# HG changeset patch # User haftmann # Date 1266850398 -3600 # Node ID 816e48d60b13d327f12e59c37d4b3e2d328f24a4 # Parent 4bc6b4d70e0893ad4262d61589036e418a7e3093 added Dlist diff -r 4bc6b4d70e08 -r 816e48d60b13 src/HOL/Library/Dlist.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Dlist.thy Mon Feb 22 15:53:18 2010 +0100 @@ -0,0 +1,256 @@ +(* Author: Florian Haftmann, TU Muenchen *) + +header {* Lists with elements distinct as canonical example for datatype invariants *} + +theory Dlist +imports Main Fset +begin + +section {* Prelude *} + +text {* Without canonical argument order, higher-order things tend to get confusing quite fast: *} + +setup {* Sign.map_naming (Name_Space.add_path "List") *} + +primrec member :: "'a list \ 'a \ bool" where + "member [] y \ False" + | "member (x#xs) y \ x = y \ member xs y" + +lemma member_set: + "member = set" +proof (rule ext)+ + fix xs :: "'a list" and x :: 'a + have "member xs x \ x \ set xs" by (induct xs) auto + then show "member xs x = set xs x" by (simp add: mem_def) +qed + +lemma not_set_compl: + "Not \ set xs = - set xs" + by (simp add: fun_Compl_def bool_Compl_def comp_def expand_fun_eq) + +primrec fold :: "('a \ 'b \ 'b) \ 'a list \ 'b \ 'b" where + "fold f [] s = s" + | "fold f (x#xs) s = fold f xs (f x s)" + +lemma foldl_fold: + "foldl f s xs = List.fold (\x s. f s x) xs s" + by (induct xs arbitrary: s) simp_all + +setup {* Sign.map_naming Name_Space.parent_path *} + + +section {* The type of distinct lists *} + +typedef (open) 'a dlist = "{xs::'a list. distinct xs}" + morphisms list_of_dlist Abs_dlist +proof + show "[] \ ?dlist" by simp +qed + +text {* Formal, totalized constructor for @{typ "'a dlist"}: *} + +definition Dlist :: "'a list \ 'a dlist" where + [code del]: "Dlist xs = Abs_dlist (remdups xs)" + +lemma distinct_list_of_dlist [simp]: + "distinct (list_of_dlist dxs)" + using list_of_dlist [of dxs] by simp + +lemma list_of_dlist_Dlist [simp]: + "list_of_dlist (Dlist xs) = remdups xs" + by (simp add: Dlist_def Abs_dlist_inverse) + +lemma Dlist_list_of_dlist [simp]: + "Dlist (list_of_dlist dxs) = dxs" + by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id) + + +text {* Fundamental operations: *} + +definition empty :: "'a dlist" where + "empty = Dlist []" + +definition insert :: "'a \ 'a dlist \ 'a dlist" where + "insert x dxs = Dlist (List.insert x (list_of_dlist dxs))" + +definition remove :: "'a \ 'a dlist \ 'a dlist" where + "remove x dxs = Dlist (remove1 x (list_of_dlist dxs))" + +definition map :: "('a \ 'b) \ 'a dlist \ 'b dlist" where + "map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))" + +definition filter :: "('a \ bool) \ 'a dlist \ 'a dlist" where + "filter P dxs = Dlist (List.filter P (list_of_dlist dxs))" + + +text {* Derived operations: *} + +definition null :: "'a dlist \ bool" where + "null dxs = List.null (list_of_dlist dxs)" + +definition member :: "'a dlist \ 'a \ bool" where + "member dxs = List.member (list_of_dlist dxs)" + +definition length :: "'a dlist \ nat" where + "length dxs = List.length (list_of_dlist dxs)" + +definition fold :: "('a \ 'b \ 'b) \ 'a dlist \ 'b \ 'b" where + "fold f dxs = List.fold f (list_of_dlist dxs)" + + +section {* Executable version obeying invariant *} + +code_abstype Dlist list_of_dlist + by simp + +lemma list_of_dlist_empty [simp, code abstract]: + "list_of_dlist empty = []" + by (simp add: empty_def) + +lemma list_of_dlist_insert [simp, code abstract]: + "list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)" + by (simp add: insert_def) + +lemma list_of_dlist_remove [simp, code abstract]: + "list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)" + by (simp add: remove_def) + +lemma list_of_dlist_map [simp, code abstract]: + "list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))" + by (simp add: map_def) + +lemma list_of_dlist_filter [simp, code abstract]: + "list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)" + by (simp add: filter_def) + +declare null_def [code] member_def [code] length_def [code] fold_def [code] -- {* explicit is better than implicit *} + + +section {* Implementation of sets by distinct lists -- canonical! *} + +definition Set :: "'a dlist \ 'a fset" where + "Set dxs = Fset.Set (list_of_dlist dxs)" + +definition Coset :: "'a dlist \ 'a fset" where + "Coset dxs = Fset.Coset (list_of_dlist dxs)" + +code_datatype Set Coset + +declare member_code [code del] +declare is_empty_Set [code del] +declare empty_Set [code del] +declare UNIV_Set [code del] +declare