# HG changeset patch # User hoelzl # Date 1316009332 14400 # Node ID 7ef6505bde7f8f752715eac7ebeb5756da4debe8 # Parent 8bf41f8cf71d10038bb24fa8bcb25998cc242dcb renamed Complete_Lattices lemmas, removed legacy names diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Complete_Lattices.thy Wed Sep 14 10:08:52 2011 -0400 @@ -1150,19 +1150,6 @@ "\{a, b} = a \ b" by simp -lemmas (in complete_lattice) INFI_def = INF_def -lemmas (in complete_lattice) SUPR_def = SUP_def -lemmas (in complete_lattice) INF_leI = INF_lower -lemmas (in complete_lattice) INF_leI2 = INF_lower2 -lemmas (in complete_lattice) le_INFI = INF_greatest -lemmas (in complete_lattice) le_SUPI = SUP_upper -lemmas (in complete_lattice) le_SUPI2 = SUP_upper2 -lemmas (in complete_lattice) SUP_leI = SUP_least -lemmas (in complete_lattice) less_INFD = less_INF_D - -lemmas INFI_apply = INF_apply -lemmas SUPR_apply = SUP_apply - text {* Grep and put to news from here *} lemma (in complete_lattice) INF_eq: @@ -1196,9 +1183,6 @@ "\S = (\x\S. x)" by (simp add: INTER_eq_Inter_image image_def) -lemmas INTER_def = INTER_eq -lemmas UNION_def = UNION_eq - lemma INT_eq: "(\x\A. B x) = \({Y. \x\A. Y = B x})" by (fact INF_eq) diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Finite_Set.thy Wed Sep 14 10:08:52 2011 -0400 @@ -784,7 +784,7 @@ interpret comp_fun_idem "inf \ f" by (fact comp_comp_fun_idem) from `finite A` show "?fold = ?inf" by (induct A arbitrary: B) - (simp_all add: INFI_def inf_left_commute) + (simp_all add: INF_def inf_left_commute) qed lemma sup_SUPR_fold_sup: @@ -795,7 +795,7 @@ interpret comp_fun_idem "sup \ f" by (fact comp_comp_fun_idem) from `finite A` show "?fold = ?sup" by (induct A arbitrary: B) - (simp_all add: SUPR_def sup_left_commute) + (simp_all add: SUP_def sup_left_commute) qed lemma INFI_fold_inf: diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Fun.thy --- a/src/HOL/Fun.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Fun.thy Wed Sep 14 10:08:52 2011 -0400 @@ -181,7 +181,7 @@ assumes CH: "\ i j. \i \ I; j \ I\ \ A i \ A j \ A j \ A i" and INJ: "\ i. i \ I \ inj_on f (A i)" shows "inj_on f (\ i \ I. A i)" -proof(unfold inj_on_def UNION_def, auto) +proof(unfold inj_on_def UNION_eq, auto) fix i j x y assume *: "i \ I" "j \ I" and **: "x \ A i" "y \ A j" and ***: "f x = f y" diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Hoare_Parallel/OG_Tactics.thy --- a/src/HOL/Hoare_Parallel/OG_Tactics.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Hoare_Parallel/OG_Tactics.thy Wed Sep 14 10:08:52 2011 -0400 @@ -270,7 +270,7 @@ lemmas my_simp_list = list_lemmas fst_conv snd_conv not_less0 refl le_Suc_eq_insert Suc_not_Zero Zero_not_Suc nat.inject Collect_mem_eq ball_simps option.simps primrecdef_list -lemmas ParallelConseq_list = INTER_def Collect_conj_eq length_map length_upt length_append list_length +lemmas ParallelConseq_list = INTER_eq Collect_conj_eq length_map length_upt length_append list_length ML {* val before_interfree_simp_tac = simp_tac (HOL_basic_ss addsimps [@{thm com.simps}, @{thm post.simps}]) diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Library/Continuity.thy --- a/src/HOL/Library/Continuity.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Library/Continuity.thy Wed Sep 14 10:08:52 2011 -0400 @@ -21,12 +21,12 @@ lemma SUP_nat_conv: "(SUP n. M n) = sup (M 0) (SUP n. M(Suc n))" apply(rule order_antisym) - apply(rule SUP_leI) + apply(rule SUP_least) apply(case_tac n) apply simp - apply (fast intro:le_SUPI le_supI2) + apply (fast intro:SUP_upper le_supI2) apply(simp) -apply (blast intro:SUP_leI le_SUPI) +apply (blast intro:SUP_least SUP_upper) done lemma continuous_mono: fixes F :: "'a::complete_lattice \ 'a::complete_lattice" @@ -61,7 +61,7 @@ also have "\ = lfp F" by(simp add:lfp_unfold[OF mono, symmetric]) finally show ?case . qed } - hence "(SUP i. (F ^^ i) bot) \ lfp F" by (blast intro!:SUP_leI) + hence "(SUP i. (F ^^ i) bot) \ lfp F" by (blast intro!:SUP_least) moreover have "lfp F \ (SUP i. (F ^^ i) bot)" (is "_ \ ?U") proof (rule lfp_lowerbound) have "chain(%i. (F ^^ i) bot)" @@ -75,7 +75,7 @@ thus ?thesis by(auto simp add:chain_def) qed hence "F ?U = (SUP i. (F ^^ (i+1)) bot)" using `continuous F` by (simp add:continuous_def) - also have "\ \ ?U" by(fast intro:SUP_leI le_SUPI) + also have "\ \ ?U" by(fast intro:SUP_least SUP_upper) finally show "F ?U \ ?U" . qed ultimately show ?thesis by (blast intro:order_antisym) diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Library/Extended_Real.thy Wed Sep 14 10:08:52 2011 -0400 @@ -30,11 +30,11 @@ lemma SUPR_pair: "(SUP i : A. SUP j : B. f i j) = (SUP p : A \ B. f (fst p) (snd p))" - by (rule