymin -\ even -\end{isabelle} -Minimality means that \isa{even} contains only the elements that these -rules force it to contain. If we are told that \isa{a} -belongs to -\isa{even} then there are only two possibilities. Either \isa{a} is \isa{0} -or else \isa{a} has the form \isa{Suc(Suc~n)}, for some suitable \isa{n} -that belongs to -\isa{even}. That is the gist of the \isa{cases} rule, which Isabelle proves -for us when it accepts an inductive definition: -\begin{isabelle} -\isasymlbrakk a\ \isasymin \ even;\isanewline -\ a\ =\ 0\ \isasymLongrightarrow \ P;\isanewline -\ \isasymAnd n.\ \isasymlbrakk a\ =\ Suc(Suc\ n);\ n\ \isasymin \ -even\isasymrbrakk \ \isasymLongrightarrow \ P\isasymrbrakk \ -\isasymLongrightarrow \ P -\rulename{even.cases} -\end{isabelle} - -This general rule is less useful than instances of it for -specific patterns. For example, if \isa{a} has the form -\isa{Suc(Suc~n)} then the first case becomes irrelevant, while the second -case tells us that \isa{n} belongs to \isa{even}. Isabelle will generate -this instance for us: -\begin{isabelle} -\isacommand{inductive\_cases}\ Suc_Suc_cases\ [elim!]: -\ "Suc(Suc\ n)\ \isasymin \ even" -\end{isabelle} -The \commdx{inductive\protect\_cases} command generates an instance of -the -\isa{cases} rule for the supplied pattern and gives it the supplied name: -% -\begin{isabelle} -\isasymlbrakk Suc(Suc\ n)\ \isasymin \ even;\ n\ \isasymin \ even\ -\isasymLongrightarrow \ P\isasymrbrakk \ \isasymLongrightarrow \ P% -\rulename{Suc_Suc_cases} -\end{isabelle} -% -Applying this as an elimination rule yields one case where \isa{even.cases} -would yield two. Rule inversion works well when the conclusions of the -introduction rules involve datatype constructors like \isa{Suc} and \isa{\#} -(list ``cons''); freeness reasoning discards all but one or two cases. - -In the \isacommand{inductive\_cases} command we supplied an -attribute, \isa{elim!}, -\index{elim"!@\isa {elim"!} (attribute)}% -indicating that this elimination rule can be -applied aggressively. The original -\isa{cases} rule would loop if used in that manner because the -pattern~\isa{a} matches everything. - -The rule \isa{Suc_Suc_cases} is equivalent to the following implication: -\begin{isabelle} -Suc (Suc\ n)\ \isasymin \ even\ \isasymLongrightarrow \ n\ \isasymin \ -even -\end{isabelle} -% -Just above we devoted some effort to reaching precisely -this result. Yet we could have obtained it by a one-line declaration, -dispensing with the lemma \isa{even_imp_even_minus_2}. -This example also justifies the terminology -\textbf{rule inversion}: the new rule inverts the introduction rule -\isa{even.step}. In general, a rule can be inverted when the set of elements -it introduces is disjoint from those of the other introduction rules. - -For one-off applications of rule inversion, use the \methdx{ind_cases} method. -Here is an example: -\begin{isabelle} -\isacommand{apply}\ (ind_cases\ "Suc(Suc\ n)\ \isasymin \ even") -\end{isabelle} -The specified instance of the \isa{cases} rule is generated, then applied -as an elimination rule. - -To summarize, every inductive definition produces a \isa{cases} rule. The -\commdx{inductive\protect\_cases} command stores an instance of the -\isa{cases} rule for a given pattern. Within a proof, the -\isa{ind_cases} method applies an instance of the \isa{cases} -rule. - -The even numbers example has shown how inductive definitions can be -used. Later examples will show that they are actually worth using.% -\index{rule inversion|)}% -\index{even numbers!defining inductively|)}