# HG changeset patch # User wenzelm # Date 1574505902 -3600 # Node ID 7db80bd16f1cdad70f27165674d83f809389e263 # Parent 8563046f15c3f33645eb276486929de68ad1670c tuned proofs; diff -r 8563046f15c3 -r 7db80bd16f1c src/HOL/Enum.thy --- a/src/HOL/Enum.thy Sat Nov 23 11:36:42 2019 +0100 +++ b/src/HOL/Enum.thy Sat Nov 23 11:45:02 2019 +0100 @@ -534,7 +534,7 @@ instance apply (intro_classes) apply (auto simp add: less_finite_1_def less_eq_finite_1_def) -apply (metis finite_1.exhaust) +apply (metis (full_types) finite_1.exhaust) done end @@ -807,8 +807,8 @@ from this have [simp]: "z \ \UNIV" using local.le_iff_sup by auto have "(\ x. x \ A \ z \ x) \ z \ \A" - apply (rule finite_induct [of A "\ A . (\ x. x \ A \ z \ x) \ z \ \A"]) - by (simp_all add: Inf_finite_empty Inf_finite_insert) + by (rule finite_induct [of A "\ A . (\ x. x \ A \ z \ x) \ z \ \A"]) + (simp_all add: Inf_finite_empty Inf_finite_insert) from this show "(\x. x \ A \ z \ x) \ z \ \A" by simp @@ -868,18 +868,17 @@ assume "\(Sup ` F) \ \(Inf ` {f ` F |f. \Y\F. f Y \ Y})" from this have "\x \ \(Sup ` F) \ \x \ \(Inf ` {f ` F |f. \Y\F. f Y \ Y})" - apply simp - using inf.coboundedI2 by blast + using inf.coboundedI2 by auto also have "... = Sup {\x \ (Inf (f ` F)) |f . (\Y\F. f Y \ Y)}" by (simp add: finite_inf_Sup) also have "... = Sup {Sup {Inf (f ` F) \ b | b . b \ x} |f . (\Y\F. f Y \ Y)}" - apply (subst inf_commute) - by (simp add: finite_inf_Sup) + by (subst inf_commute) (simp add: finite_inf_Sup) also have "... \ \(Inf ` {insert (f x) (f ` F) |f. f x \ x \ (\Y\F. f Y \ Y)})" apply (rule Sup_least, clarsimp)+ - by (subst inf_commute, simp) + apply (subst inf_commute, simp) + done finally show "\x \ \(Sup ` F) \ \(Inf ` {insert (f x) (f ` F) |f. f x \ x \ (\Y\F. f Y \ Y)})" by simp