# HG changeset patch # User huffman # Date 1395857125 25200 # Node ID 801a72ad52d399a631de6fb99bbad0a44d83443a # Parent d8d2a2b971682cd2d9717eb51555f54e3c47c610 tuned proofs diff -r d8d2a2b97168 -r 801a72ad52d3 src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Mar 26 14:00:37 2014 +0000 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Mar 26 11:05:25 2014 -0700 @@ -1958,39 +1958,13 @@ and "(f ---> l) net" and "eventually (\x. dist a (f x) \ e) net" shows "dist a l \ e" -proof - - have "dist a l \ {..e}" - proof (rule Lim_in_closed_set) - show "closed {..e}" - by simp - show "eventually (\x. dist a (f x) \ {..e}) net" - by (simp add: assms) - show "\ trivial_limit net" - by fact - show "((\x. dist a (f x)) ---> dist a l) net" - by (intro tendsto_intros assms) - qed - then show ?thesis by simp -qed + using assms by (fast intro: tendsto_le tendsto_intros) lemma Lim_norm_ubound: fixes f :: "'a \ 'b::real_normed_vector" assumes "\(trivial_limit net)" "(f ---> l) net" "eventually (\x. norm(f x) \ e) net" shows "norm(l) \ e" -proof - - have "norm l \ {..e}" - proof (rule Lim_in_closed_set) - show "closed {..e}" - by simp - show "eventually (\x. norm (f x) \ {..e}) net" - by (simp add: assms) - show "\ trivial_limit net" - by fact - show "((\x. norm (f x)) ---> norm l) net" - by (intro tendsto_intros assms) - qed - then show ?thesis by simp -qed + using assms by (fast intro: tendsto_le tendsto_intros) lemma Lim_norm_lbound: fixes f :: "'a \ 'b::real_normed_vector" @@ -1998,20 +1972,7 @@ and "(f ---> l) net" and "eventually (\x. e \ norm (f x)) net" shows "e \ norm l" -proof - - have "norm l \ {e..}" - proof (rule Lim_in_closed_set) - show "closed {e..}" - by simp - show "eventually (\x. norm (f x) \ {e..}) net" - by (simp add: assms) - show "\ trivial_limit net" - by fact - show "((\x. norm (f x)) ---> norm l) net" - by (intro tendsto_intros assms) - qed - then show ?thesis by simp -qed + using assms by (fast intro: tendsto_le tendsto_intros) text{* Limit under bilinear function *}