# HG changeset patch # User huffman # Date 1321511497 -3600 # Node ID 7f5050fb88219c9741215e3269b72beb23b37a29 # Parent 787a1a097465391ad2ed4886e723df3c7548ba4f name simp theorems st_0 and st_1 diff -r 787a1a097465 -r 7f5050fb8821 src/HOL/NSA/NSA.thy --- a/src/HOL/NSA/NSA.thy Thu Nov 17 07:15:30 2011 +0100 +++ b/src/HOL/NSA/NSA.thy Thu Nov 17 07:31:37 2011 +0100 @@ -1874,9 +1874,11 @@ lemma st_number_of [simp]: "st (number_of w) = number_of w" by (rule Reals_number_of [THEN st_SReal_eq]) -(*the theorem above for the special cases of zero and one*) -lemma [simp]: "st 0 = 0" "st 1 = 1" -by (simp_all add: st_SReal_eq) +lemma st_0 [simp]: "st 0 = 0" +by (simp add: st_SReal_eq) + +lemma st_1 [simp]: "st 1 = 1" +by (simp add: st_SReal_eq) lemma st_minus: "x \ HFinite \ st (- x) = - st x" by (simp add: st_unique st_SReal st_approx_self approx_minus) @@ -1934,14 +1936,12 @@ done lemma st_zero_le: "[| 0 \ x; x \ HFinite |] ==> 0 \ st x" -apply (subst numeral_0_eq_0 [symmetric]) -apply (rule st_number_of [THEN subst]) +apply (subst st_0 [symmetric]) apply (rule st_le, auto) done lemma st_zero_ge: "[| x \ 0; x \ HFinite |] ==> st x \ 0" -apply (subst numeral_0_eq_0 [symmetric]) -apply (rule st_number_of [THEN subst]) +apply (subst st_0 [symmetric]) apply (rule st_le, auto) done