antisym) (auto intro!: SUP_leI le_SUPI2) + by (rule antisym) (auto intro!: SUP_least SUP_upper2) lemma INFI_pair: "(INF i : A. INF j : B. f i j) = (INF p : A \ B. f (fst p) (snd p))" - by (rule antisym) (auto intro!: le_INFI INF_leI2) + by (rule antisym) (auto intro!: INF_greatest INF_lower2) subsection {* Definition and basic properties *} @@ -1252,7 +1252,7 @@ lemma ereal_SUPR_uminus: fixes f :: "'a => ereal" shows "(SUP i : R. -(f i)) = -(INF i : R. f i)" - unfolding SUPR_def INFI_def + unfolding SUP_def INF_def using ereal_Sup_uminus_image_eq[of "f`R"] by (simp add: image_image) @@ -1313,7 +1313,7 @@ assumes "!!i. i : A ==> f i <= x" assumes "!!y. (!!i. i : A ==> f i <= y) ==> x <= y" shows "(SUP i:A. f i) = x" - unfolding SUPR_def Sup_ereal_def + unfolding SUP_def Sup_ereal_def using assms by (auto intro!: Least_equality) lemma ereal_INFI: @@ -1321,7 +1321,7 @@ assumes "!!i. i : A ==> f i >= x" assumes "!!y. (!!i. i : A ==> f i >= y) ==> x >= y" shows "(INF i:A. f i) = x" - unfolding INFI_def Inf_ereal_def + unfolding INF_def Inf_ereal_def using assms by (auto intro!: Greatest_equality) lemma Sup_ereal_close: @@ -1364,13 +1364,13 @@ { assume "~(x <= (SUP i:A. f i))" hence "(SUP i:A. f i) x" by auto - hence "(INF i:A. f i) >= x" apply (subst le_INFI) by auto + hence "(INF i:A. f i) >= x" apply (subst INF_greatest) by auto thus False using assms by auto qed @@ -1411,7 +1411,7 @@ shows "(INF e:A. f e) = (INF e:A. g e)" proof- have "f ` A = g ` A" unfolding image_def using assms by auto -thus ?thesis unfolding INFI_def by auto +thus ?thesis unfolding INF_def by auto qed lemma same_SUP: @@ -1419,7 +1419,7 @@ shows "(SUP e:A. f e) = (SUP e:A. g e)" proof- have "f ` A = g ` A" unfolding image_def using assms by auto -thus ?thesis unfolding SUPR_def by auto +thus ?thesis unfolding SUP_def by auto qed lemma SUPR_eq: @@ -1428,9 +1428,9 @@ shows "(SUP i:A. f i) = (SUP j:B. g j)" proof (intro antisym) show "(SUP i:A. f i) \ (SUP j:B. g j)" - using assms by (metis SUP_leI le_SUPI2) + using assms by (metis SUP_least SUP_upper2) show "(SUP i:B. g i) \ (SUP j:A. f j)" - using assms by (metis SUP_leI le_SUPI2) + using assms by (metis SUP_least SUP_upper2) qed lemma SUP_ereal_le_addI: @@ -1440,7 +1440,7 @@ proof (cases y) case (real r) then have "\i. f i \ z - y" using assms by (simp add: ereal_le_minus_iff) - then have "SUPR UNIV f \ z - y" by (rule SUP_leI) + then have "SUPR UNIV f \ z - y" by (rule SUP_least) then show ?thesis using real by (simp add: ereal_le_minus_iff) qed (insert assms, auto) @@ -1451,7 +1451,7 @@ proof (rule ereal_SUPI) fix y assume *: "\i. i \ UNIV \ f i + g i \ y" have f: "SUPR UNIV f \ -\" using pos - unfolding SUPR_def Sup_eq_MInfty by (auto dest: image_eqD) + unfolding SUP_def Sup_eq_MInfty by (auto dest: image_eqD) { fix j { fix i have "f i + g j \ f i + g (max i j)" @@ -1466,7 +1466,7 @@ then have "SUPR UNIV g + SUPR UNIV f \ y" using f by (rule SUP_ereal_le_addI) then show "SUPR UNIV f + SUPR UNIV g \ y" by (simp add: ac_simps) -qed (auto intro!: add_mono le_SUPI) +qed (auto intro!: add_mono SUP_upper) lemma SUPR_ereal_add_pos: fixes f g :: "nat \ ereal" @@ -1489,7 +1489,7 @@ fixes f :: "nat \ ereal" assumes "\i. 0 \ f i" "0 \ c" shows "(SUP i. c * f i) = c * SUPR UNIV f" proof (rule ereal_SUPI) - fix i have "f i \ SUPR UNIV f" by (rule le_SUPI) auto + fix i have "f i \ SUPR UNIV f" by (rule SUP_upper) auto then show "c * f i \ c * SUPR UNIV f" using `0 \ c` by (rule ereal_mult_left_mono) next @@ -1498,7 +1498,7 @@ proof cases assume c: "0 < c \ c \ \" with * have "SUPR UNIV f \ y / c" - by (intro SUP_leI) (auto simp: ereal_le_divide_pos) + by (intro SUP_least) (auto simp: ereal_le_divide_pos) with c show ?thesis by (auto simp: ereal_le_divide_pos) next @@ -1507,7 +1507,7 @@ assume "\i. f i = 0" moreover then have "range f = {0}" by auto ultimately show "c * SUPR UNIV f \ y" using * - by (auto simp: SUPR_def min_max.sup_absorb1) + by (auto simp: SUP_def min_max.sup_absorb1) next assume "\ (\i. f i = 0)" then obtain i where "f i \ 0" by auto @@ -1522,7 +1522,7 @@ fixes f :: "'a \ ereal" assumes "\n::nat. \i\A. ereal (real n) \ f i" shows "(SUP i:A. f i) = \" - unfolding SUPR_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def] + unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def] apply simp proof safe fix x :: ereal assume "x \ \" @@ -1616,7 +1616,7 @@ lemma SUPR_countable_SUPR: "A \ {} \ \f::nat \ ereal. range f \ g`A \ SUPR A g = SUPR UNIV f" - using Sup_countable_SUPR[of "g`A"] by (auto simp: SUPR_def) + using Sup_countable_SUPR[of "g`A"] by (auto simp: SUP_def) lemma Sup_ereal_cadd: fixes A :: "ereal set" assumes "A \ {}" and "a \ -\" @@ -1649,7 +1649,7 @@ fixes A assumes "A \ {}" and "a \ -\" shows "(SUP x:A. a - f x) = a - (INF x:A. f x)" using Sup_ereal_cminus[of "f`A" a] assms - unfolding SUPR_def INFI_def image_image by auto + unfolding SUP_def INF_def image_image by auto lemma Inf_ereal_cminus: fixes A :: "ereal set" assumes "A \ {}" and "\a\ \ \" @@ -1667,7 +1667,7 @@ fixes a :: ereal assumes "A \ {}" and "\a\ \ \" shows "(INF x:A. a - f x) = a - (SUP x:A. f x)" using Inf_ereal_cminus[of "f`A" a] assms - unfolding SUPR_def INFI_def image_image + unfolding SUP_def INF_def image_image by auto lemma uminus_ereal_add_uminus_uminus: @@ -2358,14 +2358,14 @@ fix y assume "y < x" with * obtain N where "\n. N \ n \ y < f n" by auto then have "y \ (INF m:{N..}. f m)" by (force simp: le_INF_iff) - also have "\ \ (SUP n. INF m:{n..}. f m)" by (intro le_SUPI) auto + also have "\ \ (SUP n. INF m:{n..}. f m)" by (intro SUP_upper) auto finally show "y \ (SUP n. INF m:{n..}. f m)" . qed next show "(SUP n. INF m:{n..}. f m) \ Sup {l. \yN. \n\N. y < f n}" - proof (unfold SUPR_def, safe intro!: Sup_mono bexI) + proof (unfold SUP_def, safe intro!: Sup_mono bexI) fix y n assume "y < INFI {n..} f" - from less_INFD[OF this] show "\N. \n\N. y < f n" by (intro exI[of _ n]) auto + from less_INF_D[OF this] show "\N. \n\N. y < f n" by (intro exI[of _ n]) auto qed (rule order_refl) qed @@ -2418,14 +2418,14 @@ fix B assume "B < C" "C \ liminf x" then have "B < liminf x" by auto then obtain N where "B < (INF m:{N..}. x m)" - unfolding liminf_SUPR_INFI SUPR_def less_Sup_iff by auto - from less_INFD[OF this] show "\N. \n\N. B < x n" by auto + unfolding liminf_SUPR_INFI SUP_def less_Sup_iff by auto + from less_INF_D[OF this] show "\N. \n\N. B < x n" by auto next assume *: "\BN. \n\N. B < x n" { fix B assume "Bn\N. B < x n" using `?rhs` by auto - hence "B \ (INF m:{N..}. x m)" by (intro le_INFI) auto - also have "... \ liminf x" unfolding liminf_SUPR_INFI by (intro le_SUPI) simp + hence "B \ (INF m:{N..}. x m)" by (intro INF_greatest) auto + also have "... \ liminf x" unfolding liminf_SUPR_INFI by (intro SUP_upper) simp finally have "B \ liminf x" . } then show "?lhs" by (metis * leD liminf_bounded linorder_le_less_linear) qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Library/Kleene_Algebra.thy --- a/src/HOL/Library/Kleene_Algebra.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Library/Kleene_Algebra.thy Wed Sep 14 10:08:52 2011 -0400 @@ -360,10 +360,10 @@ subsection {* Complete lattices are Kleene algebras *} -lemma (in complete_lattice) le_SUPI': +lemma (in complete_lattice) SUP_upper': assumes "l \ M i" shows "l \ (SUP i. M i)" - using assms by (rule order_trans) (rule le_SUPI [OF UNIV_I]) + using assms by (rule order_trans) (rule SUP_upper [OF UNIV_I]) class kleene_by_complete_lattice = pre_kleene + complete_lattice + power + star + @@ -376,12 +376,12 @@ have [simp]: "1 \ star a" unfolding star_cont[of 1 a 1, simplified] - by (subst power_0[symmetric]) (rule le_SUPI [OF UNIV_I]) + by (subst power_0[symmetric]) (rule SUP_upper [OF UNIV_I]) have "a * star a \ star a" using star_cont[of a a 1] star_cont[of 1 a 1] by (auto simp add: power_Suc[symmetric] simp del: power_Suc - intro: SUP_leI le_SUPI) + intro: SUP_least SUP_upper) then show "1 + a * star a \ star a" by simp @@ -422,7 +422,7 @@ show "star a * x \ x" unfolding star_cont[of 1 a x, simplified] - by (rule SUP_leI) (rule b) + by (rule SUP_least) (rule b) qed show "x * a \ x \ x * star a \ x" (* symmetric *) @@ -457,7 +457,7 @@ show "x * star a \ x" unfolding star_cont[of x a 1, simplified] - by (rule SUP_leI) (rule b) + by (rule SUP_least) (rule b) qed qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Library/More_List.thy --- a/src/HOL/Library/More_List.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Library/More_List.thy Wed Sep 14 10:08:52 2011 -0400 @@ -262,11 +262,11 @@ lemma (in complete_lattice) INFI_set_fold: "INFI (set xs) f = fold (inf \ f) xs top" - unfolding INFI_def set_map [symmetric] Inf_set_fold fold_map .. + unfolding INF_def set_map [symmetric] Inf_set_fold fold_map .. lemma (in complete_lattice) SUPR_set_fold: "SUPR (set xs) f = fold (sup \ f) xs bot" - unfolding SUPR_def set_map [symmetric] Sup_set_fold fold_map .. + unfolding SUP_def set_map [symmetric] Sup_set_fold fold_map .. text {* @{text nth_map} *} diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Library/Predicate_Compile_Alternative_Defs.thy --- a/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy Wed Sep 14 10:08:52 2011 -0400 @@ -41,7 +41,7 @@ declare Int_def[code_pred_inline] declare eq_reflection[OF Un_def, code_pred_inline] -declare eq_reflection[OF UNION_def, code_pred_inline] +declare eq_reflection[OF UNION_eq, code_pred_inline] lemma Diff[code_pred_inline]: "(A - B) = (%x. A x \ \ B x)" diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Library/Product_Lattice.thy --- a/src/HOL/Library/Product_Lattice.