# HG changeset patch # User haftmann # Date 1265645550 -3600 # Node ID 82ab78fff9708c9cc1f5f367999cf9f234a30457 # Parent 1b2bae06c7962d37cf6c736cced71bb63b8b880f tuned proofs diff -r 1b2bae06c796 -r 82ab78fff970 src/HOL/Old_Number_Theory/WilsonBij.thy --- a/src/HOL/Old_Number_Theory/WilsonBij.thy Mon Feb 08 17:12:27 2010 +0100 +++ b/src/HOL/Old_Number_Theory/WilsonBij.thy Mon Feb 08 17:12:30 2010 +0100 @@ -74,9 +74,9 @@ lemma aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)" -- {* same as @{text WilsonRuss} *} apply (unfold zcong_def) - apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2) + apply (simp add: diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2) apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans) - apply (simp add: mult_commute) + apply (simp add: algebra_simps) apply (subst dvd_minus_iff) apply (subst zdvd_reduce) apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans) diff -r 1b2bae06c796 -r 82ab78fff970 src/HOL/Old_Number_Theory/WilsonRuss.thy --- a/src/HOL/Old_Number_Theory/WilsonRuss.thy Mon Feb 08 17:12:27 2010 +0100 +++ b/src/HOL/Old_Number_Theory/WilsonRuss.thy Mon Feb 08 17:12:30 2010 +0100 @@ -82,9 +82,9 @@ lemma inv_not_p_minus_1_aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)" apply (unfold zcong_def) - apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2) + apply (simp add: diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2) apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans) - apply (simp add: mult_commute) + apply (simp add: algebra_simps) apply (subst dvd_minus_iff) apply (subst zdvd_reduce) apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans) diff -r 1b2bae06c796 -r 82ab78fff970 src/HOL/Word/BinGeneral.thy --- a/src/HOL/Word/BinGeneral.thy Mon Feb 08 17:12:27 2010 +0100 +++ b/src/HOL/Word/BinGeneral.thy Mon Feb 08 17:12:30 2010 +0100 @@ -742,7 +742,7 @@ lemma sb_inc_lem': "(a::int) < - (2^k) \ a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)" - by (rule iffD1 [OF less_diff_eq, THEN sb_inc_lem, simplified OrderedGroup.diff_0]) + by (rule sb_inc_lem) simp lemma sbintrunc_inc: "x < - (2^n) ==> x + 2^(Suc n) <= sbintrunc n x"