# HG changeset patch # User haftmann # Date 1387989546 -3600 # Node ID 82acc20ded73cbb8386f71bc7a9f3072684aa86c # Parent c65e5cbdbc9703e996ad25a0481d4bc616394ecb prefer more canonical names for lemmas on min/max diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Algebra/UnivPoly.thy --- a/src/HOL/Algebra/UnivPoly.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Algebra/UnivPoly.thy Wed Dec 25 17:39:06 2013 +0100 @@ -1252,7 +1252,7 @@ h (coeff P p i) \\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \\<^bsub>S\<^esub> (\\<^bsub>S\<^esub> i \ {..deg R q} \ {deg R q<..max (deg R p) (deg R q)}. h (coeff P q i) \\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" - by (simp only: ivl_disj_un_one le_maxI1 le_maxI2) + by (simp only: ivl_disj_un_one max.cobounded1 max.cobounded2) also from R S have "... = (\\<^bsub>S\<^esub> i \ {..deg R p}. h (coeff P p i) \\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \\<^bsub>S\<^esub> (\\<^bsub>S\<^esub> i \ {..deg R q}. h (coeff P q i) \\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Bali/Evaln.thy --- a/src/HOL/Bali/Evaln.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Bali/Evaln.thy Wed Dec 25 17:39:06 2013 +0100 @@ -459,7 +459,7 @@ lemma evaln_max2: "\G\s1 \t1\\n1\ (w1, s1'); G\s2 \t2\\n2\ (w2, s2')\ \ G\s1 \t1\\max n1 n2\ (w1, s1') \ G\s2 \t2\\max n1 n2\ (w2, s2')" -by (fast intro: le_maxI1 le_maxI2) +by (fast intro: max.cobounded1 max.cobounded2) corollary evaln_max2E [consumes 2]: "\G\s1 \t1\\n1\ (w1, s1'); G\s2 \t2\\n2\ (w2, s2'); @@ -473,7 +473,7 @@ G\s2 \t2\\max (max n1 n2) n3\ (w2, s2') \ G\s3 \t3\\max (max n1 n2) n3\ (w3, s3')" apply (drule (1) evaln_max2, erule thin_rl) -apply (fast intro!: le_maxI1 le_maxI2) +apply (fast intro!: max.cobounded1 max.cobounded2) done corollary evaln_max3E: @@ -489,10 +489,10 @@ lemma le_max3I1: "(n2::nat) \ max n1 (max n2 n3)" proof - have "n2 \ max n2 n3" - by (rule le_maxI1) + by (rule max.cobounded1) also have "max n2 n3 \ max n1 (max n2 n3)" - by (rule le_maxI2) + by (rule max.cobounded2) finally show ?thesis . qed @@ -500,10 +500,10 @@ lemma le_max3I2: "(n3::nat) \ max n1 (max n2 n3)" proof - have "n3 \ max n2 n3" - by (rule le_maxI2) + by (rule max.cobounded2) also have "max n2 n3 \ max n1 (max n2 n3)" - by (rule le_maxI2) + by (rule max.cobounded2) finally show ?thesis . qed @@ -568,13 +568,13 @@ then (G\s1 \c\n2\ s2 \ G\(abupd (absorb (Cont l)) s2)\l\ While(e) c\n2\ s3) else s3 = s1" - by simp (iprover intro: evaln_nonstrict le_maxI1 le_maxI2) + by simp (iprover intro: evaln_nonstrict max.cobounded1 max.cobounded2) ultimately have "G\Norm s0 \l\ While(e) c\max n1 n2\ s3" apply - apply (rule evaln.Loop) - apply (iprover intro: evaln_nonstrict intro: le_maxI1) - apply (auto intro: evaln_nonstrict intro: le_maxI2) + apply (iprover intro: evaln_nonstrict intro: max.cobounded1) + apply (auto intro: evaln_nonstrict intro: max.cobounded2) done then show ?case .. next @@ -603,7 +603,7 @@ by fastforce ultimately have "G\Norm s0 \Try c1 Catch(catchC vn) c2\max n1 n2\ s3" - by (auto intro!: evaln.Try le_maxI1 le_maxI2) + by (auto intro!: evaln.Try max.cobounded1 max.cobounded2) then show ?case .. next case (Fin s0 c1 x1 s1 c2 s2 s3) @@ -629,7 +629,7 @@ \(if C = Object then Skip else Init (super c))\n\ s1 \ G\set_lvars empty s1 \init c\n\ s2 \ s3 = restore_lvars s1 s2)" - by (auto intro: evaln_nonstrict le_maxI1 le_maxI2) + by (auto intro: evaln_nonstrict max.cobounded1 max.cobounded2) ultimately have "G\Norm s0 \Init C\n\ s3" by (rule evaln.Init) then show ?case .. @@ -755,7 +755,7 @@ ultimately have "G\Norm s0 \{accC',statT,mode}e\mn( {pTs'}args)-\v\max n1 (max n2 m)\ (set_lvars (locals (store s2))) s4" - by (auto intro!: evaln.Call le_maxI1 le_max3I1 le_max3I2) + by (auto intro!: evaln.Call max.cobounded1 le_max3I1 le_max3I2) thus ?case .. next case (Methd s0 D sig v s1) diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Decision_Procs/Ferrack.thy --- a/src/HOL/Decision_Procs/Ferrack.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Decision_Procs/Ferrack.thy Wed Dec 25 17:39:06 2013 +0100 @@ -444,7 +444,7 @@ assumes g0: "numgcd t = 0" shows "Inum bs t = 0" using g0[simplified numgcd_def] - by (induct t rule: numgcdh.induct, auto simp add: natabs0 maxcoeff_pos min_max.sup_absorb2) + by (induct t rule: numgcdh.induct, auto simp add: natabs0 maxcoeff_pos max.absorb2) lemma numgcdh_pos: assumes gp: "g \ 0" shows "numgcdh t g \ 0" using gp diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/HOLCF/Completion.thy --- a/src/HOL/HOLCF/Completion.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/HOLCF/Completion.thy Wed Dec 25 17:39:06 2013 +0100 @@ -62,8 +62,8 @@ apply (rule idealI) apply (cut_tac idealD1 [OF ideal_A], fast) apply (clarify, rename_tac i j) - apply (drule subsetD [OF chain_A [OF le_maxI1]]) - apply (drule subsetD [OF chain_A [OF le_maxI2]]) + apply (drule subsetD [OF chain_A [OF max.cobounded1]]) + apply (drule subsetD [OF chain_A [OF max.cobounded2]]) apply (drule (1) idealD2 [OF ideal_A]) apply blast apply clarify diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/HOLCF/Library/List_Cpo.thy --- a/src/HOL/HOLCF/Library/List_Cpo.