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Library/Product_Lattice.thy Wed Sep 14 10:08:52 2011 -0400 @@ -161,7 +161,7 @@ instance by default (simp_all add: less_eq_prod_def Inf_prod_def Sup_prod_def - INF_leI le_SUPI le_INF_iff SUP_le_iff) + INF_lower SUP_upper le_INF_iff SUP_le_iff) end @@ -178,21 +178,21 @@ unfolding Inf_prod_def by simp lemma fst_SUP: "fst (SUP x:A. f x) = (SUP x:A. fst (f x))" - by (simp add: SUPR_def fst_Sup image_image) + by (simp add: SUP_def fst_Sup image_image) lemma snd_SUP: "snd (SUP x:A. f x) = (SUP x:A. snd (f x))" - by (simp add: SUPR_def snd_Sup image_image) + by (simp add: SUP_def snd_Sup image_image) lemma fst_INF: "fst (INF x:A. f x) = (INF x:A. fst (f x))" - by (simp add: INFI_def fst_Inf image_image) + by (simp add: INF_def fst_Inf image_image) lemma snd_INF: "snd (INF x:A. f x) = (INF x:A. snd (f x))" - by (simp add: INFI_def snd_Inf image_image) + by (simp add: INF_def snd_Inf image_image) lemma SUP_Pair: "(SUP x:A. (f x, g x)) = (SUP x:A. f x, SUP x:A. g x)" - by (simp add: SUPR_def Sup_prod_def image_image) + by (simp add: SUP_def Sup_prod_def image_image) lemma INF_Pair: "(INF x:A. (f x, g x)) = (INF x:A. f x, INF x:A. g x)" - by (simp add: INFI_def Inf_prod_def image_image) + by (simp add: INF_def Inf_prod_def image_image) end diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/List.thy --- a/src/HOL/List.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/List.thy Wed Sep 14 10:08:52 2011 -0400 @@ -2549,12 +2549,12 @@ lemma (in complete_lattice) INFI_set_fold: "INFI (set xs) f = foldl (\y x. inf (f x) y) top xs" - unfolding INFI_def set_map [symmetric] Inf_set_fold foldl_map + unfolding INF_def set_map [symmetric] Inf_set_fold foldl_map by (simp add: inf_commute) lemma (in complete_lattice) SUPR_set_fold: "SUPR (set xs) f = foldl (\y x. sup (f x) y) bot xs" - unfolding SUPR_def set_map [symmetric] Sup_set_fold foldl_map + unfolding SUP_def set_map [symmetric] Sup_set_fold foldl_map by (simp add: sup_commute) @@ -4987,8 +4987,8 @@ "x \ set xs \ member xs x" by (simp add: member_def) -declare INFI_def [code_unfold] -declare SUPR_def [code_unfold] +declare INF_def [code_unfold] +declare SUP_def [code_unfold] declare set_map [symmetric, code_unfold] diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy --- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Wed Sep 14 10:08:52 2011 -0400 @@ -653,7 +653,7 @@ unfolding less_SUP_iff by auto { fix y assume "y:S & 0 < dist y x & dist y x < d" hence "y:(S Int ball x d - {x})" unfolding ball_def by (auto simp add: dist_commute) - hence "f y:T" using d_def INF_leI[of y "S Int ball x d - {x}" f] `T={B<..}` by auto + hence "f y:T" using d_def INF_lower[of y "S Int ball x d - {x}" f] `T={B<..}` by auto } hence ?thesis apply(rule_tac x="d" in exI) using d_def by auto } ultimately show ?thesis by auto qed @@ -669,8 +669,8 @@ hence "y:S & 0 < dist y x & dist y x < d" unfolding ball_def apply (simp add: dist_commute) by (metis dist_eq_0_iff real_less_def zero_le_dist) hence "B <= f y" using d_def by auto - } hence "B <= INFI (S Int ball x d - {x}) f" apply (subst le_INFI) by auto - also have "...<=?l" apply (subst le_SUPI) using d_def by auto + } hence "B <= INFI (S Int ball x d - {x}) f" apply (subst INF_greatest) by auto + also have "...<=?l" apply (subst SUP_upper) using d_def by auto finally have "B<=?l" by auto } hence "z <= ?l" using ereal_le_ereal[of z "?l"] by auto } @@ -700,7 +700,7 @@ unfolding INF_less_iff by auto { fix y assume "y:S & 0 < dist y x & dist y x < d" hence "y:(S Int ball x d - {x})" unfolding ball_def by (auto simp add: dist_commute) - hence "f y:T" using d_def le_SUPI[of y "S Int ball x d - {x}" f] `T={.. ereal" assumes "\n. 0 \ f n" shows "(\n (\n. f n)" - unfolding suminf_ereal_eq_SUPR[OF assms] SUPR_def + unfolding suminf_ereal_eq_SUPR[OF assms] SUP_def by (auto intro: complete_lattice_class.Sup_upper image_eqI) lemma suminf_0_le: @@ -1291,7 +1291,7 @@ show ?thesis using assms apply (subst (1 2) suminf_ereal_eq_SUPR) unfolding * - apply (auto intro!: le_SUPI2) + apply (auto intro!: SUP_upper2) apply (subst SUP_commute) .. qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Predicate.thy Wed Sep 14 10:08:52 2011 -0400 @@ -184,61 +184,61 @@ subsubsection {* Intersections of families *} lemma INF1_iff: "(\x\A. B x) b = (\x\A. B x b)" - by (simp add: INFI_apply) + by (simp add: INF_apply) lemma