# HG changeset patch # User wenzelm # Date 1413919932 -7200 # Node ID 7f4924f23158571f1681d1757e8b0480fe3019df # Parent eb5d0c58564dc3827b106e6176e16c35c44eaf6e tuned whitespace; diff -r eb5d0c58564d -r 7f4924f23158 src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Tue Oct 21 21:20:45 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Tue Oct 21 21:32:12 2014 +0200 @@ -1015,7 +1015,7 @@ and "(\i\Basis. a\i \ c\i \ d\i \ b\i) \ box c d \ cbox a b" and "(\i\Basis. a\i \ c\i \ d\i \ b\i) \ box c d \ box a b" unfolding subset_eq[unfolded Ball_def] unfolding mem_box - by (best intro: order_trans less_le_trans le_less_trans less_imp_le)+ + by (best intro: order_trans less_le_trans le_less_trans less_imp_le)+ lemma box_subset_cbox: fixes a :: "'a::euclidean_space" @@ -1153,7 +1153,9 @@ lemma UN_box_eq_UNIV: "(\i::nat. box (- (real i *\<^sub>R One)) (real i *\<^sub>R One)) = UNIV" proof - - { fix x b :: 'a assume [simp]: "b \ Basis" + { + fix x b :: 'a + assume [simp]: "b \ Basis" have "\x \ b\ \ real (natceiling \x \ b\)" by (rule real_natceiling_ge) also have "\ \ real (natceiling (Max ((\b. \x \ b\)`Basis)))" @@ -1679,7 +1681,7 @@ by (simp add: frontier_def) lemma frontier_subset_eq: "frontier S \ S \ closed S" -proof- +proof - { assume "frontier S \ S" then have "closure S \ S" @@ -1690,13 +1692,14 @@ then show ?thesis using frontier_subset_closed[of S] .. qed -lemma frontier_complement: "frontier(- S) = frontier S" +lemma frontier_complement: "frontier (- S) = frontier S" by (auto simp add: frontier_def closure_complement interior_complement) lemma frontier_disjoint_eq: "frontier S \ S = {} \ open S" using frontier_complement frontier_subset_eq[of "- S"] unfolding open_closed by auto + subsection {* Filters and the ``eventually true'' quantifier *} definition indirection :: "'a::real_normed_vector \ 'a \ 'a filter"