# HG changeset patch # User nipkow # Date 1736525607 -3600 # Node ID 828ddde811ad806d549e6716afe6a500da26f4ac # Parent 1b817e64af3cf3d4f423891e49b8dc2f2ed5bba9 made lemma visible diff -r 1b817e64af3c -r 828ddde811ad src/HOL/Product_Type.thy --- a/src/HOL/Product_Type.thy Fri Jan 10 15:48:20 2025 +0000 +++ b/src/HOL/Product_Type.thy Fri Jan 10 17:13:27 2025 +0100 @@ -990,8 +990,8 @@ lemma snd_swap [simp]: "snd (prod.swap x) = fst x" by (cases x) simp -lemma split_pairs: - "(A,B) = X \ fst X = A \ snd X = B" and "X = (A,B) \ fst X = A \ snd X = B" +lemma split_pairs: "(A,B) = X \ fst X = A \ snd X = B" + and split_pairs2: "X = (A,B) \ fst X = A \ snd X = B" by auto text \Disjoint union of a family of sets -- Sigma.\