INF2_iff: "(\x\A. B x) b c = (\x\A. B x b c)" - by (simp add: INFI_apply) + by (simp add: INF_apply) lemma INF1_I [intro!]: "(\x. x \ A \ B x b) \ (\x\A. B x) b" - by (auto simp add: INFI_apply) + by (auto simp add: INF_apply) lemma INF2_I [intro!]: "(\x. x \ A \ B x b c) \ (\x\A. B x) b c" - by (auto simp add: INFI_apply) + by (auto simp add: INF_apply) lemma INF1_D [elim]: "(\x\A. B x) b \ a \ A \ B a b" - by (auto simp add: INFI_apply) + by (auto simp add: INF_apply) lemma INF2_D [elim]: "(\x\A. B x) b c \ a \ A \ B a b c" - by (auto simp add: INFI_apply) + by (auto simp add: INF_apply) lemma INF1_E [elim]: "(\x\A. B x) b \ (B a b \ R) \ (a \ A \ R) \ R" - by (auto simp add: INFI_apply) + by (auto simp add: INF_apply) lemma INF2_E [elim]: "(\x\A. B x) b c \ (B a b c \ R) \ (a \ A \ R) \ R" - by (auto simp add: INFI_apply) + by (auto simp add: INF_apply) lemma INF_INT_eq: "(\i. (\x. x \ r i)) = (\x. x \ (\i. r i))" - by (simp add: INFI_apply fun_eq_iff) + by (simp add: INF_apply fun_eq_iff) lemma INF_INT_eq2: "(\i. (\x y. (x, y) \ r i)) = (\x y. (x, y) \ (\i. r i))" - by (simp add: INFI_apply fun_eq_iff) + by (simp add: INF_apply fun_eq_iff) subsubsection {* Unions of families *} lemma SUP1_iff: "(\x\A. B x) b = (\x\A. B x b)" - by (simp add: SUPR_apply) + by (simp add: SUP_apply) lemma SUP2_iff: "(\x\A. B x) b c = (\x\A. B x b c)" - by (simp add: SUPR_apply) + by (simp add: SUP_apply) lemma SUP1_I [intro]: "a \ A \ B a b \ (\x\A. B x) b" - by (auto simp add: SUPR_apply) + by (auto simp add: SUP_apply) lemma SUP2_I [intro]: "a \ A \ B a b c \ (\x\A. B x) b c" - by (auto simp add: SUPR_apply) + by (auto simp add: SUP_apply) lemma SUP1_E [elim!]: "(\x\A. B x) b \ (\x. x \ A \ B x b \ R) \ R" - by (auto simp add: SUPR_apply) + by (auto simp add: SUP_apply) lemma SUP2_E [elim!]: "(\x\A. B x) b c \ (\x. x \ A \ B x b c \ R) \ R" - by (auto simp add: SUPR_apply) + by (auto simp add: SUP_apply) lemma SUP_UN_eq: "(\i. (\x. x \ r i)) = (\x. x \ (\i. r i))" - by (simp add: SUPR_apply fun_eq_iff) + by (simp add: SUP_apply fun_eq_iff) lemma SUP_UN_eq2: "(\i. (\x y. (x, y) \ r i)) = (\x y. (x, y) \ (\i. r i))" - by (simp add: SUPR_apply fun_eq_iff) + by (simp add: SUP_apply fun_eq_iff) subsection {* Predicates as relations *} @@ -469,11 +469,11 @@ lemma eval_INFI [simp]: "eval (INFI A f) = INFI A (eval \ f)" - by (simp only: INFI_def eval_Inf image_compose) + by (simp only: INF_def eval_Inf image_compose) lemma eval_SUPR [simp]: "eval (SUPR A f) = SUPR A (eval \ f)" - by (simp only: SUPR_def eval_Sup image_compose) + by (simp only: SUP_def eval_Sup image_compose) instantiation pred :: (type) complete_boolean_algebra begin diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Predicate_Compile_Examples/Predicate_Compile_Tests.thy --- a/src/HOL/Predicate_Compile_Examples/Predicate_Compile_Tests.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Predicate_Compile_Examples/Predicate_Compile_Tests.thy Wed Sep 14 10:08:52 2011 -0400 @@ -1017,7 +1017,7 @@ code_pred [inductify] Image . thm Image.equation declare singleton_iff[code_pred_inline] -declare Id_on_def[unfolded Bex_def UNION_def singleton_iff, code_pred_def] +declare Id_on_def[unfolded Bex_def UNION_eq singleton_iff, code_pred_def] code_pred (expected_modes: (o => bool) => o => bool, diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Borel_Space.thy --- a/src/HOL/Probability/Borel_Space.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Borel_Space.thy Wed Sep 14 10:08:52 2011 -0400 @@ -1414,7 +1414,7 @@ proof fix a have "?sup -` {a<..} \ space M = (\i\A. {x\space M. a < f i x})" - by (auto simp: less_SUP_iff SUPR_apply) + by (auto simp: less_SUP_iff SUP_apply) then show "?sup -` {a<..} \ space M \ sets M" using assms by auto qed @@ -1427,7 +1427,7 @@ proof fix a have "?inf -` {.. space M = (\i\A. {x\space M. f i x < a})" - by (auto simp: INF_less_iff INFI_apply) + by (auto simp: INF_less_iff INF_apply) then show "?inf -` {.. space M \ sets M" using assms by auto qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Caratheodory.thy --- a/src/HOL/Probability/Caratheodory.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Caratheodory.thy Wed Sep 14 10:08:52 2011 -0400 @@ -46,7 +46,7 @@ by (auto intro!: setsum_mono3 simp: pos) } ultimately show ?thesis unfolding g_def using pos - by (auto intro!: SUPR_eq simp: setsum_cartesian_product reindex le_SUPI2 + by (auto intro!: SUPR_eq simp: setsum_cartesian_product reindex SUP_upper2 setsum_nonneg suminf_ereal_eq_SUPR SUPR_pair SUPR_ereal_setsum[symmetric] incseq_setsumI setsum_nonneg) qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Finite_Product_Measure.thy --- a/src/HOL/Probability/Finite_Product_Measure.