# HG changeset patch # User haftmann # Date 1470848240 -7200 # Node ID 7faa9bf9860bd42525964a90e2aef4677e84113f # Parent 3663157ee197166259b28ef74d82fe091d0b9f1b epheremal interpretation keeps auxiliary definition localized diff -r 3663157ee197 -r 7faa9bf9860b src/HOL/Analysis/Measure_Space.thy --- a/src/HOL/Analysis/Measure_Space.thy Wed Aug 10 18:57:20 2016 +0200 +++ b/src/HOL/Analysis/Measure_Space.thy Wed Aug 10 18:57:20 2016 +0200 @@ -2641,8 +2641,11 @@ by (simp add: A(3)) qed +instantiation measure :: (type) complete_lattice +begin + interpretation sup_measure: comm_monoid_set sup "bot :: 'a measure" - proof qed (auto intro!: antisym) + by standard (auto intro!: antisym) lemma sup_measure_F_mono': "finite J \ finite I \ sup_measure.F id I \ sup_measure.F id (I \ J)" @@ -2744,9 +2747,6 @@ using assms * by auto qed (rule UN_space_closed) -instantiation measure :: (type) complete_lattice -begin - definition Sup_measure :: "'a measure set \ 'a measure" where "Sup_measure = Sup_lexord space (Sup_lexord sets Sup_measure' @@ -2947,11 +2947,12 @@ assumes sets: "\i. i \ I \ sets (M i) = sets N" "X \ sets N" "I \ {}" shows "emeasure (SUP i:I. M i) X = (SUP J:{J. J \ {} \ finite J \ J \ I}. emeasure (SUP i:J. M i) X)" proof - + interpret sup_measure: comm_monoid_set sup "bot :: 'b measure" + by standard (auto intro!: antisym) have eq: "finite J \ sup_measure.F id J = (SUP i:J. i)" for J :: "'b measure set" by (induction J rule: finite_induct) auto have 1: "J \ {} \ J \ I \ sets (SUP x:J. M x) = sets N" for J by (intro sets_SUP sets) (auto ) - from \I \ {}\ obtain i where "i\I" by auto have "Sup_measure' (M`I) X = (SUP P:{P. finite P \ P \ M`I}. sup_measure.F id P X)" using sets by (intro emeasure_Sup_measure') auto @@ -3308,7 +3309,7 @@ note singleton_sets = this have "?M < (\x\X. ?M / Suc n)" using \?M \ 0\ - by (simp add: \card X = Suc (Suc n)\ of_nat_Suc field_simps less_le measure_nonneg) + by (simp add: \card X = Suc (Suc n)\ field_simps less_le) also have "\ \ (\x\X. ?m x)" by (rule setsum_mono) fact also have "\ = measure M (\x\X. {x})"