# HG changeset patch # User paulson # Date 1079689460 -3600 # Node ID 846c237bd9b3d33f21baf907e1a23e92f7a99499 # Parent cba7c0a3ffb3bf34c9ecb32c1896ae52ff1efe78 stylistic tweaks diff -r cba7c0a3ffb3 -r 846c237bd9b3 src/HOL/Integ/Bin.thy --- a/src/HOL/Integ/Bin.thy Fri Mar 19 10:42:38 2004 +0100 +++ b/src/HOL/Integ/Bin.thy Fri Mar 19 10:44:20 2004 +0100 @@ -159,7 +159,7 @@ lemma Ints_odd_nonzero: "a \ Ints ==> 1 + a + a \ (0::'a::ordered_ring)" proof (unfold Ints_def) assume "a \ range of_int" - from this obtain z where a: "a = of_int z" .. + then obtain z where a: "a = of_int z" .. show ?thesis proof assume eq: "1 + a + a = 0" @@ -233,7 +233,7 @@ "a \ Ints ==> (1 + a + a < 0) = (a < (0::'a::ordered_ring))"; proof (unfold Ints_def) assume "a \ range of_int" - from this obtain z where a: "a = of_int z" .. + then obtain z where a: "a = of_int z" .. hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))" by (simp add: prems) also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0) diff -r cba7c0a3ffb3 -r 846c237bd9b3 src/HOL/Integ/IntArith.thy --- a/src/HOL/Integ/IntArith.thy Fri Mar 19 10:42:38 2004 +0100 +++ b/src/HOL/Integ/IntArith.thy Fri Mar 19 10:44:20 2004 +0100 @@ -275,7 +275,7 @@ from step[OF ki1 this] show ?case by simp qed } - from this ge show ?thesis by fast + with ge show ?thesis by fast qed (* `set:int': dummy construction *) @@ -311,7 +311,7 @@ from step[OF ki1 this] show ?case by simp qed } - from this le show ?thesis by fast + with le show ?thesis by fast qed theorem int_less_induct [consumes 1,case_names base step]: diff -r cba7c0a3ffb3 -r 846c237bd9b3 src/HOL/Integ/IntDiv.thy --- a/src/HOL/Integ/IntDiv.thy Fri Mar 19 10:42:38 2004 +0100 +++ b/src/HOL/Integ/IntDiv.thy Fri Mar 19 10:44:20 2004 +0100 @@ -624,7 +624,7 @@ lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)" proof assume "m mod d = 0" - from this zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto + with zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto next assume "EX q::int. m = d*q" thus "m mod d = 0" by auto diff -r cba7c0a3ffb3 -r 846c237bd9b3 src/HOL/Integ/Parity.thy --- a/src/HOL/Integ/Parity.thy Fri Mar 19 10:42:38 2004 +0100 +++ b/src/HOL/Integ/Parity.thy Fri Mar 19 10:44:20 2004 +0100 @@ -267,12 +267,12 @@ (is "?P n") proof cases assume even: "even n" - from this obtain k where "n = 2*k" + then obtain k where "n = 2*k" by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2) thus ?thesis by (simp add: zero_le_even_power even) next assume odd: "odd n" - from this obtain k where "n = Suc(2*k)" + then obtain k where "n = Suc(2*k)" by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2) thus ?thesis by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power