# HG changeset patch # User blanchet # Date 1394109410 -3600 # Node ID 800e155d051a115ef947af20634b20f27a8e248a # Parent 12ee2c407dadb48eb787192b3efa9f00d48a04b0 renamed 'cset_rel' to 'rel_cset' diff -r 12ee2c407dad -r 800e155d051a NEWS --- a/NEWS Thu Mar 06 13:36:49 2014 +0100 +++ b/NEWS Thu Mar 06 13:36:50 2014 +0100 @@ -194,6 +194,7 @@ map_sum ~> sum_map map_pair ~> prod_map fset_rel ~> rel_fset + cset_rel ~> rel_cset * New theory: Cardinals/Ordinal_Arithmetic.thy diff -r 12ee2c407dad -r 800e155d051a src/HOL/Library/Countable_Set_Type.thy --- a/src/HOL/Library/Countable_Set_Type.thy Thu Mar 06 13:36:49 2014 +0100 +++ b/src/HOL/Library/Countable_Set_Type.thy Thu Mar 06 13:36:50 2014 +0100 @@ -124,12 +124,12 @@ "{(x, y). R x y} \ A \ B = {(x, y). R x y \ x \ A \ y \ B}" by auto -definition cset_rel :: "('a \ 'b \ bool) \ 'a cset \ 'b cset \ bool" where -"cset_rel R a b \ +definition rel_cset :: "('a \ 'b \ bool) \ 'a cset \ 'b cset \ bool" where +"rel_cset R a b \ (\t \ rcset a. \u \ rcset b. R t u) \ (\t \ rcset b. \u \ rcset a. R u t)" -lemma cset_rel_aux: +lemma rel_cset_aux: "(\t \ rcset a. \u \ rcset b. R t u) \ (\t \ rcset b. \u \ rcset a. R u t) \ ((Grp {x. rcset x \ {(a, b). R a b}} (cimage fst))\\ OO Grp {x. rcset x \ {(a, b). R a b}} (cimage snd)) a b" (is "?L = ?R") @@ -155,7 +155,7 @@ sets: rcset bd: natLeq wits: "cempty" - rel: cset_rel + rel: rel_cset proof - show "cimage id = id" by transfer' simp next @@ -173,14 +173,14 @@ fix C show "|rcset C| \o natLeq" by transfer (unfold countable_card_le_natLeq) next fix R S - show "cset_rel R OO cset_rel S \ cset_rel (R OO S)" - unfolding cset_rel_def[abs_def] by fast + show "rel_cset R OO rel_cset S \ rel_cset (R OO S)" + unfolding rel_cset_def[abs_def] by fast next fix R - show "cset_rel R = + show "rel_cset R = (Grp {x. rcset x \ Collect (split R)} (cimage fst))\\ OO Grp {x. rcset x \ Collect (split R)} (cimage snd)" - unfolding cset_rel_def[abs_def] cset_rel_aux by simp + unfolding rel_cset_def[abs_def] rel_cset_aux by simp qed (transfer, simp) end