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/HOLCF/Library/List_Cpo.thy Wed Dec 25 17:39:06 2013 +0100 @@ -273,8 +273,8 @@ apply (erule list_chain_cases) apply (auto simp add: lub_Cons dest!: compactD2) apply (rename_tac i j, rule_tac x="max i j" in exI) -apply (drule (1) below_trans [OF _ chain_mono [OF _ le_maxI1]]) -apply (drule (1) below_trans [OF _ chain_mono [OF _ le_maxI2]]) +apply (drule (1) below_trans [OF _ chain_mono [OF _ max.cobounded1]]) +apply (drule (1) below_trans [OF _ chain_mono [OF _ max.cobounded2]]) apply (erule (1) conjI) done diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/HOLCF/Pcpo.thy --- a/src/HOL/HOLCF/Pcpo.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/HOLCF/Pcpo.thy Wed Dec 25 17:39:06 2013 +0100 @@ -118,8 +118,8 @@ apply (rule lub_below [OF 2]) apply (rule below_lub [OF 3]) apply (rule below_trans) - apply (rule chain_mono [OF 1 le_maxI1]) - apply (rule chain_mono [OF 2 le_maxI2]) + apply (rule chain_mono [OF 1 max.cobounded1]) + apply (rule chain_mono [OF 2 max.cobounded2]) done show "(\i. Y i i) \ (\i. \j. Y i j)" apply (rule lub_mono [OF 3 4]) diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/HOLCF/Universal.thy --- a/src/HOL/HOLCF/Universal.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/HOLCF/Universal.thy Wed Dec 25 17:39:06 2013 +0100 @@ -802,7 +802,7 @@ by (simp add: approximants_def approx_below) moreover from x y have "x \ ?z \ y \ ?z" by (simp add: approximants_def compact_le_def) - (metis i j monofun_cfun chain_mono chain_approx le_maxI1 le_maxI2) + (metis i j monofun_cfun chain_mono chain_approx max.cobounded1 max.cobounded2) ultimately show "\z \ approximants w. x \ z \ y \ z" .. next fix x y :: "'a compact_basis" diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Hoare_Parallel/Graph.thy --- a/src/HOL/Hoare_Parallel/Graph.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Hoare_Parallel/Graph.thy Wed Dec 25 17:39:06 2013 +0100 @@ -182,7 +182,7 @@ subsubsection{* Graph 3 *} -declare min_max.inf_absorb1 [simp] min_max.inf_absorb2 [simp] +declare min.absorb1 [simp] min.absorb2 [simp] lemma Graph3: "\ T\Reach E; R \ Reach(E[R:=(fst(E!R),T)]) \ Reach E" @@ -304,7 +304,7 @@ apply force done -declare min_max.inf_absorb1 [simp del] min_max.inf_absorb2 [simp del] +declare min.absorb1 [simp del] min.absorb2 [simp del] subsubsection {* Graph 5 *} diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/IMP/Sec_Typing.thy --- a/src/HOL/IMP/Sec_Typing.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/IMP/Sec_Typing.thy Wed Dec 25 17:39:06 2013 +0100 @@ -48,19 +48,19 @@ next case (IfTrue b s c1) hence "max (sec b) l \ c1" by auto - hence "l \ c1" by (metis le_maxI2 anti_mono) + hence "l \ c1" by (metis max.cobounded2 anti_mono) thus ?case using IfTrue.IH by metis next case (IfFalse b s c2) hence "max (sec b) l \ c2" by auto - hence "l \ c2" by (metis le_maxI2 anti_mono) + hence "l \ c2" by (metis max.cobounded2 anti_mono) thus ?case using IfFalse.IH by metis next case WhileFalse thus ?case by auto next case (WhileTrue b s1 c) hence "max (sec b) l \ c" by auto - hence "l \ c" by (metis le_maxI2 anti_mono) + hence "l \ c" by (metis max.cobounded2 anti_mono) thus ?case using WhileTrue by metis qed @@ -200,8 +200,8 @@ apply (metis Skip') apply (metis Assign') apply (metis Seq') -apply (metis min_max.inf_sup_ord(3) min_max.sup_absorb2 nat_le_linear If' anti_mono') -by (metis less_or_eq_imp_le min_max.sup_absorb1 min_max.sup_absorb2 nat_le_linear While' anti_mono') +apply (metis min_max.inf_sup_ord(3) max.absorb2 nat_le_linear If' anti_mono') +by (metis less_or_eq_imp_le max.absorb1 max.absorb2 nat_le_linear While' anti_mono') lemma sec_type'_sec_type: "l \' c \ l \ c" @@ -209,8 +209,8 @@ apply (metis Skip) apply (metis Assign) apply (metis Seq) -apply (metis min_max.sup_absorb2 If) -apply (metis min_max.sup_absorb2 While) +apply (metis max.absorb2 If) +apply (metis max.absorb2 While) by (metis anti_mono) subsection "A Bottom-Up Typing System" @@ -233,15 +233,15 @@ apply(induction rule: sec_type2.induct) apply (metis Skip') apply (metis Assign' eq_imp_le) -apply (metis Seq' anti_mono' min_max.inf_le1 min_max.inf_le2) -apply (metis If' anti_mono' min_max.inf_absorb2 min_max.le_iff_inf nat_le_linear) +apply (metis Seq' anti_mono' min.cobounded1 min.cobounded2) +apply (metis If' anti_mono' min.absorb2 min.absorb_iff1 nat_le_linear) by (metis While') lemma sec_type'_sec_type2: "l \' c \ \ l' \ l. \ c : l'" apply(induction rule: sec_type'.induct) apply (metis Skip2 le_refl) apply (metis Assign2) -apply (metis Seq2 min_max.inf_greatest) +apply (metis Seq2 min.boundedI) apply (metis If2 inf_greatest inf_nat_def le_trans) apply (metis While2 le_trans) by (metis le_trans) diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/IMP/Sec_TypingT.thy --- a/src/HOL/IMP/Sec_TypingT.