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Finite_Product_Measure.thy Wed Sep 14 10:08:52 2011 -0400 @@ -716,9 +716,9 @@ unfolding positive_integral_def simple_function_def simple_integral_def_raw proof (simp add: P_empty, intro antisym) show "f (\k. undefined) \ (SUP f:{g. g \ max 0 \ f}. f (\k. undefined))" - by (intro le_SUPI) (auto simp: le_fun_def split: split_max) + by (intro SUP_upper) (auto simp: le_fun_def split: split_max) show "(SUP f:{g. g \ max 0 \ f}. f (\k. undefined)) \ f (\k. undefined)" using pos - by (intro SUP_leI) (auto simp: le_fun_def simp: max_def split: split_if_asm) + by (intro SUP_least) (auto simp: le_fun_def simp: max_def split: split_if_asm) qed qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Infinite_Product_Measure.thy --- a/src/HOL/Probability/Infinite_Product_Measure.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Infinite_Product_Measure.thy Wed Sep 14 10:08:52 2011 -0400 @@ -503,7 +503,7 @@ proof (rule ccontr) assume "(INF i. \G (A i)) \ 0" (is "?a \ 0") moreover have "0 \ ?a" - using A positive_\G by (auto intro!: le_INFI simp: positive_def) + using A positive_\G by (auto intro!: INF_greatest simp: positive_def) ultimately have "0 < ?a" by auto have "\n. \J X. J \ {} \ finite J \ J \ I \ X \ sets (Pi\<^isub>M J M) \ A n = emb I J X \ \G (A n) = measure (Pi\<^isub>M J M) X" @@ -525,7 +525,7 @@ have a_le_1: "?a \ 1" using \G_spec[of "J 0" "A 0" "X 0"] J A_eq - by (auto intro!: INF_leI2[of 0] J.measure_le_1) + by (auto intro!: INF_lower2[of 0] J.measure_le_1) let "?M K Z y" = "merge K y (I - K) -` Z \ space (Pi\<^isub>M I M)" @@ -544,7 +544,7 @@ note Q_sets = this have "?a / 2^(k+1) \ (INF n. measure (Pi\<^isub>M J' M) (?Q n))" - proof (intro le_INFI) + proof (intro INF_greatest) fix n have "?a / 2^k \ \G (Z n)" using Z by auto also have "\ \ (\\<^isup>+ x. indicator (?Q n) x + ?a / 2^(k+1) \Pi\<^isub>M J' M)" @@ -592,7 +592,7 @@ let "?q k n y" = "\G (?M (J k) (A n) y)" - have "\n. ?a / 2 ^ 0 \ \G (A n)" by (auto intro: INF_leI) + have "\n. ?a / 2 ^ 0 \ \G (A n)" by (auto intro: INF_lower) from Ex_w[OF A(1,2) this J(1-3), of 0] guess w0 .. note w0 = this let "?P k wk w" = diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Lebesgue_Integration.thy --- a/src/HOL/Probability/Lebesgue_Integration.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Lebesgue_Integration.thy Wed Sep 14 10:08:52 2011 -0400 @@ -888,13 +888,13 @@ lemma (in measure_space) positive_integral_positive: "0 \ integral\<^isup>P M f" - by (auto intro!: le_SUPI2[of "\x. 0"] simp: positive_integral_def le_fun_def) + by (auto intro!: SUP_upper2[of "\x. 0"] simp: positive_integral_def le_fun_def) lemma (in measure_space) positive_integral_def_finite: "integral\<^isup>P M f = (SUP g : {g. simple_function M g \ g \ max 0 \ f \ range g \ {0 ..< \}}. integral\<^isup>S M g)" (is "_ = SUPR ?A ?f") unfolding positive_integral_def -proof (safe intro!: antisym SUP_leI) +proof (safe intro!: antisym SUP_least) fix g assume g: "simple_function M g" "g \ max 0 \ f" let ?G = "{x \ space M. \ g x \ \}" note gM = g(1)[THEN borel_measurable_simple_function] @@ -910,7 +910,7 @@ assume "\ ?G = 0" with gM have "AE x. x \ ?G" by (simp add: AE_iff_null_set) with gM g show ?thesis - by (intro le_SUPI2[OF g0] simple_integral_mono_AE) + by (intro SUP_upper2[OF g0] simple_integral_mono_AE) (auto simp: max_def intro!: simple_function_If) next assume \G: "\ ?G \ 0" @@ -932,7 +932,7 @@ qed then show ?thesis by simp qed -qed (auto intro: le_SUPI) +qed (auto intro: SUP_upper) lemma (in measure_space) positive_integral_mono_AE: assumes ae: "AE x. u x \ v x" shows "integral\<^isup>P M u \ integral\<^isup>P M v" @@ -979,10 +979,10 @@ with f(2) have [simp]: "max 0 \ ?f = ?f" by (auto simp: fun_eq_iff max_def split: split_indicator) have "integral\<^isup>P M ?f \ integral\<^isup>S M ?f" using f' - by (force intro!: SUP_leI simple_integral_mono simp: le_fun_def positive_integral_def) + by (force intro!: SUP_least simple_integral_mono simp: le_fun_def positive_integral_def) moreover have "integral\<^isup>S M ?f \ integral\<^isup>P M ?f" unfolding positive_integral_def - using f' by (auto intro!: le_SUPI) + using f' by (auto intro!: SUP_upper) ultimately show ?thesis by (simp cong: positive_integral_cong simple_integral_cong) qed @@ -1004,7 +1004,7 @@ shows "integral\<^isup>S M u \ (SUP i. integral\<^isup>P M (f i))" (is "_ \ ?S") proof (rule ereal_le_mult_one_interval) have "0 \ (SUP i. integral\<^isup>P M (f i))" - using f(3) by (auto intro!: le_SUPI2 positive_integral_positive) + using f(3) by (auto intro!: SUP_upper2 