# HG changeset patch # User huffman # Date 1273600976 25200 # Node ID 84ee370b4b1b208b12768c9b06097bd15e1317a2 # Parent 4d4462d644aec537e459295667957da0ab4837ae# Parent fc672bf92fc2d7d2161caf04aacd3da8c208a77c merged diff -r 4d4462d644ae -r 84ee370b4b1b NEWS --- a/NEWS Tue May 11 09:10:31 2010 -0700 +++ b/NEWS Tue May 11 11:02:56 2010 -0700 @@ -140,6 +140,9 @@ *** HOL *** +* Theorem Int.int_induct renamed to Int.int_of_nat_induct and is +no longer shadowed. INCOMPATIBILITY. + * Dropped theorem duplicate comp_arith; use semiring_norm instead. INCOMPATIBILITY. * Theory 'Finite_Set': various folding_* locales facilitate the application diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Decision_Procs/Cooper.thy --- a/src/HOL/Decision_Procs/Cooper.thy Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/Decision_Procs/Cooper.thy Tue May 11 11:02:56 2010 -0700 @@ -1910,7 +1910,7 @@ ML {* @{code cooper_test} () *} (* -code_reflect Generated_Cooper +code_reflect Cooper_Procedure functions pa file "~~/src/HOL/Tools/Qelim/generated_cooper.ML" *) diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Int.thy --- a/src/HOL/Int.thy Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/Int.thy Tue May 11 11:02:56 2010 -0700 @@ -559,7 +559,7 @@ apply (blast dest: nat_0_le [THEN sym]) done -theorem int_induct [induct type: int, case_names nonneg neg]: +theorem int_of_nat_induct [induct type: int, case_names nonneg neg]: "[|!! n. P (of_nat n \ int); !!n. P (- (of_nat (Suc n))) |] ==> P z" by (cases z rule: int_cases) auto @@ -1784,6 +1784,23 @@ apply (rule step, simp+) done +theorem int_induct [case_names base step1 step2]: + fixes k :: int + assumes base: "P k" + and step1: "\i. k \ i \ P i \ P (i + 1)" + and step2: "\i. k \ i \ P i \ P (i - 1)" + shows "P i" +proof - + have "i \ k \ i \ k" by arith + then show ?thesis proof + assume "i \ k" then show ?thesis using base + by (rule int_ge_induct) (fact step1) + next + assume "i \ k" then show ?thesis using base + by (rule int_le_induct) (fact step2) + qed +qed + subsection{*Intermediate value theorems*} lemma int_val_lemma: diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/IsaMakefile Tue May 11 11:02:56 2010 -0700 @@ -302,10 +302,8 @@ Tools/Predicate_Compile/predicate_compile_specialisation.ML \ Tools/Predicate_Compile/predicate_compile_pred.ML \ Tools/quickcheck_generators.ML \ - Tools/Qelim/cooper_data.ML \ Tools/Qelim/cooper.ML \ - Tools/Qelim/generated_cooper.ML \ - Tools/Qelim/presburger.ML \ + Tools/Qelim/cooper_procedure.ML \ Tools/Qelim/qelim.ML \ Tools/Quotient/quotient_def.ML \ Tools/Quotient/quotient_info.ML \ diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/Library/Formal_Power_Series.thy Tue May 11 11:02:56 2010 -0700 @@ -402,7 +402,7 @@ lemma number_of_fps_const: "(number_of k::('a::comm_ring_1) fps) = fps_const (of_int k)" -proof(induct k rule: int_induct[where k=0]) +proof(induct k rule: int_induct [where k=0]) case base thus ?case unfolding number_of_fps_def of_int_0 by simp next case (step1 i) thus ?case unfolding number_of_fps_def @@ -3214,7 +3214,7 @@ lemma fps_number_of_fps_const: "number_of i = fps_const (number_of i :: 'a:: {comm_ring_1, number_ring})" apply (subst (2) number_of_eq) -apply(rule int_induct[of _ 0]) +apply(rule int_induct [of _ 0]) apply (simp_all add: number_of_fps_def) by (simp_all add: fps_const_add[symmetric] fps_const_minus[symmetric]) diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Library/Quotient_List.thy --- a/src/HOL/Library/Quotient_List.thy Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/Library/Quotient_List.thy Tue May 11 11:02:56 2010 -0700 @@ -52,12 +52,17 @@ lemma list_rel_transp: assumes a: "equivp R" shows "list_rel R xs1 xs2 \ list_rel R xs2 xs3 \ list_rel R xs1 xs3" - apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2') - apply(simp_all) + using a + apply(induct R xs1 xs2 arbitrary: xs3 rule: list_rel.induct) + apply(simp) + apply(simp) + apply(simp) apply(case_tac xs3) - apply(simp_all) - apply(rule equivp_transp[OF a]) - apply(auto) + apply(clarify) + apply(simp (no_asm_use)) + apply(clarify) + apply(simp (no_asm_use)) + apply(auto intro: equivp_transp) done lemma list_equivp[quot_equiv]: diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Mirabelle/Tools/mirabelle.ML --- a/src/HOL/Mirabelle/Tools/mirabelle.ML Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/Mirabelle/Tools/mirabelle.ML Tue May 11 11:02:56 2010 -0700 @@ -92,7 +92,7 @@ fun log thy s = let fun append_to n = if n = "" then K () else File.append (Path.explode n) - in append_to (Config.get_thy thy logfile) (s ^ "\n") end + in append_to (Config.get_global thy logfile) (s ^ "\n") end (* FIXME: with multithreading and parallel proofs enabled, we might need to encapsulate this inside a critical section *) @@ -108,7 +108,7 @@ | in_range l r (SOME i) = (l <= i andalso (r < 0 orelse i <= r)) fun only_within_range thy pos f x = - let val l = Config.get_thy thy start_line and r = Config.get_thy thy end_line + let val l = Config.get_global thy start_line and r = Config.get_global thy end_line in if in_range l r (Position.line_of pos) then f x else () end in @@ -118,7 +118,7 @@ val thy = Proof.theory_of pre val pos = Toplevel.pos_of tr val name = Toplevel.name_of tr - val st = (pre, post, Time.fromSeconds (Config.get_thy thy timeout)) + val st = (pre, post, Time.fromSeconds (Config.get_global thy timeout)) val str0 = string_of_int o the_default 0 val loc = str0 (Position.line_of pos) ^ ":" ^ str0 (Position.column_of pos) diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Presburger.thy --- a/src/HOL/Presburger.thy Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/Presburger.thy Tue May 11 11:02:56 2010 -0700 @@ -8,17 +8,12 @@ imports Groebner_Basis SetInterval uses "Tools/Qelim/qelim.ML" - "Tools/Qelim/cooper_data.ML" - "Tools/Qelim/generated_cooper.ML" + "Tools/Qelim/cooper_procedure.ML" ("Tools/Qelim/cooper.ML") - ("Tools/Qelim/presburger.ML") begin -setup CooperData.setup - subsection{* The @{text "-\"} and @{text "+\"} Properties *} - lemma minf: "\\(z ::'a::linorder).\xz.\x \ \z.