# HG changeset patch # User huffman # Date 1321529388 -3600 # Node ID 827bf668c82292bf21e882d200b48bf805fb9572 # Parent 4849dbe6e3100c7311784a9253f573ccdd303125 HOL-Word: add simp rules for bin_rest, bin_last; shorten several proofs diff -r 4849dbe6e310 -r 827bf668c822 src/HOL/Word/Bit_Int.thy --- a/src/HOL/Word/Bit_Int.thy Thu Nov 17 08:07:54 2011 +0100 +++ b/src/HOL/Word/Bit_Int.thy Thu Nov 17 12:29:48 2011 +0100 @@ -87,6 +87,8 @@ end +subsubsection {* Basic simplification rules *} + lemma int_not_simps [simp]: "NOT Int.Pls = Int.Min" "NOT Int.Min = Int.Pls" @@ -121,20 +123,6 @@ "(Int.Bit1 x) XOR (Int.Bit1 y) = Int.Bit0 (x XOR y)" unfolding BIT_simps [symmetric] int_xor_Bits by simp_all -lemma int_xor_x_simps': - "w XOR (Int.Pls BIT 0) = w" - "w XOR (Int.Min BIT 1) = NOT w" - apply (induct w rule: bin_induct) - apply simp_all[4] - apply (unfold int_xor_Bits) - apply clarsimp+ - done - -lemma int_xor_extra_simps [simp]: - "w XOR Int.Pls = w" - "w XOR Int.Min = NOT w" - using int_xor_x_simps' by simp_all - lemma int_or_Pls [simp]: "Int.Pls OR x = x" by (unfold int_or_def) (simp add: bin_rec_PM) @@ -154,20 +142,6 @@ "(Int.Bit1 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)" unfolding BIT_simps [symmetric] int_or_Bits by simp_all -lemma int_or_x_simps': - "w OR (Int.Pls BIT 0) = w" - "w OR (Int.Min BIT 1) = Int.Min" - apply (induct w rule: bin_induct) - apply simp_all[4] - apply (unfold int_or_Bits) - apply clarsimp+ - done - -lemma int_or_extra_simps [simp]: - "w OR Int.Pls = w" - "w OR Int.Min = Int.Min" - using int_or_x_simps' by simp_all - lemma int_and_Pls [simp]: "Int.Pls AND x = Int.Pls" unfolding int_and_def by (simp add: bin_rec_PM) @@ -187,19 +161,61 @@ "(Int.Bit1 x) AND (Int.Bit1 y) = Int.Bit1 (x AND y)" unfolding BIT_simps [symmetric] int_and_Bits by simp_all -lemma int_and_x_simps': - "w AND (Int.Pls BIT 0) = Int.Pls" - "w AND (Int.Min BIT 1) = w" - apply (induct w rule: bin_induct) - apply simp_all[4] - apply (unfold int_and_Bits) - apply clarsimp+ - done +subsubsection {* Binary destructors *} + +lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)" + by (cases x rule: bin_exhaust, simp) + +lemma bin_last_NOT [simp]: "bin_last (NOT x) = NOT (bin_last x)" + by (cases x rule: bin_exhaust, simp) + +lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_last_AND [simp]: "bin_last (x AND y) = bin_last x AND bin_last y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_last_OR [simp]: "bin_last (x OR y) = bin_last x OR bin_last y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_last_XOR [simp]: "bin_last (x XOR y) = bin_last x XOR bin_last y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bit_NOT_eq_1_iff [simp]: "NOT (b::bit) = 1 \ b = 0" + by (induct b, simp_all) + +lemma bit_AND_eq_1_iff [simp]: "(a::bit) AND b = 1 \ a = 1 \ b = 1" + by (induct a, simp_all) + +lemma bin_nth_ops: + "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" + "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)" + "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" + "!!x. bin_nth (NOT x) n = (~ bin_nth x n)" + by (induct n) auto + +subsubsection {* Derived properties *} + +lemma int_xor_extra_simps [simp]: + "w XOR Int.Pls = w" + "w XOR Int.Min = NOT w" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma int_or_extra_simps [simp]: + "w OR Int.Pls = w" + "w OR Int.Min = Int.Min" + by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_and_extra_simps [simp]: "w AND Int.Pls = Int.Pls" "w AND Int.Min = w" - using int_and_x_simps' by simp_all + by (auto simp add: bin_eq_iff bin_nth_ops) (* commutativity of the above *) lemma bin_ops_comm: @@ -207,19 +223,16 @@ int_and_comm: "!!y::int. x AND y = y AND x" and int_or_comm: "!!y::int. x OR y = y OR x" and int_xor_comm: "!!y::int. x XOR y = y XOR x" - apply (induct x rule: bin_induct) - apply simp_all[6] - apply (case_tac y rule: bin_exhaust, simp add: bit_ops_comm)+ - done + by (auto simp add: bin_eq_iff bin_nth_ops) lemma bin_ops_same [simp]: "(x::int) AND x = x" "(x::int) OR x = x" "(x::int) XOR x = Int.Pls" - by (induct x rule: bin_induct) auto + by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_not_not [simp]: "NOT (NOT (x::int)) = x" - by (induct x rule: bin_induct) auto + by (auto simp add: bin_eq_iff bin_nth_ops) lemmas bin_log_esimps = int_and_extra_simps int_or_extra_simps int_xor_extra_simps @@ -229,108 +242,64 @@ lemma bbw_ao_absorb: "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x" - apply (induct x rule: bin_induct) - apply auto - apply (case_tac [!] y rule: bin_exhaust) - apply auto - apply (case_tac [!] bit) - apply auto - done + by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_ao_absorbs_other: "x AND (x OR y) = x \ (y AND x) OR x = (x::int)" "(y OR x) AND x = x \ x OR (x AND y) = (x::int)" "(x OR y) AND x = x \ (x AND y) OR x = (x::int)" - apply (auto simp: bbw_ao_absorb int_or_comm) - apply (subst int_or_comm) - apply (simp add: bbw_ao_absorb) - apply (subst int_and_comm) - apply (subst int_or_comm) - apply (simp add: bbw_ao_absorb) - apply (subst int_and_comm) - apply (simp add: bbw_ao_absorb) - done + by (auto simp add: bin_eq_iff bin_nth_ops) lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other lemma int_xor_not: "!!y::int. (NOT x) XOR y = NOT (x XOR y) & x XOR (NOT y) = NOT (x XOR y)" - apply (induct x rule: bin_induct) - apply auto - apply (case_tac y rule: bin_exhaust, auto, - case_tac b, auto)+ - done - -lemma bbw_assocs': - "!!y z::int. (x AND y) AND z = x AND (y AND z) & - (x OR y) OR z = x OR (y OR z) & - (x XOR y) XOR z = x XOR (y XOR z)" - apply (induct x rule: bin_induct) - apply (auto simp: int_xor_not) - apply (case_tac [!] y rule: bin_exhaust) - apply (case_tac [!] z rule: bin_exhaust) - apply (case_tac [!] bit) - apply (case_tac [!] b) - apply (auto simp del: BIT_simps) - done + by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_and_assoc: "(x AND y) AND (z::int) = x AND (y AND z)" - by (simp add: bbw_assocs') + by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_or_assoc: "(x OR y) OR (z::int) = x OR (y OR z)" - by (simp add: bbw_assocs') + by (auto simp add: bin_eq_iff bin_nth_ops) lemma int_xor_assoc: "(x XOR y) XOR (z::int) = x XOR (y XOR z)" - by (simp add: bbw_assocs') + by (auto simp add: bin_eq_iff bin_nth_ops) lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc +(* BH: Why are these declared as simp rules??? *) lemma bbw_lcs [simp]: "(y::int) AND (x AND z) = x AND (y AND z)" "(y::int) OR (x OR z) = x OR (y OR z)" "(y::int) XOR (x XOR z) = x XOR (y XOR z)" - apply (auto simp: bbw_assocs [symmetric]) - apply (auto simp: bin_ops_comm) - done + by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_not_dist: "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)" - apply (induct x rule: bin_induct) - apply auto - apply (case_tac [!] y rule: bin_exhaust) - apply (case_tac [!] bit, auto simp del: BIT_simps) - done + by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_oa_dist: "!!y z::int. (x AND y) OR z = (x OR z) AND (y OR z)" - apply (induct x rule: bin_induct) - apply auto - apply (case_tac y rule: bin_exhaust) - apply (case_tac z rule: bin_exhaust) - apply (case_tac ba, auto simp del: BIT_simps) - done + by (auto simp add: bin_eq_iff bin_nth_ops) lemma bbw_ao_dist: "!!y z::int. (x OR y) AND z = (x AND z) OR (y AND z)" - apply (induct x rule: bin_induct) - apply auto - apply (case_tac y rule: bin_exhaust) - apply (case_tac z rule: bin_exhaust) - apply (case_tac ba, auto simp del: BIT_simps) - done + by (auto simp add: bin_eq_iff bin_nth_ops) (* Why were these declared simp??? declare bin_ops_comm [simp] bbw_assocs [simp] *) +subsubsection {* Interactions with arithmetic *} + lemma plus_and_or [rule_format]: "ALL y::int. (x AND y) + (x OR y) = x + y" apply (induct x rule: bin_induct) @@ -359,20 +328,6 @@ lemmas int_and_le = xtr3 [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] -lemma bin_nth_ops: - "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" - "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)" - "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" - "!!x. bin_nth (NOT x) n = (~ bin_nth x n)" - apply (induct n) - apply safe - apply (case_tac [!] x rule: bin_exhaust) - apply (simp_all del: BIT_simps) - apply (case_tac [!] y rule: bin_exhaust) - apply (simp_all del: BIT_simps) - apply (auto dest: not_B1_is_B0 intro: B1_ass_B0) - done - (* interaction between bit-wise and arithmetic *) (* good example of bin_induction *) lemma bin_add_not: "x + NOT x = Int.Min" @@ -382,34 +337,21 @@ apply (case_tac bit, auto) done -(* truncating results of bit-wise operations *) +subsubsection {* Truncating results of bit-wise operations *} + lemma bin_trunc_ao: "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)" - apply (induct n) - apply auto - apply (case_tac [!] x rule: bin_exhaust) - apply (case_tac [!] y rule: bin_exhaust) - apply auto - done + by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) lemma bin_trunc_xor: "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = bintrunc n (x XOR y)" - apply (induct n) - apply auto - apply (case_tac [!] x rule: bin_exhaust) - apply (case_tac [!] y rule: bin_exhaust) - apply auto - done + by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) lemma bin_trunc_not: "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)" - apply (induct n) - apply auto - apply (case_tac [!] x rule: bin_exhaust) - apply auto - done + by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) (* want theorems of the form of bin_trunc_xor *) lemma bintr_bintr_i: diff -r 4849dbe6e310 -r 827bf668c822 src/HOL/Word/Bit_Representation.thy --- a/src/HOL/Word/Bit_Representation.thy Thu Nov 17 08:07:54 2011 +0100 +++ b/src/HOL/Word/Bit_Representation.thy Thu Nov 17 12:29:48 2011 +0100 @@ -270,6 +270,9 @@ lemmas bin_eqI = ext [THEN bin_nth_eq_iff [THEN iffD1], standard] +lemma bin_eq_iff: "x = y \ (\n. bin_nth x n = bin_nth y n)" + by (auto intro!: bin_nth_lem del: equalityI) + lemma bin_nth_Pls [simp]: "~ bin_nth Int.Pls n" by (induct n) auto diff -r 4849dbe6e310 -r 827bf668c822 src/HOL/Word/Bool_List_Representation.thy --- a/src/HOL/Word/Bool_List_Representation.thy Thu Nov 17 08:07:54 2011 +0100 +++ b/src/HOL/Word/Bool_List_Representation.thy Thu Nov 17 12:29:48 2011 +0100 @@ -481,8 +481,6 @@ apply (case_tac v rule: bin_exhaust) apply (case_tac w rule: bin_exhaust) apply clarsimp - apply (case_tac b) - apply (case_tac ba, safe, simp_all)+ done lemma bl_not_aux_bin [rule_format] : @@ -491,9 +489,6 @@ apply (induct n) apply clarsimp apply clarsimp - apply (case_tac w rule: bin_exhaust) - apply (case_tac b) - apply auto done lemmas bl_not_bin = bl_not_aux_bin