# HG changeset patch # User wenzelm # Date 1159720176 -7200 # Node ID 7ec9b692183cdf22c280ede03d82e2c1934b5abe # Parent 1cf97e0bba577021e40854b764d688d4dd3c486a renamed ex/SVC_Oracle.ML to ex/svc_oracle.ML; diff -r 1cf97e0bba57 -r 7ec9b692183c src/HOL/ex/SVC_Oracle.ML --- a/src/HOL/ex/SVC_Oracle.ML Sun Oct 01 18:29:35 2006 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,105 +0,0 @@ -(* Title: HOL/SVC_Oracle.ML - ID: $Id$ - Author: Lawrence C Paulson - Copyright 1999 University of Cambridge - -Installing the oracle for SVC (Stanford Validity Checker) - -The following code merely CALLS the oracle; - the soundness-critical functions are at HOL/Tools/svc_funcs.ML - -Based upon the work of Soren T. Heilmann -*) - - -(*Generalize an Isabelle formula, replacing by Vars - all subterms not intelligible to SVC.*) -fun svc_abstract t = - let - (*The oracle's result is given to the subgoal using compose_tac because - its premises are matched against the assumptions rather than used - to make subgoals. Therefore , abstraction must copy the parameters - precisely and make them available to all generated Vars.*) - val params = Term.strip_all_vars t - and body = Term.strip_all_body t - val Us = map #2 params - val nPar = length params - val vname = ref "V_a" - val pairs = ref ([] : (term*term) list) - fun insert t = - let val T = fastype_of t - val v = Logic.combound (Var ((!vname,0), Us--->T), 0, nPar) - in vname := Symbol.bump_string (!vname); - pairs := (t, v) :: !pairs; - v - end; - fun replace t = - case t of - Free _ => t (*but not existing Vars, lest the names clash*) - | Bound _ => t - | _ => (case AList.lookup Pattern.aeconv (!pairs) t of - SOME v => v - | NONE => insert t) - (*abstraction of a numeric literal*) - fun lit (t as Const("0", _)) = t - | lit (t as Const("1", _)) = t - | lit (t as Const("Numeral.number_of", _) $ w) = t - | lit t = replace t - (*abstraction of a real/rational expression*) - fun rat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("HOL.minus", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("HOL.divide", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("HOL.times", _)) $ x $ y) = c $ (rat x) $ (rat y) - | rat ((c as Const("HOL.uminus", _)) $ x) = c $ (rat x) - | rat t = lit t - (*abstraction of an integer expression: no div, mod*) - fun int ((c as Const("HOL.plus", _)) $ x $ y) = c $ (int x) $ (int y) - | int ((c as Const("HOL.minus", _)) $ x $ y) = c $ (int x) $ (int y) - | int ((c as Const("HOL.times", _)) $ x $ y) = c $ (int x) $ (int y) - | int ((c as Const("HOL.uminus", _)) $ x) = c $ (int x) - | int t = lit t - (*abstraction of a natural number expression: no minus*) - fun nat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (nat x) $ (nat y) - | nat ((c as Const("HOL.times", _)) $ x $ y) = c $ (nat x) $ (nat y) - | nat ((c as Const("Suc", _)) $ x) = c $ (nat x) - | nat t = lit t - (*abstraction of a relation: =, <, <=*) - fun rel (T, c $ x $ y) = - if T = HOLogic.realT then c $ (rat x) $ (rat y) - else if T = HOLogic.intT then c $ (int x) $ (int y) - else if T = HOLogic.natT then c $ (nat x) $ (nat y) - else if T = HOLogic.boolT then c $ (fm x) $ (fm y) - else replace (c $ x $ y) (*non-numeric comparison*) - (*abstraction of a formula*) - and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q) - | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q) - | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q) - | fm ((c as Const("Not", _)) $ p) = c $ (fm p) - | fm ((c as Const("True", _))) = c - | fm ((c as Const("False", _))) = c - | fm (t as Const("op =", Type ("fun", [T,_])) $ _ $ _) = rel (T, t) - | fm (t as Const("Orderings.less", Type ("fun", [T,_])) $ _ $ _) = rel (T, t) - | fm (t as Const("Orderings.less_eq", Type ("fun", [T,_])) $ _ $ _) = rel (T, t) - | fm t = replace t - (*entry point, and abstraction of a meta-formula*) - fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p) - | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q) - | mt t = fm t (*it might be a formula*) - in (list_all (params, mt body), !pairs) end; - - -(*Present the entire subgoal to the oracle, assumptions and all, but possibly - abstracted. Use via compose_tac, which performs no lifting but will - instantiate variables.