# HG changeset patch # User nipkow # Date 1182777558 -7200 # Node ID 84e9216a6d0efa24ab4a932d8b1d287fda6bcf91 # Parent e4dd6beeafabc0f2f161a0bb612dba0d243feaa4 removed redundant lemmas diff -r e4dd6beeafab -r 84e9216a6d0e src/HOL/Ring_and_Field.thy --- a/src/HOL/Ring_and_Field.thy Mon Jun 25 14:49:32 2007 +0200 +++ b/src/HOL/Ring_and_Field.thy Mon Jun 25 15:19:18 2007 +0200 @@ -780,7 +780,7 @@ "(a*b = (0::'a::division_ring)) = (a = 0 | b = 0)" by simp *) - +(* subsumed by mult_cancel lemmas on ring_no_zero_divisors text{*Cancellation of equalities with a common factor*} lemma field_mult_cancel_right_lemma: assumes cnz: "c \ (0::'a::division_ring)" @@ -800,7 +800,7 @@ lemma field_mult_cancel_left [simp]: "(c*a = c*b) = (c = (0::'a::division_ring) | a=b)" by simp - +*) lemma nonzero_imp_inverse_nonzero: "a \ 0 ==> inverse a \ (0::'a::division_ring)" proof @@ -837,7 +837,7 @@ have "-a * inverse (- a) = -a * - inverse a" by simp thus ?thesis - by (simp only: field_mult_cancel_left, simp) + by (simp only: mult_cancel_left, simp) qed lemma inverse_minus_eq [simp]: @@ -1119,20 +1119,16 @@ lemma nonzero_eq_divide_eq: "c\0 ==> ((a::'a::field) = b/c) = (a*c = b)" proof - assume [simp]: "c\0" - have "(a = b/c) = (a*c = (b/c)*c)" - by (simp add: field_mult_cancel_right) - also have "... = (a*c = b)" - by (simp add: divide_inverse mult_assoc) + have "(a = b/c) = (a*c = (b/c)*c)" by simp + also have "... = (a*c = b)" by (simp add: divide_inverse mult_assoc) finally show ?thesis . qed lemma nonzero_divide_eq_eq: "c\0 ==> (b/c = (a::'a::field)) = (b = a*c)" proof - assume [simp]: "c\0" - have "(b/c = a) = ((b/c)*c = a*c)" - by (simp add: field_mult_cancel_right) - also have "... = (b = a*c)" - by (simp add: divide_inverse mult_assoc) + have "(b/c = a) = ((b/c)*c = a*c)" by simp + also have "... = (b = a*c)" by (simp add: divide_inverse mult_assoc) finally show ?thesis . qed @@ -1609,13 +1605,13 @@ lemma divide_cancel_right [simp]: "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))" apply (cases "c=0", simp) -apply (simp add: divide_inverse field_mult_cancel_right) +apply (simp add: divide_inverse) done lemma divide_cancel_left [simp]: "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" apply (cases "c=0", simp) -apply (simp add: divide_inverse field_mult_cancel_left) +apply (simp add: divide_inverse) done diff -r e4dd6beeafab -r 84e9216a6d0e src/HOL/SetInterval.thy --- a/src/HOL/SetInterval.thy Mon Jun 25 14:49:32 2007 +0200 +++ b/src/HOL/SetInterval.thy Mon Jun 25 15:19:18 2007 +0200 @@ -739,12 +739,7 @@ lemma geometric_sum: "x ~= 1 ==> (\i=0..