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/IMP/Sec_TypingT.thy Wed Dec 25 17:39:06 2013 +0100 @@ -41,12 +41,12 @@ next case (IfTrue b s c1) hence "max (sec b) l \ c1" by auto - hence "l \ c1" by (metis le_maxI2 anti_mono) + hence "l \ c1" by (metis max.cobounded2 anti_mono) thus ?case using IfTrue.IH by metis next case (IfFalse b s c2) hence "max (sec b) l \ c2" by auto - hence "l \ c2" by (metis le_maxI2 anti_mono) + hence "l \ c2" by (metis max.cobounded2 anti_mono) thus ?case using IfFalse.IH by metis next case WhileFalse thus ?case by auto @@ -61,7 +61,7 @@ apply (metis big_step.Skip) apply (metis big_step.Assign) apply (metis big_step.Seq) -apply (metis IfFalse IfTrue le0 le_antisym le_maxI2) +apply (metis IfFalse IfTrue le0 le_antisym max.cobounded2) apply simp done @@ -190,7 +190,7 @@ apply (metis Skip') apply (metis Assign') apply (metis Seq') -apply (metis min_max.inf_sup_ord(3) min_max.sup_absorb2 nat_le_linear If' anti_mono') +apply (metis min_max.inf_sup_ord(3) max.absorb2 nat_le_linear If' anti_mono') by (metis While') @@ -200,7 +200,7 @@ apply (metis Skip) apply (metis Assign) apply (metis Seq) -apply (metis min_max.sup_absorb2 If) +apply (metis max.absorb2 If) apply (metis While) by (metis anti_mono) diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Import/HOL_Light_Maps.thy --- a/src/HOL/Import/HOL_Light_Maps.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Import/HOL_Light_Maps.thy Wed Dec 25 17:39:06 2013 +0100 @@ -175,11 +175,11 @@ lemma DEF_MAX[import_const "MAX"]: "max = (\x y :: nat. if x \ y then y else x)" - by (auto simp add: min_max.le_iff_sup fun_eq_iff) + by (auto simp add: max.absorb_iff2 fun_eq_iff) lemma DEF_MIN[import_const "MIN"]: "min = (\x y :: nat. if x \ y then x else y)" - by (auto simp add: min_max.le_iff_inf fun_eq_iff) + by (auto simp add: min.absorb_iff1 fun_eq_iff) lemma EVEN[import_const "EVEN" : "Parity.even_odd_class.even"]: "even (id 0\nat) = True \ (\n. even (Suc n) = (\ even n))" diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Int.thy --- a/src/HOL/Int.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Int.thy Wed Dec 25 17:39:06 2013 +0100 @@ -114,7 +114,7 @@ instance by intro_classes - (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1) + (auto simp add: inf_int_def sup_int_def max_min_distrib2) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Lattices_Big.thy --- a/src/HOL/Lattices_Big.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Lattices_Big.thy Wed Dec 25 17:39:06 2013 +0100 @@ -371,10 +371,10 @@ by (simp only: min_max.Sup_fin_def Max_def) qed -lemmas le_maxI1 = min_max.sup_ge1 -lemmas le_maxI2 = min_max.sup_ge2 -lemmas min_ac = min.assoc min_max.inf_commute min.left_commute -lemmas max_ac = min_max.sup_assoc min_max.sup_commute max.left_commute +lemmas le_maxI1 = max.cobounded1 +lemmas le_maxI2 = max.cobounded2 +lemmas min_ac = min.assoc min.commute min.left_commute +lemmas max_ac = max.assoc max.commute max.left_commute end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/BigO.thy --- a/src/HOL/Library/BigO.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/BigO.thy Wed Dec 25 17:39:06 2013 +0100 @@ -171,7 +171,7 @@ apply (subgoal_tac "c <= max c ca") apply (erule order_less_le_trans) apply assumption - apply (rule le_maxI1) + apply (rule max.cobounded1) apply clarify apply (drule_tac x = "xa" in spec)+ apply (subgoal_tac "0 <= f xa + g xa") @@ -184,12 +184,12 @@ apply (subgoal_tac "c * f xa <= max c ca * f xa") apply (force) apply (rule mult_right_mono) - apply (rule le_maxI1) + apply (rule max.cobounded1) apply assumption apply (subgoal_tac "ca * g xa <= max c ca * g xa") apply (force) apply (rule mult_right_mono) - apply (rule le_maxI2) + apply (rule max.cobounded2) apply assumption apply (rule abs_triangle_ineq) apply (rule add_nonneg_nonneg) @@ -770,7 +770,7 @@ apply (rule bigo_lesseq4) apply (erule set_plus_imp_minus) apply (rule allI) - apply (rule le_maxI2) + apply (rule max.cobounded2) apply (rule allI) apply (subst fun_diff_def) apply (case_tac "0 <= k x - g x") @@ -794,7 +794,7 @@ apply (rule bigo_lesseq4) apply (erule set_plus_imp_minus) apply (rule allI) - apply (rule le_maxI2) + apply (rule max.cobounded2) apply (rule allI) apply (subst fun_diff_def) apply (case_tac "0 <= f x - k x") @@ -836,7 +836,7 @@ apply (subgoal_tac "abs(max (f x - g x) 0) = max (f x - g x) 0") apply (clarsimp simp add: algebra_simps) apply (rule abs_of_nonneg) - apply (rule le_maxI2) + apply (rule max.cobounded2) done lemma lesso_add: "f diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/Char_ord.thy --- a/src/HOL/Library/Char_ord.