# HG changeset patch # User huffman # Date 1313847291 25200 # Node ID 8321948340ea589ab38f937586dbbb97030f1c48 # Parent 33439faadd6715bb2b06bbc93de2916c3070f562 redefine constant 'trivial_limit' as an abbreviation diff -r 33439faadd67 -r 8321948340ea src/HOL/Limits.thy --- a/src/HOL/Limits.thy Fri Aug 19 19:01:00 2011 -0700 +++ b/src/HOL/Limits.thy Sat Aug 20 06:34:51 2011 -0700 @@ -216,6 +216,13 @@ "eventually (\x. False) F \ F = bot" unfolding filter_eq_iff by (auto elim: eventually_rev_mp) +abbreviation (input) trivial_limit :: "'a filter \ bool" + where "trivial_limit F \ F = bot" + +lemma trivial_limit_def: "trivial_limit F \ eventually (\x. False) F" + by (rule eventually_False [symmetric]) + + subsection {* Map function for filters *} definition filtermap :: "('a \ 'b) \ 'a filter \ 'b filter" @@ -259,9 +266,11 @@ then show "\k. \n\k. P n \ Q n" .. qed auto -lemma sequentially_bot [simp]: "sequentially \ bot" +lemma sequentially_bot [simp, intro]: "sequentially \ bot" unfolding filter_eq_iff eventually_sequentially by auto +lemmas trivial_limit_sequentially = sequentially_bot + lemma eventually_False_sequentially [simp]: "\ eventually (\n. False) sequentially" by (simp add: eventually_False) @@ -272,12 +281,6 @@ by (safe, fast, drule_tac x=N in spec, auto elim: eventually_rev_mp) -definition trivial_limit :: "'a filter \ bool" - where "trivial_limit F \ eventually (\x. False) F" - -lemma trivial_limit_sequentially [intro]: "\ trivial_limit sequentially" - by (auto simp add: trivial_limit_def eventually_sequentially) - subsection {* Standard filters *} definition within :: "'a filter \ 'a set \ 'a filter" (infixr "within" 70) diff -r 33439faadd67 -r 8321948340ea src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri Aug 19 19:01:00 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Sat Aug 20 06:34:51 2011 -0700 @@ -966,13 +966,8 @@ lemma trivial_limit_eventually: "trivial_limit net \ eventually P net" unfolding trivial_limit_def by (auto elim: eventually_rev_mp) -lemma eventually_False: "eventually (\x. False) net \ trivial_limit net" - unfolding trivial_limit_def .. - lemma trivial_limit_eq: "trivial_limit net \ (\P. eventually P net)" - apply (safe elim!: trivial_limit_eventually) - apply (simp add: eventually_False [symmetric]) - done + by (simp add: filter_eq_iff) text{* Combining theorems for "eventually" *}