positive_integral_positive) then show "(SUP i. integral\<^isup>P M (f i)) \ -\" by auto have u_range: "\x. x \ space M \ 0 \ u x \ u x \ \" using u(3) by auto @@ -1044,8 +1044,8 @@ with `a < 1` u_range[OF `x \ space M`] have "a * u x < 1 * u x" by (intro ereal_mult_strict_right_mono) (auto simp: image_iff) - also have "\ \ (SUP i. f i x)" using u(2) by (auto simp: le_fun_def SUPR_apply) - finally obtain i where "a * u x < f i x" unfolding SUPR_def + also have "\ \ (SUP i. f i x)" using u(2) by (auto simp: le_fun_def SUP_apply) + finally obtain i where "a * u x < f i x" unfolding SUP_def by (auto simp add: less_Sup_iff) hence "a * u x \ f i x" by auto thus ?thesis using `x \ space M` by auto @@ -1104,18 +1104,18 @@ shows "(\\<^isup>+ x. (SUP i. f i x) \M) = (SUP i. integral\<^isup>P M (f i))" proof (rule antisym) show "(SUP j. integral\<^isup>P M (f j)) \ (\\<^isup>+ x. (SUP i. f i x) \M)" - by (auto intro!: SUP_leI le_SUPI positive_integral_mono) + by (auto intro!: SUP_least SUP_upper positive_integral_mono) next show "(\\<^isup>+ x. (SUP i. f i x) \M) \ (SUP j. integral\<^isup>P M (f j))" unfolding positive_integral_def_finite[of "\x. SUP i. f i x"] - proof (safe intro!: SUP_leI) + proof (safe intro!: SUP_least) fix g assume g: "simple_function M g" and "g \ max 0 \ (\x. SUP i. f i x)" "range g \ {0..<\}" moreover then have "\x. 0 \ (SUP i. f i x)" and g': "g`space M \ {0..<\}" - using f by (auto intro!: le_SUPI2) + using f by (auto intro!: SUP_upper2) ultimately show "integral\<^isup>S M g \ (SUP j. integral\<^isup>P M (f j))" by (intro positive_integral_SUP_approx[OF f g _ g']) - (auto simp: le_fun_def max_def SUPR_apply) + (auto simp: le_fun_def max_def SUP_apply) qed qed @@ -1419,10 +1419,10 @@ (SUP n. \\<^isup>+ x. (INF i:{n..}. u i x) \M)" unfolding liminf_SUPR_INFI using pos u by (intro positive_integral_monotone_convergence_SUP_AE) - (elim AE_mp, auto intro!: AE_I2 intro: le_INFI INF_subset) + (elim AE_mp, auto intro!: AE_I2 intro: INF_greatest INF_subset) also have "\ \ liminf (\n. integral\<^isup>P M (u n))" unfolding liminf_SUPR_INFI - by (auto intro!: SUP_mono exI le_INFI positive_integral_mono INF_leI) + by (auto intro!: SUP_mono exI INF_greatest positive_integral_mono INF_lower) finally show ?thesis . qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Lebesgue_Measure.thy --- a/src/HOL/Probability/Lebesgue_Measure.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Lebesgue_Measure.thy Wed Sep 14 10:08:52 2011 -0400 @@ -125,7 +125,7 @@ fix A assume "A \ sets lebesgue" then show "0 \ measure lebesgue A" unfolding lebesgue_def - by (auto intro!: le_SUPI2 integral_nonneg) + by (auto intro!: SUP_upper2 integral_nonneg) qed next show "countably_additive lebesgue (measure lebesgue)" @@ -146,7 +146,7 @@ next fix i n show "0 \ ereal (?m n i)" using rA unfolding lebesgue_def - by (auto intro!: le_SUPI2 integral_nonneg) + by (auto intro!: SUP_upper2 integral_nonneg) next show "(SUP n. \i. ereal (?m n i)) = (SUP n. ereal (?M n UNIV))" proof (intro arg_cong[where f="SUPR UNIV"] ext sums_unique[symmetric] sums_ereal[THEN iffD2] sums_def[THEN iffD2]) @@ -642,7 +642,7 @@ { fix i note u_eq also have "integral\<^isup>P lebesgue (u i) \ (\\<^isup>+x. max 0 (f x) \lebesgue)" - by (intro lebesgue.positive_integral_mono) (auto intro: le_SUPI simp: u(4)[symmetric]) + by (intro lebesgue.positive_integral_mono) (auto intro: SUP_upper simp: u(4)[symmetric]) finally have "integral\<^isup>S lebesgue (u i) \ \" unfolding positive_integral_max_0 using f by auto } note u_fin = this @@ -687,7 +687,7 @@ using lebesgue.positive_integral_eq_simple_integral[OF u(1,5)] by simp also have "\ \ real (integral\<^isup>P lebesgue f)" using f by (auto intro!: real_of_ereal_positive_mono lebesgue.positive_integral_positive - lebesgue.positive_integral_mono le_SUPI simp: SUP_eq[symmetric]) + lebesgue.positive_integral_mono SUP_upper simp: SUP_eq[symmetric]) finally show "\integral UNIV (u' k)\ \ real (integral\<^isup>P lebesgue f)" . qed qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Measure.thy --- a/src/HOL/Probability/Measure.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Measure.thy Wed Sep 14 10:08:52 2011 -0400 @@ -590,7 +590,7 @@ lemma UN_from_nat: "(\i. N i) = (\i. N (Countable.from_nat i))" proof - have "(\i. N i) = (\i. (N \ Countable.from_nat) i)" - unfolding SUPR_def image_compose + unfolding SUP_def image_compose unfolding surj_from_nat .. then show ?thesis by simp qed diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Probability/Radon_Nikodym.thy --- a/src/HOL/Probability/Radon_Nikodym.