*) - -fun svc_tac i st = - let - val (abs_goal, _) = svc_abstract (Logic.get_goal (Thm.prop_of st) i) - val th = svc_oracle (Thm.theory_of_thm st) abs_goal - in compose_tac (false, th, 0) i st end - handle TERM _ => no_tac st; - - -(*check if user has SVC installed*) -fun svc_enabled () = getenv "SVC_HOME" <> ""; -fun if_svc_enabled f x = if svc_enabled () then f x else (); diff -r 1cf97e0bba57 -r 7ec9b692183c src/HOL/ex/svc_oracle.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/ex/svc_oracle.ML Sun Oct 01 18:29:36 2006 +0200 @@ -0,0 +1,105 @@ +(* Title: HOL/SVC_Oracle.ML + ID: $Id$ + Author: Lawrence C Paulson + Copyright 1999 University of Cambridge + +Installing the oracle for SVC (Stanford Validity Checker) + +The following code merely CALLS the oracle; + the soundness-critical functions are at HOL/Tools/svc_funcs.ML + +Based upon the work of Soren T. Heilmann +*) + + +(*Generalize an Isabelle formula, replacing by Vars + all subterms not intelligible to SVC.*) +fun svc_abstract t = + let + (*The oracle's result is given to the subgoal using compose_tac because + its premises are matched against the assumptions rather than used + to make subgoals. Therefore , abstraction must copy the parameters + precisely and make them available to all generated Vars.*) + val params = Term.strip_all_vars t + and body = Term.strip_all_body t + val Us = map #2 params + val nPar = length params + val vname = ref "V_a" + val pairs = ref ([] : (term*term) list) + fun insert t = + let val T = fastype_of t + val v = Logic.combound (Var ((!vname,0), Us--->T), 0, nPar) + in vname := Symbol.bump_string (!vname); + pairs := (t, v) :: !pairs; + v + end; + fun replace t = + case t of + Free _ => t (*but not existing Vars, lest the names clash*) + | Bound _ => t + | _ => (case AList.lookup Pattern.aeconv (!pairs) t of + SOME v => v + | NONE => insert t) + (*abstraction of a numeric literal*) + fun lit (t as Const("0", _)) = t + | lit (t as Const("1", _)) = t + | lit (t as Const("Numeral.number_of", _) $ w) = t + | lit t = replace t + (*abstraction of a real/rational expression*) + fun rat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("HOL.minus", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("HOL.divide", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("HOL.times", _)) $ x $ y) = c $ (rat x) $ (rat y) + | rat ((c as Const("HOL.uminus", _)) $ x) = c $ (rat x) + | rat t = lit t + (*abstraction of an integer expression: no div, mod*) + fun int ((c as Const("HOL.plus", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("HOL.minus", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("HOL.times", _)) $ x $ y) = c $ (int x) $ (int y) + | int ((c as Const("HOL.uminus", _)) $ x) = c $ (int x) + | int t = lit t + (*abstraction of a natural number expression: no minus*) + fun nat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (nat x) $ (nat y) + | nat ((c as Const("HOL.times", _)) $ x $ y) = c $ (nat x) $ (nat y) + | nat ((c as Const("Suc", _)) $ x) = c $ (nat x) + | nat t = lit t + (*abstraction of a relation: =, <, <=*) + fun rel (T, c $ x $ y) = + if T = HOLogic.realT then c $ (rat x) $ (rat y) + else if T = HOLogic.intT then c $ (int x) $ (int y) + else if T = HOLogic.natT then c $ (nat x) $ (nat y) + else if T = HOLogic.boolT then c $ (fm x) $ (fm y) + else replace (c $ x $ y) (*non-numeric comparison*) + (*abstraction of a formula*) + and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q) + | fm ((c as Const("Not", _)) $ p) = c $ (fm p) + | fm ((c as Const("True", _))) = c + | fm ((c as Const("False", _))) = c + | fm (t as Const("op =", Type ("fun", [T,_])) $ _ $ _) = rel (T, t) + | fm (t as Const("Orderings.less", Type ("fun", [T,_])) $ _ $ _) = rel (T, t) + | fm (t as Const("Orderings.less_eq", Type ("fun", [T,_])) $ _ $ _) = rel (T, t) + | fm t = replace t + (*entry point, and abstraction of a meta-formula*) + fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p) + | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q) + | mt t = fm t (*it might be a formula*) + in (list_all (params, mt body), !pairs) end; + + +(*Present the entire subgoal to the oracle, assumptions and all, but possibly + abstracted. Use via compose_tac, which performs no lifting but will + instantiate variables.*) + +fun svc_tac i st = + let + val (abs_goal, _) = svc_abstract (Logic.get_goal (Thm.prop_of st) i) + val th = svc_oracle (Thm.theory_of_thm st) abs_goal + in compose_tac (false, th, 0) i st end + handle TERM _ => no_tac st; + + +(*check if user has SVC installed*) +fun svc_enabled () = getenv "SVC_HOME" <> ""; +fun if_svc_enabled f x = if svc_enabled () then f x else ();