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/Char_ord.thy Wed Dec 25 17:39:06 2013 +0100 @@ -32,7 +32,7 @@ "(sup \ nibble \ _) = max" instance proof -qed (auto simp add: inf_nibble_def sup_nibble_def min_max.sup_inf_distrib1) +qed (auto simp add: inf_nibble_def sup_nibble_def max_min_distrib2) end @@ -90,7 +90,7 @@ "(sup \ char \ _) = max" instance proof -qed (auto simp add: inf_char_def sup_char_def min_max.sup_inf_distrib1) +qed (auto simp add: inf_char_def sup_char_def max_min_distrib2) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/Extended_Real.thy Wed Dec 25 17:39:06 2013 +0100 @@ -1622,7 +1622,7 @@ then have "range f = {0}" by auto with True show "c * SUPR UNIV f \ y" - using * by (auto simp: SUP_def min_max.sup_absorb1) + using * by (auto simp: SUP_def max.absorb1) next case False then obtain i where "f i \ 0" @@ -1779,7 +1779,7 @@ proof (cases a) case PInf with `A \ {}` show ?thesis - by (auto simp: image_constant min_max.sup_absorb1) + by (auto simp: image_constant max.absorb1) next case (real r) then have **: "op + (- a) ` op + a ` A = A" diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/Fraction_Field.thy --- a/src/HOL/Library/Fraction_Field.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/Fraction_Field.thy Wed Dec 25 17:39:06 2013 +0100 @@ -424,7 +424,7 @@ instance by intro_classes (auto simp add: abs_fract_def sgn_fract_def - min_max.sup_inf_distrib1 inf_fract_def sup_fract_def) + max_min_distrib2 inf_fract_def sup_fract_def) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/Lattice_Algebras.thy --- a/src/HOL/Library/Lattice_Algebras.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/Lattice_Algebras.thy Wed Dec 25 17:39:06 2013 +0100 @@ -384,7 +384,7 @@ proof - note add_le_cancel_right [of a a "- a", symmetric, simplified] moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified] - then show ?thesis by (auto simp: sup_max min_max.sup_absorb1 min_max.sup_absorb2) + then show ?thesis by (auto simp: sup_max max.absorb1 max.absorb2) qed lemma abs_if_lattice: diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/List_lexord.thy --- a/src/HOL/Library/List_lexord.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/List_lexord.thy Wed Dec 25 17:39:06 2013 +0100 @@ -74,7 +74,7 @@ definition "(sup \ 'a list \ _) = max" instance - by default (auto simp add: inf_list_def sup_list_def min_max.sup_inf_distrib1) + by default (auto simp add: inf_list_def sup_list_def max_min_distrib2) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/Product_Lexorder.thy --- a/src/HOL/Library/Product_Lexorder.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/Product_Lexorder.thy Wed Dec 25 17:39:06 2013 +0100 @@ -55,7 +55,7 @@ "(sup :: 'a \ 'b \ _ \ _) = max" instance - by default (auto simp add: inf_prod_def sup_prod_def min_max.sup_inf_distrib1) + by default (auto simp add: inf_prod_def sup_prod_def max_min_distrib2) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Library/Saturated.thy --- a/src/HOL/Library/Saturated.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Library/Saturated.thy Wed Dec 25 17:39:06 2013 +0100 @@ -41,7 +41,7 @@ lemma min_len_of_nat_of [simp]: "min (len_of TYPE('a)) (nat_of (n::('a::len) sat)) = nat_of n" - by (rule min_max.inf_absorb2 [OF nat_of_le_len_of]) + by (rule min.absorb2 [OF nat_of_le_len_of]) lemma min_nat_of_len_of [simp]: "min (nat_of (n::('a::len) sat)) (len_of TYPE('a)) = nat_of n" @@ -61,7 +61,7 @@ less_sat_def: "x < y \ nat_of x < nat_of y" instance -by default (auto simp add: less_eq_sat_def less_sat_def not_le sat_eq_iff min_max.le_infI1 nat_mult_commute) +by default (auto simp add: less_eq_sat_def less_sat_def not_le sat_eq_iff min.coboundedI1 nat_mult_commute) end @@ -117,14 +117,14 @@ case True thus ?thesis by (simp add: sat_eq_iff) next case False with `a \ 0` show ?thesis - by (simp add: sat_eq_iff nat_mult_min_left nat_mult_min_right mult_assoc min_max.inf_assoc min_max.inf_absorb2) + by (simp add: sat_eq_iff nat_mult_min_left nat_mult_min_right mult_assoc min.assoc min.absorb2) qed qed next fix a :: "('a::len) sat" show "1 * a = a" apply (simp add: sat_eq_iff) - apply (metis One_nat_def len_gt_0 less_Suc0 less_zeroE linorder_not_less min_max.le_iff_inf min_nat_of_len_of nat_mult_1_right nat_mult_commute) + apply (metis One_nat_def len_gt_0 less_Suc0 less_zeroE linorder_not_less min.absorb_iff1 min_nat_of_len_of nat_mult_1_right nat_mult_commute) done next fix a b c :: "('a::len) sat" @@ -133,7 +133,7 @@ case True thus ?thesis by (simp add: sat_eq_iff) next case False thus ?thesis - by (simp add: sat_eq_iff nat_mult_min_left add_mult_distrib min_add_distrib_left min_add_distrib_right min_max.inf_assoc min_max.inf_absorb2) + by (simp add: sat_eq_iff nat_mult_min_left add_mult_distrib min_add_distrib_left min_add_distrib_right min.assoc min.absorb2) qed qed (simp_all add: sat_eq_iff mult.commute) @@ -143,7 +143,7 @@ begin instance -by default (auto simp add: less_eq_sat_def less_sat_def not_le sat_eq_iff min_max.le_infI1 nat_mult_commute) +by default (auto simp add: less_eq_sat_def less_sat_def not_le sat_eq_iff min.coboundedI1 