\x Q x) = (P' x \ Q' x)" @@ -222,16 +217,6 @@ lemma incr_lemma: "0 < (d::int) \ z < x + (abs(x-z)+1) * d" by(induct rule: int_gr_induct, simp_all add:int_distrib) -theorem int_induct[case_names base step1 step2]: - assumes - base: "P(k::int)" and step1: "\i. \k \ i; P i\ \ P(i+1)" and - step2: "\i. \k \ i; P i\ \ P(i - 1)" - shows "P i" -proof - - have "i \ k \ i\ k" by arith - thus ?thesis using prems int_ge_induct[where P="P" and k="k" and i="i"] int_le_induct[where P="P" and k="k" and i="i"] by blast -qed - lemma decr_mult_lemma: assumes dpos: "(0::int) < d" and minus: "\x. P x \ P(x - d)" and knneg: "0 <= k" shows "ALL x. P x \ P(x - k*d)" @@ -387,10 +372,11 @@ lemma zdiff_int_split: "P (int (x - y)) = ((y \ x \ P (int x - int y)) \ (x < y \ P 0))" - by (case_tac "y \ x", simp_all add: zdiff_int) + by (cases "y \ x") (simp_all add: zdiff_int) lemma number_of1: "(0::int) <= number_of n \ (0::int) <= number_of (Int.Bit0 n) \ (0::int) <= number_of (Int.Bit1 n)" by simp + lemma number_of2: "(0::int) <= Numeral0" by simp text {* @@ -401,9 +387,12 @@ theorem conj_le_cong: "(0 <= x \ P = P') \ (0 <= (x::int) \ P) = (0 <= x \ P')" by (simp cong: conj_cong) -lemma int_eq_number_of_eq: - "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)" - by (rule eq_number_of_eq) + +use "Tools/Qelim/cooper.ML" + +setup Cooper.setup + +method_setup presburger = "Cooper.method" "Cooper's algorithm for Presburger arithmetic" declare dvd_eq_mod_eq_0[symmetric, presburger] declare mod_1[presburger] @@ -426,31 +415,6 @@ lemma [presburger]: "(a::int) div 0 = 0" and [presburger]: "a mod 0 = a" by simp_all -use "Tools/Qelim/cooper.ML" -oracle linzqe_oracle = Coopereif.cooper_oracle - -use "Tools/Qelim/presburger.ML" - -setup {* Arith_Data.add_tactic "Presburger arithmetic" (K (Presburger.cooper_tac true [] [])) *} - -method_setup presburger = {* -let - fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () - fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () - val addN = "add" - val delN = "del" - val elimN = "elim" - val any_keyword = keyword addN || keyword delN || simple_keyword elimN - val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; -in - Scan.optional (simple_keyword elimN >> K false) true -- - Scan.optional (keyword addN |-- thms) [] -- - Scan.optional (keyword delN |-- thms) [] >> - (fn ((elim, add_ths), del_ths) => fn ctxt => - SIMPLE_METHOD' (Presburger.cooper_tac elim add_ths del_ths ctxt)) -end -*} "Cooper's algorithm for Presburger arithmetic" - lemma [presburger, algebra]: "m mod 2 = (1::nat) \ \ 2 dvd m " by presburger lemma [presburger, algebra]: "m mod 2 = Suc 0 \ \ 2 dvd m " by presburger lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) \ \ 2 dvd m " by presburger diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Tools/Qelim/cooper.ML --- a/src/HOL/Tools/Qelim/cooper.ML Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/Tools/Qelim/cooper.ML Tue May 11 11:02:56 2010 -0700 @@ -1,19 +1,70 @@ (* Title: HOL/Tools/Qelim/cooper.ML Author: Amine Chaieb, TU Muenchen + +Presburger arithmetic by Cooper's algorithm. *) signature COOPER = sig - val cooper_conv : Proof.context -> conv - exception COOPER of string * exn + type entry + val get: Proof.context -> entry + val del: term list -> attribute + val add: term list -> attribute + val conv: Proof.context -> conv + val tac: bool -> thm list -> thm list -> Proof.context -> int -> tactic + val method: (Proof.context -> Method.method) context_parser + val setup: theory -> theory end; structure Cooper: COOPER = struct -open Conv; +type entry = simpset * term list; -exception COOPER of string * exn; +val allowed_consts = + [@{term "op + :: int => _"}, @{term "op + :: nat => _"}, + @{term "op - :: int => _"}, @{term "op - :: nat => _"}, + @{term "op * :: int => _"}, @{term "op * :: nat => _"}, + @{term "op div :: int => _"}, @{term "op div :: nat => _"}, + @{term "op mod :: int => _"}, @{term "op mod :: nat => _"}, + @{term "op &"}, @{term "op |"}, @{term "op -->"}, + @{term "op = :: int => _"}, @{term "op = :: nat => _"}, @{term "op = :: bool => _"}, + @{term "op < :: int => _"}, @{term "op < :: nat => _"}, + @{term "op <= :: int => _"}, @{term "op <= :: nat => _"}, + @{term "op dvd :: int => _"}, @{term "op dvd :: nat => _"}, + @{term "abs :: int => _"}, + @{term "max :: int => _"}, @{term "max :: nat => _"}, + @{term "min :: int => _"}, @{term "min :: nat => _"}, + @{term "uminus :: int => _"}, (*@ {term "uminus :: nat => _"},*) + @{term "Not"}, @{term "Suc"}, + @{term "Ex :: (int => _) => _"}, @{term "Ex :: (nat => _) => _"}, + @{term "All :: (int => _) => _"}, @{term "All :: (nat => _) => _"}, + @{term "nat"}, @{term "int"}, + @{term "Int.Bit0"}, @{term "Int.Bit1"}, + @{term "Int.Pls"}, @{term "Int.Min"}, + @{term "Int.number_of :: int => int"}, @{term "Int.number_of :: int => nat"}, + @{term "0::int"}, @{term "1::int"}, @{term "0::nat"}, @{term "1::nat"}, + @{term "True"}, @{term "False"}]; + +structure Data = Generic_Data +( + type T = simpset * term list; + val empty = (HOL_ss, allowed_consts); + val extend = I; + fun merge ((ss1, ts1), (ss2, ts2)) = + (merge_ss (ss1, ss2), Library.merge (op aconv) (ts1, ts2)); +); + +val get = Data.get o Context.Proof; + +fun add ts = Thm.declaration_attribute (fn th => fn context => + context |> Data.map (fn (ss,ts') => + (ss addsimps [th], merge (op aconv) (ts',ts) ))) + +fun del ts = Thm.declaration_attribute (fn th => fn context => + context |> Data.map (fn (ss,ts') => + (ss delsimps [th], subtract (op aconv) ts' ts ))) + fun simp_thms_conv ctxt = Simplifier.rewrite (Simplifier.context ctxt HOL_basic_ss addsimps @{thms simp_thms}); val FWD = Drule.implies_elim_list; @@ -46,8 +97,7 @@ [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle, bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]] = [@{thms "aset"}, @{thms "bset"}]; -val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"}, - @{thm "plusinfinity"}, @{thm "cppi"}]; +val [cpmi, cppi] = [@{thm "cpmi"}, @{thm "cppi"}]; val unity_coeff_ex = instantiate' [SOME @{ctyp "int"}] [] @{thm "unity_coeff_ex"}; @@ -69,7 +119,7 @@ ( case (term_of ct) of Const("op &",_)$_$_ => And (Thm.dest_binop ct) | Const ("op |",_)$_$_ => Or (Thm.dest_binop ct) -| Const ("op =",ty)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox +| Const ("op =",_)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox | Const (@{const_name Not},_) $ (Const ("op =",_)$y$_) => if term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox | Const (@{const_name Orderings.less}, _) $ y$ z => @@ -118,8 +168,7 @@ val cmulC = @{cterm "op * :: int => _"} val cminus = @{cterm "op - :: int => _"} val cone = @{cterm "1 :: int"} -val cneg = @{cterm "uminus :: int => _"} -val [addC, mulC, subC, negC] = map term_of [cadd, cmulC, cminus, cneg] +val [addC, mulC, subC] = map term_of [cadd, cmulC, cminus] val [zero, one] = [@{term "0 :: int"}, @{term "1 :: int"}]; val is_numeral = can dest_numeral; @@ -202,6 +251,7 @@ fun linear_neg tm = linear_cmul ~1 tm; fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); +exception COOPER of string; fun lint vars tm = if is_numeral tm then tm else case tm of Const (@{const_name Groups.uminus}, _) $ t => linear_neg (lint vars t) @@ -212,7 +262,7 @@ val t' = lint vars t in if is_numeral s' then (linear_cmul (dest_numeral s') t') else if is_numeral t' then (linear_cmul (dest_numeral t') s') - else raise COOPER ("Cooper Failed", TERM ("lint: not linear",[tm])) + else raise COOPER "lint: not linear" end | _ => addC $ (mulC $ one $ tm) $ zero; @@ -254,16 +304,16 @@ fun linearize_conv ctxt vs ct = case term_of ct of Const(@{const_name Rings.dvd},_)$d$t => let - val th = binop_conv (lint_conv ctxt vs) ct + val th = Conv.binop_conv (lint_conv ctxt vs) ct val (d',t') = Thm.dest_binop (Thm.rhs_of th) val (dt',tt') = (term_of d', term_of t') in if is_numeral dt' andalso is_numeral tt' - then Conv.fconv_rule (arg_conv (Simplifier.rewrite presburger_ss)) th + then Conv.fconv_rule (Conv.arg_conv (Simplifier.rewrite presburger_ss)) th else let val dth = ((if dest_numeral (term_of d') < 0 then - Conv.fconv_rule (arg_conv (arg1_conv (lint_conv ctxt vs))) + Conv.fconv_rule (Conv.arg_conv (Conv.arg1_conv (lint_conv ctxt vs))) (Thm.transitive th (inst' [d',t'] dvd_uminus)) else th) handle TERM _ => th) val d'' = Thm.rhs_of dth |> Thm.dest_arg1 @@ -271,13 +321,13 @@ case tt' of Const(@{const_name Groups.plus},_)$(Const(@{const_name Groups.times},_)$c$_)$_ => let val x = dest_numeral c - in if x < 0 then Conv.fconv_rule (arg_conv (arg_conv (lint_conv ctxt vs))) + in if x < 0 then Conv.fconv_rule (Conv.arg_conv (Conv.arg_conv (lint_conv ctxt vs))) (Thm.transitive dth (inst' [d'',t'] dvd_uminus')) else dth end | _ => dth end end -| Const (@{const_name Not},_)$(Const(@{const_name Rings.dvd},_)$_$_) => arg_conv (linearize_conv ctxt vs) ct +| Const (@{const_name Not},_)$(Const(@{const_name Rings.dvd},_)$_$_) => Conv.arg_conv (linearize_conv ctxt vs) ct | t => if is_intrel t then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop)) RS eq_reflection @@ -331,9 +381,9 @@ end fun unit_conv t = case (term_of t) of - Const("op &",_)$_$_ => binop_conv unit_conv t - | Const("op |",_)$_$_ => binop_conv unit_conv t - | Const (@{const_name Not},_)$_ => arg_conv unit_conv t + Const("op &",_)$_$_ => Conv.binop_conv unit_conv t + | Const("op |",_)$_$_ => Conv.binop_conv unit_conv t + | Const (@{const_name Not},_)$_ => Conv.arg_conv unit_conv t | Const(s,_)$(Const(@{const_name Groups.times},_)$c$y)$ _ => if x=y andalso member (op =) ["op =", @{const_name Orderings.less}, @{const_name Orderings.less_eq}] s @@ -371,9 +421,7 @@ val emptyIS = @{cterm "{}::int set"}; val insert_tm = @{cterm "insert :: int => _"}; -val mem_tm = Const("op :",[iT , HOLogic.mk_setT iT] ---> bT); fun mkISet cts = fold_rev (Thm.capply insert_tm #> Thm.capply) cts emptyIS; -val cTrp = @{cterm "Trueprop"}; val eqelem_imp_imp = (thm"eqelem_imp_iff") RS iffD1; val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_fun |> Thm.dest_arg) @@ -399,13 +447,12 @@ | Le t => (bacc, ins (plus1 t) aacc,dacc) | Gt t => (ins t bacc, aacc,dacc) | Ge t => (ins (minus1 t) bacc, aacc,dacc) - | Dvd (d,s) => (bacc,aacc,insert (op =) (term_of d |> dest_numeral) dacc) - | NDvd (d,s) => (bacc,aacc,insert (op =) (term_of d|> dest_numeral) dacc) + | Dvd (d,_) => (bacc,aacc,insert (op =) (term_of d |> dest_numeral) dacc) + | NDvd (d,_) => (bacc,aacc,insert (op =) (term_of d|> dest_numeral) dacc) | _ => (bacc, aacc, dacc) val (b0,a0,ds) = h p ([],[],[]) val d = Integer.lcms ds val cd = Numeral.mk_cnumber @{ctyp "int"} d - val dt = term_of cd fun divprop x = let val th = @@ -474,10 +521,6 @@ val eqelem_th = instantiate' [SOME @{ctyp "int"}] [NONE,NONE, SOME S] eqelem_imp_imp val inS = let - fun transmem th0 th1 = - Thm.equal_elim - (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule - ((Thm.dest_fun o Thm.dest_fun o Thm.dest_arg o cprop_of) th1) th0) S)) th1 val tab = fold Termtab.update (map (fn eq => let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop @@ -503,8 +546,8 @@ fun literals_conv bops uops env cv = let fun h t = case (term_of t) of - b$_$_ => if member (op aconv) bops b then binop_conv h t else cv env t - | u$_ => if member (op aconv) uops u then arg_conv h t else cv env t + b$_$_ => if member (op aconv) bops b then Conv.binop_conv h t else cv env t + | u$_ => if member (op aconv) uops u then Conv.arg_conv h t else cv env t | _ => cv env t in h end; @@ -523,131 +566,325 @@ (OldTerm.term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) (cooperex_conv ctxt) p end - handle CTERM s => raise COOPER ("Cooper Failed", CTERM s) - | THM s => raise COOPER ("Cooper Failed", THM s) - | TYPE s => raise COOPER ("Cooper Failed", TYPE s) -in val cooper_conv = conv -end; + handle CTERM s => raise COOPER "bad cterm" + | THM s => raise COOPER "bad thm" + | TYPE s => raise COOPER "bad type" +in val conv = conv end; - - -structure Coopereif = -struct +fun term_bools acc t = + let + val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"}, + @{term "op = :: int => _"}, @{term "op < :: int => _"}, + @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, + @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}] + fun ty t = not (fastype_of t = HOLogic.boolT) + in case t of + (l as f $ a) $ b => if ty t