# HG changeset patch # User paulson # Date 1051777784 -7200 # Node ID 83d842ccd4aac52b38a7512d0970ca733786a31c # Parent dc93e3a68142c78af1da8756da5a5366dc9274c6 moving Bij.thy from GroupTheory to Algebra diff -r dc93e3a68142 -r 83d842ccd4aa src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Thu May 01 08:39:37 2003 +0200 +++ b/src/HOL/Algebra/Coset.thy Thu May 01 10:29:44 2003 +0200 @@ -491,23 +491,4 @@ apply (auto dest: coset.setrcos_inv_mult_group_eq simp add: setinv_closed) done -(*???????????????? -theorem factorgroup_is_group: "H <| G ==> group (G Mod H)" -apply (frule normal_imp_coset) -apply (simp add: FactGroup_def) -apply (rule group.intro) -apply (rule magma.intro) -apply (simp add: ); - apply (simp add: restrictI coset.setmult_closed) - apply (rule semigroup.intro) - apply (simp add: restrictI coset.setmult_closed) - apply (simp add: coset.setmult_closed coset.setrcos_assoc) -apply (rule group_axioms.intro) - apply (simp add: restrictI setinv_closed) - apply (simp add: normal_imp_subgroup subgroup_in_rcosets) - apply (simp add: setinv_closed coset.setrcos_inv_mult_group_eq) -apply (simp add: normal_imp_subgroup subgroup_in_rcosets coset.setrcos_mult_eq) -done -*) - end diff -r dc93e3a68142 -r 83d842ccd4aa src/HOL/Algebra/Group.thy --- a/src/HOL/Algebra/Group.thy Thu May 01 08:39:37 2003 +0200 +++ b/src/HOL/Algebra/Group.thy Thu May 01 10:29:44 2003 +0200 @@ -99,29 +99,23 @@ lemma (in monoid) Units_inv_closed [intro, simp]: "x \ Units G ==> inv x \ carrier G" - apply (unfold Units_def m_inv_def) - apply auto + apply (unfold Units_def m_inv_def, auto) apply (rule theI2, fast) - apply (fast intro: inv_unique) - apply fast + apply (fast intro: inv_unique, fast) done lemma (in monoid) Units_l_inv: "x \ Units G ==> inv x \ x = \" - apply (unfold Units_def m_inv_def) - apply auto + apply (unfold Units_def m_inv_def, auto) apply (rule theI2, fast) - apply (fast intro: inv_unique) - apply fast + apply (fast intro: inv_unique, fast) done lemma (in monoid) Units_r_inv: "x \ Units G ==> x \ inv x = \" - apply (unfold Units_def m_inv_def) - apply auto + apply (unfold Units_def m_inv_def, auto) apply (rule theI2, fast) - apply (fast intro: inv_unique) - apply fast + apply (fast intro: inv_unique, fast) done lemma (in monoid) Units_inv_Units [intro, simp]: @@ -354,6 +348,14 @@ "[| x \ y = \; x \ carrier G; y \ carrier G |] ==> y \ x = \" by (rule Units_inv_comm) auto +lemma (in group) m_inv_equality: + "[|y \ x = \; x \ carrier G; y \ carrier G|] ==> inv x = y" +apply (simp add: m_inv_def) +apply (rule the_equality) + apply (simp add: inv_comm [of y x]) +apply (rule r_cancel [THEN iffD1], auto) +done + text {* Power *} lemma (in group) int_pow_def2: @@ -594,6 +596,15 @@ "[| h \ hom G H; x \ carrier G |] ==> h x \ carrier H" by (auto simp add: hom_def funcset_mem) +lemma compose_hom: + "[|group G; h \ hom G G; h' \ hom G G; h' \ carrier G -> carrier G|] + ==> compose (carrier G) h h' \ hom