nat_mult_commute) end @@ -202,7 +202,7 @@ "top = Sat (len_of TYPE('a))" instance proof -qed (simp_all add: inf_sat_def sup_sat_def bot_sat_def top_sat_def min_max.sup_inf_distrib1, +qed (simp_all add: inf_sat_def sup_sat_def bot_sat_def top_sat_def max_min_distrib2, simp_all add: less_eq_sat_def) end @@ -243,7 +243,7 @@ note finite moreover assume "x \ A" ultimately show "Inf A \ x" - by (induct A) (auto intro: min_max.le_infI2) + by (induct A) (auto intro: min.coboundedI2) next fix z :: "'a sat" fix A :: "'a sat set" @@ -256,7 +256,7 @@ note finite moreover assume "x \ A" ultimately show "x \ Sup A" - by (induct A) (auto intro: min_max.le_supI2) + by (induct A) (auto intro: max.coboundedI2) next fix z :: "'a sat" fix A :: "'a sat set" diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Limits.thy --- a/src/HOL/Limits.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Limits.thy Wed Dec 25 17:39:06 2013 +0100 @@ -125,7 +125,7 @@ proof safe fix N K assume "0 < K" "\n\N. norm (X n) \ K" then show "\K>0. \n. norm (X n) \ K" - by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] min_max.less_supI2) + by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2) (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj) qed auto diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/List.thy --- a/src/HOL/List.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/List.thy Wed Dec 25 17:39:06 2013 +0100 @@ -2065,13 +2065,13 @@ lemma butlast_take: "n <= length xs ==> butlast (take n xs) = take (n - 1) xs" -by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2) +by (simp add: butlast_conv_take min.absorb1 min.absorb2) lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)" by (simp add: butlast_conv_take drop_take add_ac) lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs" -by (simp add: butlast_conv_take min_max.inf_absorb1) +by (simp add: butlast_conv_take min.absorb1) lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)" by (simp add: butlast_conv_take drop_take add_ac) diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Metis_Examples/Big_O.thy --- a/src/HOL/Metis_Examples/Big_O.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Metis_Examples/Big_O.thy Wed Dec 25 17:39:06 2013 +0100 @@ -212,8 +212,8 @@ apply (metis abs_triangle_ineq) apply (metis add_nonneg_nonneg) apply (rule add_mono) - apply (metis le_maxI2 linorder_linear min_max.sup_absorb1 mult_right_mono xt1(6)) -by (metis le_maxI2 linorder_not_le mult_le_cancel_right order_trans) + apply (metis max.cobounded2 linorder_linear max.absorb1 mult_right_mono xt1(6)) +by (metis max.cobounded2 linorder_not_le mult_le_cancel_right order_trans) lemma bigo_bounded_alt: "\x. 0 <= f x \ \x. f x <= c * g x \ f : O(g)" apply (auto simp add: bigo_def) @@ -658,7 +658,7 @@ apply (subgoal_tac "(\x. max (f x - g x) 0) = 0") apply (metis bigo_zero) by (metis (lifting, no_types) func_zero le_fun_def le_iff_diff_le_0 - min_max.sup_absorb2 order_eq_iff) + max.absorb2 order_eq_iff) lemma bigo_lesso2: "f =o g +o O(h) \ \x. 0 <= k x \ \x. k x <= f x \ @@ -667,15 +667,15 @@ apply (rule bigo_lesseq4) apply (erule set_plus_imp_minus) apply (rule allI) - apply (rule le_maxI2) + apply (rule max.cobounded2) apply (rule allI) apply (subst fun_diff_def) apply (erule thin_rl) (* sledgehammer *) apply (case_tac "0 <= k x - g x") apply (metis (lifting) abs_le_D1 linorder_linear min_diff_distrib_left - min_max.inf_absorb1 min_max.inf_absorb2 min_max.sup_absorb1) -by (metis abs_ge_zero le_cases min_max.sup_absorb2) + min.absorb1 min.absorb2 max.absorb1) +by (metis abs_ge_zero le_cases max.absorb2) lemma bigo_lesso3: "f =o g +o O(h) \ \x. 0 <= k x \ \x. g x <= k x \ @@ -684,7 +684,7 @@ apply (rule bigo_lesseq4) apply (erule set_plus_imp_minus) apply (rule allI) - apply (rule le_maxI2) + apply (rule max.cobounded2) apply (rule allI) apply (subst fun_diff_def) apply (erule thin_rl) @@ -695,7 +695,7 @@ apply (drule_tac x = x in spec) back apply (metis diff_less_0_iff_less linorder_not_le not_leE xt1(12) xt1(6)) apply (metis add_minus_cancel diff_le_eq le_diff_eq uminus_add_conv_diff) -by (metis abs_ge_zero linorder_linear min_max.sup_absorb1 min_max.sup_commute) +by (metis abs_ge_zero linorder_linear max.absorb1 max.commute) lemma bigo_lesso4: "f 'a=>'b\{linordered_field}) \ diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/MicroJava/BV/Effect.thy --- a/src/HOL/MicroJava/BV/Effect.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/MicroJava/BV/Effect.thy Wed Dec 25 17:39:06 2013 +0100 @@ -379,7 +379,7 @@ with Pair have "?app s \ ?P s" by (simp only:) moreover - have "?P s \ ?app s" by (clarsimp simp add: min_max.inf_absorb2) + have "?P s \ ?app s" by (clarsimp simp add: min.absorb2) ultimately show ?thesis by (rule iffI) qed diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/MicroJava/Comp/CorrCompTp.thy --- a/src/HOL/MicroJava/Comp/CorrCompTp.