# HG changeset patch # User paulson # Date 1596196486 -3600 # Node ID 8348bba699e6480b0b8e4350c243453b6f9b7e29 # Parent b8d0b8659e0a0b436ae525e96c7a0f721d039c1e A new lemma about abstract Sum / Prod diff -r b8d0b8659e0a -r 8348bba699e6 src/HOL/Groups_Big.thy --- a/src/HOL/Groups_Big.thy Wed Jul 29 14:23:19 2020 +0200 +++ b/src/HOL/Groups_Big.thy Fri Jul 31 12:54:46 2020 +0100 @@ -165,6 +165,11 @@ shows "F g A = F h B" using assms by (simp add: reindex) +lemma image_eq: + assumes "inj_on g A" + shows "F (\x. x) (g ` A) = F g A" + using assms reindex_cong by fastforce + lemma UNION_disjoint: assumes "finite I" and "\i\I. finite (A i)" and "\i\I. \j\I. i \ j \ A i \ A j = {}"