G G" +apply (simp (no_asm_simp) add: hom_def) +apply (intro conjI) + apply (force simp add: funcset_compose hom_def) +apply (simp add: compose_def group.axioms hom_mult funcset_mem) +done + locale group_hom = group G + group H + var h + assumes homh: "h \ hom G H" notes hom_mult [simp] = hom_mult [OF homh] diff -r dc93e3a68142 -r 83d842ccd4aa src/HOL/Algebra/ROOT.ML --- a/src/HOL/Algebra/ROOT.ML Thu May 01 08:39:37 2003 +0200 +++ b/src/HOL/Algebra/ROOT.ML Thu May 01 10:29:44 2003 +0200 @@ -8,6 +8,7 @@ no_document use_thy "FuncSet"; use_thy "Sylow"; (* Groups *) +use_thy "Bij"; (* Automorphism Groups *) use_thy "UnivPoly"; (* Rings and polynomials *) (* Old development, based on axiomatic type classes. diff -r dc93e3a68142 -r 83d842ccd4aa src/HOL/GroupTheory/Bij.thy --- a/src/HOL/GroupTheory/Bij.thy Thu May 01 08:39:37 2003 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,131 +0,0 @@ -(* Title: HOL/GroupTheory/Bij - ID: $Id$ - Author: Florian Kammueller, with new proofs by L C Paulson -*) - - -header{*Bijections of a Set, Permutation Groups, Automorphism Groups*} - -theory Bij = Group: - -constdefs - Bij :: "'a set => (('a => 'a)set)" - --{*Only extensional functions, since otherwise we get too many.*} - "Bij S == extensional S \ {f. f`S = S & inj_on f S}" - - BijGroup :: "'a set => (('a => 'a) group)" - "BijGroup S == (| carrier = Bij S, - sum = %g: Bij S. %f: Bij S. compose S g f, - gminus = %f: Bij S. %x: S. (Inv S f) x, - zero = %x: S. x |)" - - -declare Id_compose [simp] compose_Id [simp] - -lemma Bij_imp_extensional: "f \ Bij S ==> f \ extensional S" -by (simp add: Bij_def) - -lemma Bij_imp_funcset: "f \ Bij S ==> f \ S -> S" -by (auto simp add: Bij_def Pi_def) - -lemma Bij_imp_apply: "f \ Bij S ==> f ` S = S" -by (simp add: Bij_def) - -lemma Bij_imp_inj_on: "f \ Bij S ==> inj_on f S" -by (simp add: Bij_def) - -lemma BijI: "[| f \ extensional(S); f`S = S; inj_on f S |] ==> f \ Bij S" -by (simp add: Bij_def) - - -subsection{*Bijections Form a Group*} - -lemma restrict_Inv_Bij: "f \ Bij S ==> (%x:S. (Inv S f) x) \ Bij S" -apply (simp add: Bij_def) -apply (intro conjI) -txt{*Proving @{term "restrict (Inv S f) S ` S = S"}*} - apply (rule equalityI) - apply (force simp add: Inv_mem) --{*first inclusion*} - apply (rule subsetI) --{*second inclusion*} - apply (rule_tac x = "f x" in image_eqI) - apply (force intro: simp add: Inv_f_f) - apply blast -txt{*Remaining goal: @{term "inj_on (restrict (Inv S f) S) S"}*} -apply (rule inj_onI) -apply (auto elim: Inv_injective) -done - -lemma id_Bij: "(\x\S. x) \ Bij S " -apply (rule BijI) -apply (auto simp add: inj_on_def) -done - -lemma compose_Bij: "[| x \ Bij S; y \ Bij S|] ==> compose S x y \ Bij S" -apply (rule BijI) - apply (simp add: compose_extensional) - apply (blast del: equalityI - intro: surj_compose dest: Bij_imp_apply Bij_imp_inj_on) -apply (blast intro: inj_on_compose dest: Bij_imp_apply Bij_imp_inj_on) -done - -theorem group_BijGroup: "group (BijGroup S)" -apply (simp add: group_def semigroup_def group_axioms_def - BijGroup_def restrictI compose_Bij restrict_Inv_Bij id_Bij) -apply (auto intro!: compose_Bij) - apply (blast intro: compose_assoc [symmetric] Bij_imp_funcset) - apply (simp add: Bij_def compose_Inv_id) -apply (simp add: Id_compose Bij_imp_funcset Bij_imp_extensional) -done - - -subsection{*Automorphisms Form a Group*} - -lemma Bij_Inv_mem: "[| f \ Bij S; x : S |] ==> Inv S f x : S" -by (simp add: Bij_def Inv_mem) - -lemma Bij_Inv_lemma: - assumes eq: "!!x y. [|x \ S; y \ S|] ==> h(g x y) = g (h x) (h y)" - shows "[| h \ Bij S; g \ S \ S \ S; x \ S; y \ S |] - ==> Inv S h (g x y) = g (Inv S h x) (Inv S h y)" -apply (simp add: Bij_def) -apply (subgoal_tac "EX x':S. EX y':S. x = h x' & y = h y'") - apply clarify - apply (simp add: eq [symmetric] Inv_f_f funcset_mem [THEN funcset_mem], blast) -done - -constdefs - auto :: "('a,'b)group_scheme => ('a => 'a)set" - "auto G == hom G G Int Bij (carrier G)" - - AutoGroup :: "[('a,'c) group_scheme] => ('a=>'a) group" - "AutoGroup G == BijGroup (carrier G) (|carrier := auto G |)" - -lemma id_in_auto: "group G ==> (%x: carrier G. x) \ auto G" -by (simp add: auto_def hom_def restrictI semigroup.sum_closed - group.axioms id_Bij) - -lemma restrict_Inv_hom: - "[|group G; h \ hom G G; h \ Bij (carrier G)|] - ==> restrict (Inv (carrier G) h) (carrier G) \ hom G G" -by (simp add: hom_def Bij_Inv_mem restrictI semigroup.sum_closed - semigroup.sum_funcset group.axioms Bij_Inv_lemma) - -lemma subgroup_auto: - "group G ==> subgroup (auto G) (BijGroup (carrier G))" -apply (rule group.subgroupI) - apply (rule group_BijGroup) - apply (force simp add: auto_def BijGroup_def) - apply (blast intro: dest: id_in_auto) - apply (simp add: auto_def BijGroup_def restrict_Inv_Bij - restrict_Inv_hom) -apply (simp add: auto_def BijGroup_def compose_Bij) -apply (simp add: hom_def compose_def Pi_def group.axioms) -done - -theorem AutoGroup: "group G ==> group (AutoGroup G)" -apply (drule subgroup_auto) -apply (simp add: subgroup_def AutoGroup_def) -done - -end - diff -r dc93e3a68142 -r 83d842ccd4aa src/HOL/GroupTheory/ROOT.ML --- a/src/HOL/GroupTheory/ROOT.ML Thu May 01 08:39:37 2003 +0200 +++ b/src/HOL/GroupTheory/ROOT.ML Thu May 01 10:29:44 2003 +0200 @@ -1,3 +1,3 @@ no_document use_thy "FuncSet"; -use_thy "Bij"; +use_thy "Group"; diff -r dc93e3a68142 -r 83d842ccd4aa src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Thu May 01 08:39:37 2003 +0200 +++ b/src/HOL/IsaMakefile Thu May 01 10:29:44 2003 +0200 @@ -284,7 +284,6 @@ $(LOG)/HOL-GroupTheory.gz: $(OUT)/HOL \ Library/Primes.thy Library/FuncSet.thy \ - GroupTheory/Bij.thy \ GroupTheory/Group.thy \ GroupTheory/ROOT.ML \ GroupTheory/document/root.tex @@ -341,6 +340,7 @@ HOL-Algebra: HOL $(LOG)/HOL-Algebra.gz $(LOG)/HOL-Algebra.gz: $(OUT)/HOL Algebra/ROOT.ML \ + Algebra/Bij.thy \ Algebra/CRing.thy \ Algebra/Coset.thy \ Algebra/Exponent.thy \