insert_Set [code del] +declare remove_Set [code del] +declare map_Set [code del] +declare filter_Set [code del] +declare forall_Set [code del] +declare exists_Set [code del] +declare card_Set [code del] +declare subfset_eq_forall [code del] +declare subfset_subfset_eq [code del] +declare eq_fset_subfset_eq [code del] +declare inter_project [code del] +declare subtract_remove [code del] +declare union_insert [code del] +declare Infimum_inf [code del] +declare Supremum_sup [code del] + +lemma Set_Dlist [simp]: + "Set (Dlist xs) = Fset (set xs)" + by (simp add: Set_def Fset.Set_def) + +lemma Coset_Dlist [simp]: + "Coset (Dlist xs) = Fset (- set xs)" + by (simp add: Coset_def Fset.Coset_def) + +lemma member_Set [simp]: + "Fset.member (Set dxs) = List.member (list_of_dlist dxs)" + by (simp add: Set_def member_set) + +lemma member_Coset [simp]: + "Fset.member (Coset dxs) = Not \ List.member (list_of_dlist dxs)" + by (simp add: Coset_def member_set not_set_compl) + +lemma is_empty_Set [code]: + "Fset.is_empty (Set dxs) \ null dxs" + by (simp add: null_def null_empty member_set) + +lemma bot_code [code]: + "bot = Set empty" + by (simp add: empty_def) + +lemma top_code [code]: + "top = Coset empty" + by (simp add: empty_def) + +lemma insert_code [code]: + "Fset.insert x (Set dxs) = Set (insert x dxs)" + "Fset.insert x (Coset dxs) = Coset (remove x dxs)" + by (simp_all add: insert_def remove_def member_set not_set_compl) + +lemma remove_code [code]: + "Fset.remove x (Set dxs) = Set (remove x dxs)" + "Fset.remove x (Coset dxs) = Coset (insert x dxs)" + by (auto simp add: insert_def remove_def member_set not_set_compl) + +lemma member_code [code]: + "Fset.member (Set dxs) = member dxs" + "Fset.member (Coset dxs) = Not \ member dxs" + by (simp_all add: member_def) + +lemma map_code [code]: + "Fset.map f (Set dxs) = Set (map f dxs)" + by (simp add: member_set) + +lemma filter_code [code]: + "Fset.filter f (Set dxs) = Set (filter f dxs)" + by (simp add: member_set) + +lemma forall_Set [code]: + "Fset.forall P (Set xs) \ list_all P (list_of_dlist xs)" + by (simp add: member_set list_all_iff) + +lemma exists_Set [code]: + "Fset.exists P (Set xs) \ list_ex P (list_of_dlist xs)" + by (simp add: member_set list_ex_iff) + +lemma card_code [code]: + "Fset.card (Set dxs) = length dxs" + by (simp add: length_def member_set distinct_card) + +lemma foldl_list_of_dlist: + "foldl f s (list_of_dlist dxs) = fold (\x s. f s x) dxs s" + by (simp add: foldl_fold fold_def) + +lemma inter_code [code]: + "inf A (Set xs) = Set (filter (Fset.member A) xs)" + "inf A (Coset xs) = fold Fset.remove xs A" + by (simp_all only: Set_def Coset_def foldl_list_of_dlist inter_project list_of_dlist_filter) + +lemma subtract_code [code]: + "A - Set xs = fold Fset.remove xs A" + "A - Coset xs = Set (filter (Fset.member A) xs)" + by (simp_all only: Set_def Coset_def foldl_list_of_dlist subtract_remove list_of_dlist_filter) + +lemma union_code [code]: + "sup (Set xs) A = fold Fset.insert xs A" + "sup (Coset xs) A = Coset (filter (Not \ Fset.member A) xs)" + by (simp_all only: Set_def Coset_def foldl_list_of_dlist union_insert list_of_dlist_filter) + +context complete_lattice +begin + +lemma Infimum_code [code]: + "Infimum (Set As) = fold inf As top" + by (simp only: Set_def Infimum_inf foldl_list_of_dlist inf.commute) + +lemma Supremum_code [code]: + "Supremum (Set As) = fold sup As bot" + by (simp only: Set_def Supremum_sup foldl_list_of_dlist sup.commute) + +end + +hide (open) const member fold empty insert remove map filter null member length fold + +end diff -r 4bc6b4d70e08 -r 816e48d60b13 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Mon Feb 22 15:53:18 2010 +0100 +++ b/src/HOL/Library/Library.thy Mon Feb 22 15:53:18 2010 +0100 @@ -15,6 +15,7 @@ ContNotDenum Countable Diagonalize + Dlist Efficient_Nat Enum Eval_Witness diff -r 4bc6b4d70e08 -r 816e48d60b13 src/HOL/ex/Codegenerator_Candidates.thy --- a/src/HOL/ex/Codegenerator_Candidates.thy Mon Feb 22 15:53:18 2010 +0100 +++ b/src/HOL/ex/Codegenerator_Candidates.thy Mon Feb 22 15:53:18 2010 +0100 @@ -8,6 +8,8 @@ Complex_Main AssocList Binomial + "~~/src/HOL/Decision_Procs/Commutative_Ring_Complete" + Dlist Fset Enum List_Prefix @@ -17,12 +19,11 @@ Permutation "~~/src/HOL/Number_Theory/Primes" Product_ord + "~~/src/HOL/ex/Records" SetsAndFunctions Tree While_Combinator Word - "~~/src/HOL/Decision_Procs/Commutative_Ring_Complete" - "~~/src/HOL/ex/Records" begin inductive sublist :: "'a list \ 'a list \ bool" where