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/MicroJava/Comp/CorrCompTp.thy Wed Dec 25 17:39:06 2013 +0100 @@ -442,7 +442,7 @@ (********************************************************************************) lemma max_of_list_elem: "x \ set xs \ x \ (max_of_list xs)" -by (induct xs, auto intro: le_maxI1 simp: le_max_iff_disj max_of_list_def) +by (induct xs, auto intro: max.cobounded1 simp: le_max_iff_disj max_of_list_def) lemma max_of_list_sublist: "set xs \ set ys \ (max_of_list xs) \ (max_of_list ys)" @@ -1053,7 +1053,7 @@ lemma bc_mt_corresp_New: "\is_class cG cname \ \ bc_mt_corresp [New cname] (pushST [Class cname]) (ST, LT) cG rT mxr (Suc 0)" apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def - max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2) + max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) apply (intro strip) apply (rule conjI) apply (rule check_type_mono, assumption, simp) @@ -1064,7 +1064,7 @@ bc_mt_corresp [Pop] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)" apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def) apply (simp add: max_ssize_def ssize_sto_def max_of_list_def) - apply (simp add: check_type_simps min_max.sup_absorb1) + apply (simp add: check_type_simps max.absorb1) apply clarify apply (rule_tac x="(length ST)" in exI) apply simp+ @@ -1087,7 +1087,7 @@ \ bc_mt_corresp [LitPush val] (pushST [T]) sttp cG rT mxr (Suc 0)" apply (subgoal_tac "\ ST LT. sttp= (ST, LT)", (erule exE)+) apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def - max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2) + max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) apply (intro strip) apply (rule conjI) apply (rule check_type_mono, assumption, simp) @@ -1106,7 +1106,7 @@ \ bc_mt_corresp [LitPush val] (pushST [T']) sttp cG rT mxr (Suc 0)" apply (subgoal_tac "\ ST LT. sttp= (ST, LT)", (erule exE)+) apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def - max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2) + max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) apply (intro strip) apply (rule conjI) apply (rule check_type_mono, assumption, simp) @@ -1124,7 +1124,7 @@ \ bc_mt_corresp [Load i] (\(ST, LT). pushST [ok_val (LT ! i)] (ST, LT)) (ST, LT) cG rT mxr (Suc 0)" apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def - max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2) + max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) apply (intro strip) apply (rule conjI) apply (rule check_type_mono, assumption, simp) @@ -1148,7 +1148,7 @@ apply (simp add: max_ssize_def max_of_list_def) apply (simp add: ssize_sto_def) apply (intro strip) -apply (simp add: check_type_simps min_max.sup_absorb1) +apply (simp add: check_type_simps max.absorb1) apply clarify apply (rule conjI) apply (rule_tac x="(length ST)" in exI) @@ -1162,7 +1162,7 @@ apply (simp add: sup_state_conv) apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) apply (intro strip) -apply (simp add: check_type_simps min_max.sup_absorb1) +apply (simp add: check_type_simps max.absorb1) apply clarify apply (rule_tac x="(length ST)" in exI) apply simp+ @@ -1172,7 +1172,7 @@ lemma bc_mt_corresp_Dup: " bc_mt_corresp [Dup] dupST (T # ST, LT) cG rT mxr (Suc 0)" apply (simp add: bc_mt_corresp_def dupST_def wt_instr_altern_def - max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2) + max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) apply (intro strip) apply (rule conjI) apply (rule check_type_mono, assumption, simp) @@ -1185,7 +1185,7 @@ lemma bc_mt_corresp_Dup_x1: " bc_mt_corresp [Dup_x1] dup_x1ST (T1 # T2 # ST, LT) cG rT mxr (Suc 0)" apply (simp add: bc_mt_corresp_def dup_x1ST_def wt_instr_altern_def - max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def min_max.sup_absorb2) + max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2) apply (intro strip) apply (rule conjI) apply (rule check_type_mono, assumption, simp) @@ -1202,7 +1202,7 @@ (PrimT Integer # PrimT Integer # ST, LT) cG rT mxr (Suc 0)" apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def) apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) - apply (simp add: check_type_simps min_max.sup_absorb1) + apply (simp add: check_type_simps max.absorb1) apply clarify apply (rule_tac x="Suc (length ST)" in exI) apply simp+ @@ -1245,7 +1245,7 @@ apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) apply (intro strip) -apply (simp add: check_type_simps min_max.sup_absorb1) +apply (simp add: check_type_simps max.absorb1) apply clarify apply (rule_tac x="Suc (length ST)" in exI) apply simp+ diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/MicroJava/DFA/LBVSpec.thy --- a/src/HOL/MicroJava/DFA/LBVSpec.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/MicroJava/DFA/LBVSpec.thy Wed Dec 25 17:39:06 2013 +0100 @@ -283,7 +283,7 @@ shows "wtl (take (pc+1) is) c 0 s = wtc c pc (wtl (take pc is) c 0 s)" proof - from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc) - with suc wtl show ?thesis by (simp add: min_max.inf_absorb2) + with suc wtl show ?thesis by (simp add: min.absorb2) qed lemma (in lbv) wtl_all: @@ -298,7 +298,7 @@ with all have take: "?wtl (take pc is@i#r) \ \" by simp from pc have "is!pc = drop pc is ! 