# HG changeset patch # User paulson # Date 1530870285 -3600 # Node ID 81086e6f5429d978cdf8c16aa42f457b799d28b9 # Parent 57b9d993cc987e41f3898a64551a5b40d92a9205 replaced subgroup_imp_subset in Modules diff -r 57b9d993cc98 -r 81086e6f5429 src/HOL/Algebra/Module.thy --- a/src/HOL/Algebra/Module.thy Thu Jul 05 23:37:17 2018 +0100 +++ b/src/HOL/Algebra/Module.thy Fri Jul 06 10:44:45 2018 +0100 @@ -222,17 +222,17 @@ unfolding abelian_group_axioms_def comm_group_def abelian_monoid_def module_def abelian_group_def by auto show "\z. z \ H \ \\<^bsub>R\<^esub> \ z = z" - using subgroup_imp_subset[OF subgroup_axioms] module.smult_one[OF assms] + using subgroup.subset[OF subgroup_axioms] module.smult_one[OF assms] by auto fix a b x y assume a : "a \ carrier R" and b : "b \ carrier R" and x : "x \ H" and y : "y \ H" show "(a \\<^bsub>R\<^esub> b) \ x = a \ x \ b \ x" - using a b x module.smult_l_distr[OF assms] subgroup_imp_subset[OF subgroup_axioms] + using a b x module.smult_l_distr[OF assms] subgroup.subset[OF subgroup_axioms] by auto show "a \ (x \ y) = a \ x \ a \ y" - using a x y module.smult_r_distr[OF assms] subgroup_imp_subset[OF subgroup_axioms] + using a x y module.smult_r_distr[OF assms] subgroup.subset[OF subgroup_axioms] by auto show "a \\<^bsub>R\<^esub> b \ x = a \ (b \ x)" - using a b x module.smult_assoc1[OF assms] subgroup_imp_subset[OF subgroup_axioms] + using a b x module.smult_assoc1[OF assms] subgroup.subset[OF subgroup_axioms] by auto qed