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Probability/Radon_Nikodym.thy Wed Sep 14 10:08:52 2011 -0400 @@ -358,7 +358,7 @@ show "(\x. SUP i. f i x) \ borel_measurable M" using f by (auto simp: G_def) { fix x show "0 \ (SUP i. f i x)" - using f by (auto simp: G_def intro: le_SUPI2) } + using f by (auto simp: G_def intro: SUP_upper2) } next fix A assume "A \ sets M" have "(\\<^isup>+x. (SUP i. f i x) * indicator A x \M) = @@ -369,12 +369,12 @@ by (intro positive_integral_monotone_convergence_SUP) (auto simp: G_def incseq_Suc_iff le_fun_def split: split_indicator) finally show "(\\<^isup>+x. (SUP i. f i x) * indicator A x \M) \ \ A" - using f `A \ sets M` by (auto intro!: SUP_leI simp: G_def) + using f `A \ sets M` by (auto intro!: SUP_least simp: G_def) qed } note SUP_in_G = this let ?y = "SUP g : G. integral\<^isup>P M g" have "?y \ \ (space M)" unfolding G_def - proof (safe intro!: SUP_leI) + proof (safe intro!: SUP_least) fix g assume "\A\sets M. (\\<^isup>+x. g x * indicator A x \M) \ \ A" from this[THEN bspec, OF top] show "integral\<^isup>P M g \ \ (space M)" by (simp cong: positive_integral_cong) @@ -413,14 +413,14 @@ show "(SUP i. integral\<^isup>P M (?g i)) \ ?y" using g_in_G using [[simp_trace]] - by (auto intro!: exI Sup_mono simp: SUPR_def) + by (auto intro!: exI Sup_mono simp: SUP_def) show "?y \ (SUP i. integral\<^isup>P M (?g i))" unfolding y_eq by (auto intro!: SUP_mono positive_integral_mono Max_ge) qed finally have int_f_eq_y: "integral\<^isup>P M f = ?y" . have "\x. 0 \ f x" unfolding f_def using `\i. gs i \ G` - by (auto intro!: le_SUPI2 Max_ge_iff[THEN iffD2] simp: G_def) + by (auto intro!: SUP_upper2 Max_ge_iff[THEN iffD2] simp: G_def) let "?t A" = "\ A - (\\<^isup>+x. ?F A x \M)" let ?M = "M\ measure := ?t\" interpret M: sigma_algebra ?M @@ -591,11 +591,11 @@ hence "0 < b * \ A0" using b by (auto simp: ereal_zero_less_0_iff) with int_f_finite have "?y + 0 < integral\<^isup>P M f + b * \ A0" unfolding int_f_eq_y using `f \ G` - by (intro ereal_add_strict_mono) (auto intro!: le_SUPI2 positive_integral_positive) + by (intro ereal_add_strict_mono) (auto intro!: SUP_upper2 positive_integral_positive) also have "\ = integral\<^isup>P M ?f0" using f0_eq[OF top] `A0 \ sets M` sets_into_space by (simp cong: positive_integral_cong) finally have "?y < integral\<^isup>P M ?f0" by simp - moreover from `?f0 \ G` have "integral\<^isup>P M ?f0 \ ?y" by (auto intro!: le_SUPI) + moreover from `?f0 \ G` have "integral\<^isup>P M ?f0 \ ?y" by (auto intro!: SUP_upper) ultimately show False by auto qed show ?thesis @@ -628,7 +628,7 @@ have "{} \ ?Q" using v.empty_measure by auto then have Q_not_empty: "?Q \ {}" by blast have "?a \ \ (space M)" using sets_into_space - by (auto intro!: SUP_leI measure_mono top) + by (auto intro!: SUP_least measure_mono top) then have "?a \ \" using finite_measure_of_space by auto from SUPR_countable_SUPR[OF Q_not_empty, of \] @@ -661,7 +661,7 @@ proof (rule antisym) show "?a \ (SUP i. \ (?O i))" unfolding a_Lim using Q' by (auto intro!: SUP_mono measure_mono finite_UN) - show "(SUP i. \ (?O i)) \ ?a" unfolding SUPR_def + show "(SUP i. \ (?O i)) \ ?a" unfolding SUP_def proof (safe intro!: Sup_mono, unfold bex_simps) fix i have *: "(\Q' ` {..i}) = ?O i" by auto @@ -701,7 +701,7 @@ using `\ A \ \` O_sets A by auto qed (fastforce intro!: incseq_SucI) also have "\ \ ?a" - proof (safe intro!: SUP_leI) + proof (safe intro!: SUP_least) fix i have "?O i \ A \ ?Q" proof (safe del: notI) show "?O i \ A \ sets M" using O_sets A by auto @@ -711,7 +711,7 @@ ultimately show "\ (?O i \ A) \ \" using `\ A \ \` by auto qed - then show "\ (?O i \ A) \ ?a" by (rule le_SUPI) + then show "\ (?O i \ A) \ ?a" by (rule SUP_upper) qed finally have "\ A = 0" unfolding a_eq using real_measure[OF `?O_0 \ sets M`] real_measure[OF A(1)] by auto diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Quotient_Examples/Cset.thy --- a/src/HOL/Quotient_Examples/Cset.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Quotient_Examples/Cset.thy Wed Sep 14 10:08:52 2011 -0400 @@ -97,6 +97,6 @@ hide_fact (open) is_empty_def insert_def remove_def map_def filter_def forall_def exists_def card_def set_def subset_def psubset_def inter_def union_def empty_def UNIV_def uminus_def minus_def Inf_def Sup_def - UNION_def + UNION_eq end diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/UNITY/Union.thy --- a/src/HOL/UNITY/Union.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/UNITY/Union.thy Wed Sep 14 10:08:52 2011 -0400 @@ -246,7 +246,7 @@ by (simp add: invariant_def, blast) lemma FP_JN: "FP (\i \ I. F i) = (\i \ I. FP (F i))" -by (simp add: FP_def JN_stable INTER_def) +by (simp add: FP_def JN_stable INTER_eq) subsection{*Progress: transient, ensures*}