0" by simp with Cons have "is!pc = i" by simp - with take pc show ?thesis by (auto simp add: min_max.inf_absorb2) + with take pc show ?thesis by (auto simp add: min.absorb2) qed section "preserves-type" diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Wed Dec 25 17:39:06 2013 +0100 @@ -2723,7 +2723,7 @@ show ?case apply (rule_tac x="max B1 B2" in exI) apply rule - apply (rule min_max.less_supI1) + apply (rule max.strict_coboundedI1) apply (rule B1) apply rule apply rule @@ -9576,7 +9576,7 @@ show ?case apply (rule_tac x="max B1 B2" in exI) apply safe - apply (rule min_max.less_supI1) + apply (rule max.strict_coboundedI1) apply (rule B1) proof - fix a b c d :: 'n diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Dec 25 17:39:06 2013 +0100 @@ -2527,7 +2527,7 @@ apply (drule (1) bspec) apply simp apply (drule (1) bspec) - apply (rule min_max.le_supI2) + apply (rule max.coboundedI2) apply (erule order_trans [OF dist_triangle add_left_mono]) done diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/NanoJava/OpSem.thy --- a/src/HOL/NanoJava/OpSem.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/NanoJava/OpSem.thy Wed Dec 25 17:39:06 2013 +0100 @@ -86,15 +86,15 @@ lemma exec_exec_max: "\s1 -c1- n1 \ t1 ; s2 -c2- n2\ t2\ \ s1 -c1-max n1 n2\ t1 \ s2 -c2-max n1 n2\ t2" -by (fast intro: exec_mono le_maxI1 le_maxI2) +by (fast intro: exec_mono max.cobounded1 max.cobounded2) lemma eval_exec_max: "\s1 -c- n1 \ t1 ; s2 -e\v- n2\ t2\ \ s1 -c-max n1 n2\ t1 \ s2 -e\v-max n1 n2\ t2" -by (fast intro: eval_mono exec_mono le_maxI1 le_maxI2) +by (fast intro: eval_mono exec_mono max.cobounded1 max.cobounded2) lemma eval_eval_max: "\s1 -e1\v1- n1 \ t1 ; s2 -e2\v2- n2\ t2\ \ s1 -e1\v1-max n1 n2\ t1 \ s2 -e2\v2-max n1 n2\ t2" -by (fast intro: eval_mono le_maxI1 le_maxI2) +by (fast intro: eval_mono max.cobounded1 max.cobounded2) lemma eval_eval_exec_max: "\s1 -e1\v1-n1\ t1; s2 -e2\v2-n2\ t2; s3 -c-n3\ t3\ \ @@ -102,7 +102,7 @@ s2 -e2\v2-max (max n1 n2) n3\ t2 \ s3 -c -max (max n1 n2) n3\ t3" apply (drule (1) eval_eval_max, erule thin_rl) -by (fast intro: exec_mono eval_mono le_maxI1 le_maxI2) +by (fast intro: exec_mono eval_mono max.cobounded1 max.cobounded2) lemma Impl_body_eq: "(\t. \n. Z -Impl M-n\ t) = (\t. \n. Z -body M-n\ t)" apply (rule ext) diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Probability/Binary_Product_Measure.thy --- a/src/HOL/Probability/Binary_Product_Measure.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Probability/Binary_Product_Measure.thy Wed Dec 25 17:39:06 2013 +0100 @@ -324,7 +324,7 @@ using `incseq F1` `incseq F2` unfolding incseq_def by (force split: split_max)+ then have "(fst x, snd x) \ F1 (max i j) \ F2 (max i j)" - by (intro SigmaI) (auto simp add: min_max.sup_commute) + by (intro SigmaI) (auto simp add: max.commute) then show "x \ (\i. ?F i)" by auto qed then show "(\i. ?F i) = space M1 \ space M2" diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Probability/Lebesgue_Measure.thy --- a/src/HOL/Probability/Lebesgue_Measure.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Probability/Lebesgue_Measure.thy Wed Dec 25 17:39:06 2013 +0100 @@ -795,7 +795,7 @@ { fix z from F(4)[of z] have "F i z \ ereal (f z)" - by (metis SUP_upper UNIV_I ereal_max_0 min_max.sup_absorb2 nonneg) + by (metis SUP_upper UNIV_I ereal_max_0 max.absorb2 nonneg) with F(5)[of i z] have "real (F i z) \ f z" by (cases "F i z") simp_all } note F_bound = this diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Quotient_Examples/Quotient_Int.thy --- a/src/HOL/Quotient_Examples/Quotient_Int.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Quotient_Examples/Quotient_Int.thy Wed Dec 25 17:39:06 2013 +0100 @@ -187,7 +187,7 @@ instance by default - (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1) + (auto simp add: inf_int_def sup_int_def max_min_distrib2) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Rat.thy --- a/src/HOL/Rat.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Rat.thy Wed Dec 25 17:39:06 2013 +0100 @@ -494,7 +494,7 @@ "(sup :: rat \ rat \ rat) = max" instance proof -qed (auto simp add: inf_rat_def sup_rat_def min_max.sup_inf_distrib1) +qed (auto simp add: inf_rat_def sup_rat_def max_min_distrib2) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Real.thy --- a/src/HOL/Real.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Real.thy Wed Dec 25 17:39:06 2013 +0100 @@ -632,7 +632,7 @@ "(sup :: real \ real \ real) = max" instance proof -qed (auto simp add: inf_real_def sup_real_def min_max.sup_inf_distrib1) +qed (auto simp add: inf_real_def sup_real_def max_min_distrib2) end diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Real_Vector_Spaces.thy --- a/src/HOL/Real_Vector_Spaces.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Real_Vector_Spaces.thy Wed Dec 25 17:39:06 2013 +0100 @@ -1097,12 +1097,12 @@ show ?thesis proof (intro exI impI conjI allI) show "0 < max 1 K" - by (rule order_less_le_trans [OF zero_less_one le_maxI1]) + by (rule order_less_le_trans [OF zero_less_one max.cobounded1]) next fix x have "norm (f x) \ norm x * K" using K . also have "\ \ norm x * max 1 K" - by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) + by (rule mult_left_mono [OF max.cobounded2 norm_ge_zero]) finally show "norm (f x) \ norm x * max 1 K" . qed qed @@ -1138,9 +1138,9 @@ "\K>0. \a b. norm (a ** b) \ norm a * norm b * K" apply (cut_tac bounded, erule exE) apply (rule_tac x="max 1 K" in exI, safe) -apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) +apply (rule order_less_le_trans [OF zero_less_one max.cobounded1]) apply (drule spec, drule spec, erule order_trans) -apply (rule mult_left_mono [OF le_maxI2]) +apply (rule mult_left_mono [OF max.cobounded2]) apply (intro mult_nonneg_nonneg norm_ge_zero) done diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/UNITY/Simple/Common.thy --- a/src/HOL/UNITY/Simple/Common.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/UNITY/Simple/Common.thy Wed Dec 25 17:39:06 2013 +0100 @@ -65,7 +65,7 @@ lemma "mk_total_program (UNIV, {range(%t.(t, max (ftime t) (gtime t)))}, UNIV) \ {m} co (maxfg m)" apply (simp add: mk_total_program_def) -apply (simp add: constrains_def maxfg_def gasc min_max.sup_absorb2) +apply (simp add: constrains_def maxfg_def gasc max.absorb2) done (*This one is t := t+1 if t {m} co (maxfg m)" apply (simp add: mk_total_program_def) -apply (simp add: constrains_def maxfg_def gasc min_max.sup_absorb2) +apply (simp add: constrains_def maxfg_def gasc max.absorb2) done diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Word/Bit_Representation.thy --- a/src/HOL/Word/Bit_Representation.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Word/Bit_Representation.thy Wed Dec 25 17:39:06 2013 +0100 @@ -420,7 +420,7 @@ lemma sbintrunc_sbintrunc_min [simp]: "sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w" apply (rule bin_eqI) - apply (auto simp: nth_sbintr min_max.inf_absorb1 min_max.inf_absorb2) + apply (auto simp: nth_sbintr min.absorb1 min.absorb2) done lemmas bintrunc_Pls = diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Word/Bool_List_Representation.thy --- a/src/HOL/Word/Bool_List_Representation.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Word/Bool_List_Representation.thy Wed Dec 25 17:39:06 2013 +0100 @@ -906,7 +906,7 @@ apply (drule meta_spec) apply (erule trans) apply (drule_tac x = "bin_cat y n a" in meta_spec) - apply (simp add : bin_cat_assoc_sym min_max.inf_absorb2) + apply (simp add : bin_cat_assoc_sym min.absorb2) done lemma bin_rcat_bl: diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Word/Misc_Numeric.thy --- a/src/HOL/Word/Misc_Numeric.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Word/Misc_Numeric.thy Wed Dec 25 17:39:06 2013 +0100 @@ -20,7 +20,7 @@ lemma min_minus [simp] : "min m (m - k) = (m - k :: nat)" by arith -lemmas min_minus' [simp] = trans [OF min_max.inf_commute min_minus] +lemmas min_minus' [simp] = trans [OF min.commute min_minus] lemma mod_2_neq_1_eq_eq_0: fixes k :: int diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/Word/Word.thy Wed Dec 25 17:39:06 2013 +0100 @@ -569,13 +569,13 @@ shows "len_of TYPE('a) \ n \ bintrunc n (uint w) = uint w" apply (subst word_ubin.norm_Rep [symmetric]) apply (simp only: bintrunc_bintrunc_min word_size) - apply (simp add: min_max.inf_absorb2) + apply (simp add: min.absorb2) done lemma wi_bintr: "len_of TYPE('a::len0) \ n \ word_of_int (bintrunc n w) = (word_of_int w :: 'a word)" - by (clarsimp simp add: word_ubin.norm_eq_iff [symmetric] min_max.inf_absorb1) + by (clarsimp simp add: word_ubin.norm_eq_iff [symmetric] min.absorb1) lemma td_ext_sbin: "td_ext (sint :: 'a word => int) word_of_int (sints (len_of TYPE('a::len))) @@ -3692,7 +3692,7 @@ word_of_int (bin_cat w (size b) (uint b))" apply (unfold word_cat_def word_size) apply (clarsimp simp add: word_ubin.norm_eq_iff [symmetric] - word_ubin.eq_norm bintr_cat min_max.inf_absorb1) + word_ubin.eq_norm bintr_cat min.absorb1) done lemma word_cat_split_alt: diff -r c65e5cbdbc97 -r 82acc20ded73 src/HOL/ex/Dedekind_Real.thy --- a/src/HOL/ex/Dedekind_Real.thy Wed Dec 25 17:39:06 2013 +0100 +++ b/src/HOL/ex/Dedekind_Real.thy Wed Dec 25 17:39:06 2013 +0100 @@ -220,7 +220,7 @@ instance by intro_classes - (auto simp add: inf_preal_def sup_preal_def min_max.sup_inf_distrib1) + (auto simp add: inf_preal_def sup_preal_def max_min_distrib2) end @@ -1555,7 +1555,7 @@ "(sup \ real \ real \ real) = max" instance - by default (auto simp add: inf_real_def sup_real_def min_max.sup_inf_distrib1) + by default (auto simp add: inf_real_def sup_real_def max_min_distrib2) end