orelse member (op =) ops f then term_bools (term_bools acc l)b + else insert (op aconv) t acc + | f $ a => if ty t orelse member (op =) ops f then term_bools (term_bools acc f) a + else insert (op aconv) t acc + | Abs p => term_bools acc (snd (variant_abs p)) + | _ => if ty t orelse member (op =) ops t then acc else insert (op aconv) t acc + end; -open Generated_Cooper; - -fun member eq = Library.member eq; - -fun cooper s = raise Cooper.COOPER ("Cooper oracle failed", ERROR s); fun i_of_term vs t = case t of Free (xn, xT) => (case AList.lookup (op aconv) vs t - of NONE => cooper "Variable not found in the list!" - | SOME n => Bound n) - | @{term "0::int"} => C 0 - | @{term "1::int"} => C 1 - | Term.Bound i => Bound i - | Const(@{const_name Groups.uminus},_)$t' => Neg (i_of_term vs t') - | Const(@{const_name Groups.plus},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2) - | Const(@{const_name Groups.minus},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2) + of NONE => raise COOPER "reification: variable not found in list" + | SOME n => Cooper_Procedure.Bound n) + | @{term "0::int"} => Cooper_Procedure.C 0 + | @{term "1::int"} => Cooper_Procedure.C 1 + | Term.Bound i => Cooper_Procedure.Bound i + | Const(@{const_name Groups.uminus},_)$t' => Cooper_Procedure.Neg (i_of_term vs t') + | Const(@{const_name Groups.plus},_)$t1$t2 => Cooper_Procedure.Add (i_of_term vs t1,i_of_term vs t2) + | Const(@{const_name Groups.minus},_)$t1$t2 => Cooper_Procedure.Sub (i_of_term vs t1,i_of_term vs t2) | Const(@{const_name Groups.times},_)$t1$t2 => - (Mul (HOLogic.dest_number t1 |> snd, i_of_term vs t2) + (Cooper_Procedure.Mul (HOLogic.dest_number t1 |> snd, i_of_term vs t2) handle TERM _ => - (Mul (HOLogic.dest_number t2 |> snd, i_of_term vs t1) - handle TERM _ => cooper "Reification: Unsupported kind of multiplication")) - | _ => (C (HOLogic.dest_number t |> snd) - handle TERM _ => cooper "Reification: unknown term"); + (Cooper_Procedure.Mul (HOLogic.dest_number t2 |> snd, i_of_term vs t1) + handle TERM _ => raise COOPER "reification: unsupported kind of multiplication")) + | _ => (Cooper_Procedure.C (HOLogic.dest_number t |> snd) + handle TERM _ => raise COOPER "reification: unknown term"); fun qf_of_term ps vs t = case t - of Const("True",_) => T - | Const("False",_) => F - | Const(@{const_name Orderings.less},_)$t1$t2 => Lt (Sub (i_of_term vs t1,i_of_term vs t2)) - | Const(@{const_name Orderings.less_eq},_)$t1$t2 => Le (Sub(i_of_term vs t1,i_of_term vs t2)) + of Const("True",_) => Cooper_Procedure.T + | Const("False",_) => Cooper_Procedure.F + | Const(@{const_name Orderings.less},_)$t1$t2 => Cooper_Procedure.Lt (Cooper_Procedure.Sub (i_of_term vs t1,i_of_term vs t2)) + | Const(@{const_name Orderings.less_eq},_)$t1$t2 => Cooper_Procedure.Le (Cooper_Procedure.Sub(i_of_term vs t1,i_of_term vs t2)) | Const(@{const_name Rings.dvd},_)$t1$t2 => - (Dvd(HOLogic.dest_number t1 |> snd, i_of_term vs t2) handle _ => cooper "Reification: unsupported dvd") (* FIXME avoid handle _ *) - | @{term "op = :: int => _"}$t1$t2 => Eq (Sub (i_of_term vs t1,i_of_term vs t2)) - | @{term "op = :: bool => _ "}$t1$t2 => Iff(qf_of_term ps vs t1,qf_of_term ps vs t2) - | Const("op &",_)$t1$t2 => And(qf_of_term ps vs t1,qf_of_term ps vs t2) - | Const("op |",_)$t1$t2 => Or(qf_of_term ps vs t1,qf_of_term ps vs t2) - | Const("op -->",_)$t1$t2 => Imp(qf_of_term ps vs t1,qf_of_term ps vs t2) - | Const (@{const_name Not},_)$t' => Not(qf_of_term ps vs t') + (Cooper_Procedure.Dvd (HOLogic.dest_number t1 |> snd, i_of_term vs t2) + handle TERM _ => raise COOPER "reification: unsupported dvd") + | @{term "op = :: int => _"}$t1$t2 => Cooper_Procedure.Eq (Cooper_Procedure.Sub (i_of_term vs t1,i_of_term vs t2)) + | @{term "op = :: bool => _ "}$t1$t2 => Cooper_Procedure.Iff(qf_of_term ps vs t1,qf_of_term ps vs t2) + | Const("op &",_)$t1$t2 => Cooper_Procedure.And(qf_of_term ps vs t1,qf_of_term ps vs t2) + | Const("op |",_)$t1$t2 => Cooper_Procedure.Or(qf_of_term ps vs t1,qf_of_term ps vs t2) + | Const("op -->",_)$t1$t2 => Cooper_Procedure.Imp(qf_of_term ps vs t1,qf_of_term ps vs t2) + | Const (@{const_name Not},_)$t' => Cooper_Procedure.Not(qf_of_term ps vs t') | Const("Ex",_)$Abs(xn,xT,p) => let val (xn',p') = variant_abs (xn,xT,p) val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs) - in E (qf_of_term ps vs' p') + in Cooper_Procedure.E (qf_of_term ps vs' p') end | Const("All",_)$Abs(xn,xT,p) => let val (xn',p') = variant_abs (xn,xT,p) val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs) - in A (qf_of_term ps vs' p') + in Cooper_Procedure.A (qf_of_term ps vs' p') end | _ =>(case AList.lookup (op aconv) ps t of - NONE => cooper "Reification: unknown term!" - | SOME n => Closed n); - -local - val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"}, - @{term "op = :: int => _"}, @{term "op < :: int => _"}, - @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, - @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}] -fun ty t = Bool.not (fastype_of t = HOLogic.boolT) -in -fun term_bools acc t = -case t of - (l as f $ a) $ b => if ty t orelse member (op =) ops f then term_bools (term_bools acc l)b - else insert (op aconv) t acc - | f $ a => if ty t orelse member (op =) ops f then term_bools (term_bools acc f) a - else insert (op aconv) t acc - | Abs p => term_bools acc (snd (variant_abs p)) - | _ => if ty t orelse member (op =) ops t then acc else insert (op aconv) t acc -end; - -fun myassoc2 l v = - case l of - [] => NONE - | (x,v')::xs => if v = v' then SOME x - else myassoc2 xs v; + NONE => raise COOPER "reification: unknown term" + | SOME n => Cooper_Procedure.Closed n); fun term_of_i vs t = case t - of C i => HOLogic.mk_number HOLogic.intT i - | Bound n => the (myassoc2 vs n) - | Neg t' => @{term "uminus :: int => _"} $ term_of_i vs t' - | Add (t1, t2) => @{term "op + :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2 - | Sub (t1, t2) => @{term "op - :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2 - | Mul (i, t2) => @{term "op * :: int => _"} $ + of Cooper_Procedure.C i => HOLogic.mk_number HOLogic.intT i + | Cooper_Procedure.Bound n => the (AList.lookup (op =) vs n) + | Cooper_Procedure.Neg t' => @{term "uminus :: int => _"} $ term_of_i vs t' + | Cooper_Procedure.Add (t1, t2) => @{term "op + :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2 + | Cooper_Procedure.Sub (t1, t2) => @{term "op - :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2 + | Cooper_Procedure.Mul (i, t2) => @{term "op * :: int => _"} $ HOLogic.mk_number HOLogic.intT i $ term_of_i vs t2 - | Cn (n, i, t') => term_of_i vs (Add (Mul (i, Bound n), t')); + | Cooper_Procedure.Cn (n, i, t') => term_of_i vs (Cooper_Procedure.Add (Cooper_Procedure.Mul (i, Cooper_Procedure.Bound n), t')); fun term_of_qf ps vs t = case t of - T => HOLogic.true_const - | F => HOLogic.false_const - | Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} - | Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"} - | Gt t' => @{term "op < :: int => _ "}$ @{term "0::int"}$ term_of_i vs t' - | Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t' - | Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} - | NEq t' => term_of_qf ps vs (Not (Eq t')) - | Dvd(i,t') => @{term "op dvd :: int => _ "} $ + Cooper_Procedure.T => HOLogic.true_const + | Cooper_Procedure.F => HOLogic.false_const + | Cooper_Procedure.Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} + | Cooper_Procedure.Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"} + | Cooper_Procedure.Gt t' => @{term "op < :: int => _ "}$ @{term "0::int"}$ term_of_i vs t' + | Cooper_Procedure.Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t' + | Cooper_Procedure.Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} + | Cooper_Procedure.NEq t' => term_of_qf ps vs (Cooper_Procedure.Not (Cooper_Procedure.Eq t')) + | Cooper_Procedure.Dvd(i,t') => @{term "op dvd :: int => _ "} $ HOLogic.mk_number HOLogic.intT i $ term_of_i vs t' - | NDvd(i,t')=> term_of_qf ps vs (Not(Dvd(i,t'))) - | Not t' => HOLogic.Not$(term_of_qf ps vs t') - | And(t1,t2) => HOLogic.conj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) - | Or(t1,t2) => HOLogic.disj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) - | Imp(t1,t2) => HOLogic.imp$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) - | Iff(t1,t2) => @{term "op = :: bool => _"} $ term_of_qf ps vs t1 $ term_of_qf ps vs t2 - | Closed n => the (myassoc2 ps n) - | NClosed n => term_of_qf ps vs (Not (Closed n)) - | _ => cooper "If this is raised, Isabelle/HOL or code generator is inconsistent!"; + | Cooper_Procedure.NDvd(i,t')=> term_of_qf ps vs (Cooper_Procedure.Not(Cooper_Procedure.Dvd(i,t'))) + | Cooper_Procedure.Not t' => HOLogic.Not$(term_of_qf ps vs t') + | Cooper_Procedure.And(t1,t2) => HOLogic.conj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) + | Cooper_Procedure.Or(t1,t2) => HOLogic.disj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) + | Cooper_Procedure.Imp(t1,t2) => HOLogic.imp$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) + | Cooper_Procedure.Iff(t1,t2) => @{term "op = :: bool => _"} $ term_of_qf ps vs t1 $ term_of_qf ps vs t2 + | Cooper_Procedure.Closed n => the (AList.lookup (op =) ps n) + | Cooper_Procedure.NClosed n => term_of_qf ps vs (Cooper_Procedure.Not (Cooper_Procedure.Closed n)); -fun cooper_oracle ct = +fun invoke t = let - val thy = Thm.theory_of_cterm ct; - val t = Thm.term_of ct; val (vs, ps) = pairself (map_index swap) (OldTerm.term_frees t, term_bools [] t); in - Thm.cterm_of thy (Logic.mk_equals (HOLogic.mk_Trueprop t, - HOLogic.mk_Trueprop (term_of_qf ps vs (pa (qf_of_term ps vs t))))) + Logic.mk_equals (HOLogic.mk_Trueprop t, + HOLogic.mk_Trueprop (term_of_qf (map swap ps) (map swap vs) (Cooper_Procedure.pa (qf_of_term ps vs t)))) end; +val (_, oracle) = Context.>>> (Context.map_theory_result + (Thm.add_oracle (Binding.name "cooper", + (fn (ctxt, t) => Thm.cterm_of (ProofContext.theory_of ctxt) (invoke t))))); + +val comp_ss = HOL_ss addsimps @{thms semiring_norm}; + +fun strip_objimp ct = + (case Thm.term_of ct of + Const ("op -->", _) $ _ $ _ => + let val (A, B) = Thm.dest_binop ct + in A :: strip_objimp B end + | _ => [ct]); + +fun strip_objall ct = + case term_of ct of + Const ("All", _) $ Abs (xn,xT,p) => + let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct + in apfst (cons (a,v)) (strip_objall t') + end +| _ => ([],ct); + +local + val all_maxscope_ss = + HOL_basic_ss addsimps map (fn th => th RS sym) @{thms "all_simps"} +in +fun thin_prems_tac P = simp_tac all_maxscope_ss THEN' + CSUBGOAL (fn (p', i) => + let + val (qvs, p) = strip_objall (Thm.dest_arg p') + val (ps, c) = split_last (strip_objimp p) + val qs = filter P ps + val q = if P c then c else @{cterm "False"} + val ng = fold_rev (fn (a,v) => fn t => Thm.capply a (Thm.cabs v t)) qvs + (fold_rev (fn p => fn q => Thm.capply (Thm.capply @{cterm "op -->"} p) q) qs q) + val g = Thm.capply (Thm.capply @{cterm "op ==>"} (Thm.capply @{cterm "Trueprop"} ng)) p' + val ntac = (case qs of [] => q aconvc @{cterm "False"} + | _ => false) + in + if ntac then no_tac + else rtac (Goal.prove_internal [] g (K (blast_tac HOL_cs 1))) i + end) end; + +local + fun isnum t = case t of + Const(@{const_name Groups.zero},_) => true + | Const(@{const_name Groups.one},_) => true + | @{term "Suc"}$s => isnum s + | @{term "nat"}$s => isnum s + | @{term "int"}$s => isnum s + | Const(@{const_name Groups.uminus},_)$s => isnum s + | Const(@{const_name Groups.plus},_)$l$r => isnum l andalso isnum r + | Const(@{const_name Groups.times},_)$l$r => isnum l andalso isnum r + | Const(@{const_name Groups.minus},_)$l$r => isnum l andalso isnum r + | Const(@{const_name Power.power},_)$l$r => isnum l andalso isnum r + | Const(@{const_name Divides.mod},_)$l$r => isnum l andalso isnum r + | Const(@{const_name Divides.div},_)$l$r => isnum l andalso isnum r + | _ => can HOLogic.dest_number t orelse can HOLogic.dest_nat t + + fun ty cts t = + if not (member (op =) [HOLogic.intT, HOLogic.natT, HOLogic.boolT] (typ_of (ctyp_of_term t))) then false + else case term_of t of + c$l$r => if member (op =) [@{term"op *::int => _"}, @{term"op *::nat => _"}] c + then not (isnum l orelse isnum r) + else not (member (op aconv) cts c) + | c$_ => not (member (op aconv) cts c) + | c => not (member (op aconv) cts c) + + val term_constants = + let fun h acc t = case t of + Const _ => insert (op aconv) t acc + | a$b => h (h acc a) b + | Abs (_,_,t) => h acc t + | _ => acc + in h [] end; +in +fun is_relevant ctxt ct = + subset (op aconv) (term_constants (term_of ct) , snd (get ctxt)) + andalso forall (fn Free (_,T) => member (op =) [@{typ int}, @{typ nat}] T) (OldTerm.term_frees (term_of ct)) + andalso forall (fn Var (_,T) => member (op =) [@{typ int}, @{typ nat}] T) (OldTerm.term_vars (term_of ct)); + +fun int_nat_terms ctxt ct = + let + val cts = snd (get ctxt) + fun h acc t = if ty cts t then insert (op aconvc) t acc else + case (term_of t) of + _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t) + | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc)) + | _ => acc + in h [] ct end +end; + +fun generalize_tac f = CSUBGOAL (fn (p, i) => PRIMITIVE (fn st => + let + fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"} + fun gen x t = Thm.capply (all (ctyp_of_term x)) (Thm.cabs x t) + val ts = sort (fn (a,b) => Term_Ord.fast_term_ord (term_of a, term_of b)) (f p) + val p' = fold_rev gen ts p + in implies_intr p' (implies_elim st (fold forall_elim ts (assume p'))) end)); + +local +val ss1 = comp_ss + addsimps @{thms simp_thms} @ [@{thm "nat_number_of_def"}, @{thm "zdvd_int"}] + @ map (fn r => r RS sym) + [@{thm "int_int_eq"}, @{thm "zle_int"}, @{thm "zless_int"}, @{thm "zadd_int"}, + @{thm "zmult_int"}] + addsplits [@{thm "zdiff_int_split"}] + +val ss2 = HOL_basic_ss + addsimps [@{thm "nat_0_le"}, @{thm "int_nat_number_of"}, + @{thm "all_nat"}, @{thm "ex_nat"}, @{thm "number_of1"}, + @{thm "number_of2"}, @{thm "int_0"}, @{thm "int_1"}, @{thm "Suc_eq_plus1"}] + addcongs [@{thm "conj_le_cong"}, @{thm "imp_le_cong"}] +val div_mod_ss = HOL_basic_ss addsimps @{thms simp_thms} + @ map (symmetric o mk_meta_eq) + [@{thm "dvd_eq_mod_eq_0"}, + @{thm "mod_add_left_eq"}, @{thm "mod_add_right_eq"}, + @{thm "mod_add_eq"}, @{thm "div_add1_eq"}, @{thm "zdiv_zadd1_eq"}] + @ [@{thm "mod_self"}, @{thm "zmod_self"}, @{thm "mod_by_0"}, + @{thm "div_by_0"}, @{thm "DIVISION_BY_ZERO"} RS conjunct1, + @{thm "DIVISION_BY_ZERO"} RS conjunct2, @{thm "zdiv_zero"}, @{thm "zmod_zero"}, + @{thm "div_0"}, @{thm "mod_0"}, @{thm "div_by_1"}, @{thm "mod_by_1"}, @{thm "div_1"}, + @{thm "mod_1"}, @{thm "Suc_eq_plus1"}] + @ @{thms add_ac} + addsimprocs [cancel_div_mod_nat_proc, cancel_div_mod_int_proc] + val splits_ss = comp_ss addsimps [@{thm "mod_div_equality'"}] addsplits + [@{thm "split_zdiv"}, @{thm "split_zmod"}, @{thm "split_div'"}, + @{thm "split_min"}, @{thm "split_max"}, @{thm "abs_split"}] +in +fun nat_to_int_tac ctxt = + simp_tac (Simplifier.context ctxt ss1) THEN_ALL_NEW + simp_tac (Simplifier.context ctxt ss2) THEN_ALL_NEW + simp_tac (Simplifier.context ctxt comp_ss); + +fun div_mod_tac ctxt i = simp_tac (Simplifier.context ctxt div_mod_ss) i; +fun splits_tac ctxt i = simp_tac (Simplifier.context ctxt splits_ss) i; +end; + +fun core_tac ctxt = CSUBGOAL (fn (p, i) => + let + val cpth = + if !quick_and_dirty + then oracle (ctxt, Envir.beta_norm (Pattern.eta_long [] (term_of (Thm.dest_arg p)))) + else Conv.arg_conv (conv ctxt) p + val p' = Thm.rhs_of cpth + val th = implies_intr p' (equal_elim (symmetric cpth) (assume p')) + in rtac th i end + handle COOPER _ => no_tac); + +fun finish_tac q = SUBGOAL (fn (_, i) => + (if q then I else TRY) (rtac TrueI i)); + +fun tac elim add_ths del_ths ctxt = +let val ss = Simplifier.context ctxt (fst (get ctxt)) delsimps del_ths addsimps add_ths + val aprems = Arith_Data.get_arith_facts ctxt +in + Method.insert_tac aprems + THEN_ALL_NEW Object_Logic.full_atomize_tac + THEN_ALL_NEW CONVERSION Thm.eta_long_conversion + THEN_ALL_NEW simp_tac ss + THEN_ALL_NEW (TRY o generalize_tac (int_nat_terms ctxt)) + THEN_ALL_NEW Object_Logic.full_atomize_tac + THEN_ALL_NEW (thin_prems_tac (is_relevant ctxt)) + THEN_ALL_NEW Object_Logic.full_atomize_tac + THEN_ALL_NEW div_mod_tac ctxt + THEN_ALL_NEW splits_tac ctxt + THEN_ALL_NEW simp_tac ss + THEN_ALL_NEW CONVERSION Thm.eta_long_conversion + THEN_ALL_NEW nat_to_int_tac ctxt + THEN_ALL_NEW (core_tac ctxt) + THEN_ALL_NEW finish_tac elim +end; + +val method = + let + fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () + fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () + val addN = "add" + val delN = "del" + val elimN = "elim" + val any_keyword = keyword addN || keyword delN || simple_keyword elimN + val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; + in + Scan.optional (simple_keyword elimN >> K false) true -- + Scan.optional (keyword addN |-- thms) [] -- + Scan.optional (keyword delN |-- thms) [] >> + (fn ((elim, add_ths), del_ths) => fn ctxt => + SIMPLE_METHOD' (tac elim add_ths del_ths ctxt)) + end; + + +(* theory setup *) + +local + +fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K (); + +val constsN = "consts"; +val any_keyword = keyword constsN +val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; +val terms = thms >> map (term_of o Drule.dest_term); + +fun optional scan = Scan.optional scan []; + +in + +val setup = + Attrib.setup @{binding presburger} + ((Scan.lift (Args.$$$ "del") |-- optional (keyword constsN |-- terms)) >> del || + optional (keyword constsN |-- terms) >> add) "data for Cooper's algorithm" + #> Arith_Data.add_tactic "Presburger arithmetic" (K (tac true [] [])); + +end; + +end; diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Tools/Qelim/cooper_data.ML --- a/src/HOL/Tools/Qelim/cooper_data.ML Tue May 11 09:10:31 2010 -0700 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,87 +0,0 @@ -(* Title: HOL/Tools/Qelim/cooper_data.ML - Author: Amine Chaieb, TU Muenchen -*) - -signature COOPER_DATA = -sig - type entry - val get: Proof.context -> entry - val del: term list -> attribute - val add: term list -> attribute - val setup: theory -> theory -end; - -structure CooperData : COOPER_DATA = -struct - -type entry = simpset * (term list); - -val allowed_consts = - [@{term "op + :: int => _"}, @{term "op + :: nat => _"}, - @{term "op - :: int => _"}, @{term "op - :: nat => _"}, - @{term "op * :: int => _"}, @{term "op * :: nat => _"}, - @{term "op div :: int => _"}, @{term "op div :: nat => _"}, - @{term "op mod :: int => _"}, @{term "op mod :: nat => _"}, - @{term "Int.Bit0"}, @{term "Int.Bit1"}, - @{term "op &"}, @{term "op |"}, @{term "op -->"}, - @{term "op = :: int => _"}, @{term "op = :: nat => _"}, @{term "op = :: bool => _"}, - @{term "op < :: int => _"}, @{term "op < :: nat => _"}, - @{term "op <= :: int => _"}, @{term "op <= :: nat => _"}, - @{term "op dvd :: int => _"}, @{term "op dvd :: nat => _"}, - @{term "abs :: int => _"}, - @{term "max :: int => _"}, @{term "max :: nat => _"}, - @{term "min :: int => _"}, @{term "min :: nat => _"}, - @{term "uminus :: int => _"}, (*@ {term "uminus :: nat => _"},*) - @{term "Not"}, @{term "Suc"}, - @{term "Ex :: (int => _) => _"}, @{term "Ex :: (nat => _) => _"}, - @{term "All :: (int => _) => _"}, @{term "All :: (nat => _) => _"}, - @{term "nat"}, @{term "int"}, - @{term "Int.Bit0"}, @{term "Int.Bit1"}, - @{term "Int.Pls"}, @{term "Int.Min"}, - @{term "Int.number_of :: int => int"}, @{term "Int.number_of :: int => nat"}, - @{term "0::int"}, @{term "1::int"}, @{term "0::nat"}, @{term "1::nat"}, - @{term "True"}, @{term "False"}]; - -structure Data = Generic_Data -( - type T = simpset * term list; - val empty = (HOL_ss, allowed_consts); - val extend = I; - fun merge ((ss1, ts1), (ss2, ts2)) = - (merge_ss (ss1, ss2), Library.merge (op aconv) (ts1, ts2)); -); - -val get = Data.get o Context.Proof; - -fun add ts = Thm.declaration_attribute (fn th => fn context => - context |> Data.map (fn (ss,ts') => - (ss addsimps [th], merge (op aconv) (ts',ts) ))) - -fun del ts = Thm.declaration_attribute (fn th => fn context => - context |> Data.map (fn (ss,ts') => - (ss delsimps [th], subtract (op aconv) ts' ts ))) - - -(* theory setup *) - -local - -fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K (); - -val constsN = "consts"; -val any_keyword = keyword constsN -val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; -val terms = thms >> map (term_of o Drule.dest_term); - -fun optional scan = Scan.optional scan []; - -in - -val setup = - Attrib.setup @{binding presburger} - ((Scan.lift (Args.$$$ "del") |-- optional (keyword constsN |-- terms)) >> del || - optional (keyword constsN |-- terms) >> add) "Cooper data"; - -end; - -end; diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Tools/Qelim/cooper_procedure.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Tools/Qelim/cooper_procedure.ML Tue May 11 11:02:56 2010 -0700 @@ -0,0 +1,2274 @@ +(* Generated from Cooper.thy; DO NOT EDIT! *) + +structure Cooper_Procedure : sig + type 'a eq + val eq : 'a eq -> 'a -> 'a -> bool + val eqa : 'a eq -> 'a -> 'a -> bool + val leta : 'a -> ('a -> 'b) -> 'b + val suc : IntInf.int -> IntInf.int + datatype num = C of IntInf.int | Bound of IntInf.int | + Cn of IntInf.int * IntInf.int * num | Neg of num | Add of num * num | + Sub of num * num | Mul of IntInf.int * num + datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | + Eq of num | NEq of num | Dvd of IntInf.int * num | NDvd of IntInf.int * num + | Not of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | + Iff of fm * fm | E of fm | A of fm | Closed of IntInf.int | + NClosed of IntInf.int + val map : ('a -> 'b) -> 'a list -> 'b list + val append : 'a list -> 'a list -> 'a list + val disjuncts : fm -> fm list + val fm_case : + 'a -> 'a -> (num -> 'a) -> + (num -> 'a) -> + (num -> 'a) -> + (num -> 'a) -> + (num -> 'a) -> + (num -> 'a) -> + (IntInf.int -> num -> 'a) -> + (IntInf.int -> num -> 'a) -> + (fm -> 'a) -> + (fm -> fm -> 'a) -> + (fm -> fm -> 'a) -> + (fm -> fm -> 'a) -> +(fm -> fm -> 'a) -> + (fm -> 'a) -> + (fm -> 'a) -> (IntInf.int -> 'a) -> (IntInf.int -> 'a) -> fm -> 'a + val eq_num : num -> num -> bool + val eq_fm : fm -> fm -> bool + val djf : ('a -> fm) -> 'a -> fm -> fm + val foldr : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b + val evaldjf : ('a -> fm) -> 'a list -> fm + val dj : (fm -> fm) -> fm -> fm + val disj : fm -> fm -> fm + val minus_nat : IntInf.int -> IntInf.int -> IntInf.int + val decrnum : num -> num + val decr : fm -> fm + val concat_map : ('a -> 'b list) -> 'a list -> 'b list + val numsubst0 : num -> num -> num + val subst0 : num -> fm -> fm + val minusinf : fm -> fm + val eq_int : IntInf.int eq + val zero_int : IntInf.int + type 'a zero + val zero : 'a zero -> 'a + val zero_inta : IntInf.int zero + type 'a times + val times : 'a times -> 'a -> 'a -> 'a + type 'a no_zero_divisors + val times_no_zero_divisors : 'a no_zero_divisors -> 'a times + val zero_no_zero_divisors : 'a no_zero_divisors -> 'a zero + val times_int : IntInf.int times + val no_zero_divisors_int : IntInf.int no_zero_divisors + type 'a one + val one : 'a one -> 'a + type 'a zero_neq_one + val one_zero_neq_one : 'a zero_neq_one -> 'a one + val zero_zero_neq_one : 'a zero_neq_one -> 'a zero + type 'a semigroup_mult + val times_semigroup_mult : 'a semigroup_mult -> 'a times + type 'a plus + val plus : 'a plus -> 'a -> 'a -> 'a + type 'a semigroup_add + val plus_semigroup_add : 'a semigroup_add -> 'a plus + type 'a ab_semigroup_add + val semigroup_add_ab_semigroup_add : 'a ab_semigroup_add -> 'a semigroup_add + type 'a semiring + val ab_semigroup_add_semiring : 'a semiring -> 'a ab_semigroup_add + val semigroup_mult_semiring : 'a semiring -> 'a semigroup_mult + type 'a mult_zero + val times_mult_zero : 'a mult_zero -> 'a times + val zero_mult_zero : 'a mult_zero -> 'a zero + type 'a monoid_add + val semigroup_add_monoid_add : 'a monoid_add -> 'a semigroup_add + val zero_monoid_add : 'a monoid_add -> 'a zero + type 'a comm_monoid_add + val ab_semigroup_add_comm_monoid_add : + 'a comm_monoid_add -> 'a ab_semigroup_add + val monoid_add_comm_monoid_add : 'a comm_monoid_add -> 'a monoid_add + type 'a semiring_0 + val comm_monoid_add_semiring_0 : 'a semiring_0 -> 'a comm_monoid_add + val mult_zero_semiring_0 : 'a semiring_0 -> 'a mult_zero + val semiring_semiring_0 : 'a semiring_0 -> 'a semiring + type 'a power + val one_power : 'a power -> 'a one + val times_power : 'a power -> 'a times + type 'a monoid_mult + val semigroup_mult_monoid_mult : 'a monoid_mult -> 'a semigroup_mult + val power_monoid_mult : 'a monoid_mult -> 'a power + type 'a semiring_1 + val monoid_mult_semiring_1 : 'a semiring_1 -> 'a monoid_mult + val semiring_0_semiring_1 : 'a semiring_1 -> 'a semiring_0 + val zero_neq_one_semiring_1 : 'a semiring_1 -> 'a zero_neq_one + type 'a cancel_semigroup_add + val semigroup_add_cancel_semigroup_add : + 'a cancel_semigroup_add -> 'a semigroup_add + type 'a cancel_ab_semigroup_add + val ab_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add + val cancel_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add + type 'a cancel_comm_monoid_add + val cancel_ab_semigroup_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add + val comm_monoid_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a comm_monoid_add + type 'a semiring_0_cancel + val cancel_comm_monoid_add_semiring_0_cancel : + 'a semiring_0_cancel -> 'a cancel_comm_monoid_add + val semiring_0_semiring_0_cancel : 'a semiring_0_cancel -> 'a semiring_0 + type 'a semiring_1_cancel + val semiring_0_cancel_semiring_1_cancel : + 'a semiring_1_cancel -> 'a semiring_0_cancel + val semiring_1_semiring_1_cancel : 'a semiring_1_cancel -> 'a semiring_1 + type 'a dvd + val times_dvd : 'a dvd -> 'a times + type 'a ab_semigroup_mult + val semigroup_mult_ab_semigroup_mult : + 'a ab_semigroup_mult -> 'a semigroup_mult + type 'a comm_semiring + val ab_semigroup_mult_comm_semiring : 'a comm_semiring -> 'a ab_semigroup_mult + val semiring_comm_semiring : 'a comm_semiring -> 'a semiring + type 'a comm_semiring_0 + val comm_semiring_comm_semiring_0 : 'a comm_semiring_0 -> 'a comm_semiring + val semiring_0_comm_semiring_0 : 'a comm_semiring_0 -> 'a semiring_0 + type 'a comm_monoid_mult + val ab_semigroup_mult_comm_monoid_mult : + 'a comm_monoid_mult -> 'a ab_semigroup_mult + val monoid_mult_comm_monoid_mult : 'a comm_monoid_mult -> 'a monoid_mult + type 'a comm_semiring_1 + val comm_monoid_mult_comm_semiring_1 : + 'a comm_semiring_1 -> 'a comm_monoid_mult + val comm_semiring_0_comm_semiring_1 : 'a comm_semiring_1 -> 'a comm_semiring_0 + val dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd + val semiring_1_comm_semiring_1 : 'a comm_semiring_1 -> 'a semiring_1 + type 'a comm_semiring_0_cancel + val comm_semiring_0_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a comm_semiring_0 + val semiring_0_cancel_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a semiring_0_cancel + type 'a comm_semiring_1_cancel + val comm_semiring_0_cancel_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel + val comm_semiring_1_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a comm_semiring_1 + val semiring_1_cancel_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a semiring_1_cancel + type 'a diva + val dvd_div : 'a diva -> 'a dvd + val diva : 'a diva -> 'a -> 'a -> 'a + val moda : 'a diva -> 'a -> 'a -> 'a + type 'a semiring_div + val div_semiring_div : 'a semiring_div -> 'a diva + val comm_semiring_1_cancel_semiring_div : + 'a semiring_div -> 'a comm_semiring_1_cancel + val no_zero_divisors_semiring_div : 'a semiring_div -> 'a no_zero_divisors + val one_int : IntInf.int + val one_inta : IntInf.int one + val zero_neq_one_int : IntInf.int zero_neq_one + val semigroup_mult_int : IntInf.int semigroup_mult + val plus_int : IntInf.int plus + val semigroup_add_int : IntInf.int semigroup_add + val ab_semigroup_add_int : IntInf.int ab_semigroup_add + val semiring_int : IntInf.int semiring + val mult_zero_int : IntInf.int mult_zero + val monoid_add_int : IntInf.int monoid_add + val comm_monoid_add_int : IntInf.int comm_monoid_add + val semiring_0_int : IntInf.int semiring_0 + val power_int : IntInf.int power + val monoid_mult_int : IntInf.int monoid_mult + val semiring_1_int : IntInf.int semiring_1 + val cancel_semigroup_add_int : IntInf.int cancel_semigroup_add + val cancel_ab_semigroup_add_int : IntInf.int cancel_ab_semigroup_add + val cancel_comm_monoid_add_int : IntInf.int cancel_comm_monoid_add + val semiring_0_cancel_int : IntInf.int semiring_0_cancel + val semiring_1_cancel_int : IntInf.int semiring_1_cancel + val dvd_int : IntInf.int dvd + val ab_semigroup_mult_int : IntInf.int ab_semigroup_mult + val comm_semiring_int : IntInf.int comm_semiring + val comm_semiring_0_int : IntInf.int comm_semiring_0 + val comm_monoid_mult_int : IntInf.int comm_monoid_mult + val comm_semiring_1_int : IntInf.int comm_semiring_1 + val comm_semiring_0_cancel_int : IntInf.int comm_semiring_0_cancel + val comm_semiring_1_cancel_int : IntInf.int comm_semiring_1_cancel + val abs_int : IntInf.int -> IntInf.int + val split : ('a -> 'b -> 'c) -> 'a * 'b -> 'c + val sgn_int : IntInf.int -> IntInf.int + val apsnd : ('a -> 'b) -> 'c * 'a -> 'c * 'b + val divmod_int : IntInf.int -> IntInf.int -> IntInf.int * IntInf.int + val snd : 'a * 'b -> 'b + val mod_int : IntInf.int -> IntInf.int -> IntInf.int + val fst : 'a * 'b -> 'a + val div_int : IntInf.int -> IntInf.int -> IntInf.int + val div_inta : IntInf.int diva + val semiring_div_int : IntInf.int semiring_div + val dvd : 'a semiring_div * 'a eq -> 'a -> 'a -> bool + val num_case : + (IntInf.int -> 'a) -> + (IntInf.int -> 'a) -> + (IntInf.int -> IntInf.int -> num -> 'a) -> + (num -> 'a) -> + (num -> num -> 'a) -> + (num -> num -> 'a) -> (IntInf.int -> num -> 'a) -> num -> 'a + val nummul : IntInf.int -> num -> num + val numneg : num -> num + val numadd : num * num -> num + val numsub : num -> num -> num + val simpnum : num -> num + val nota : fm -> fm + val iffa : fm -> fm -> fm + val impa : fm -> fm -> fm + val conj : fm -> fm -> fm + val simpfm : fm -> fm + val iupt : IntInf.int -> IntInf.int -> IntInf.int list + val mirror : fm -> fm + val size_list : 'a list -> IntInf.int + val alpha : fm -> num list + val beta : fm -> num list + val eq_numa : num eq + val member : 'a eq -> 'a -> 'a list -> bool + val remdups : 'a eq -> 'a list -> 'a list + val gcd_int : IntInf.int -> IntInf.int -> IntInf.int + val lcm_int : IntInf.int -> IntInf.int -> IntInf.int + val delta : fm -> IntInf.int + val a_beta : fm -> IntInf.int -> fm + val zeta : fm -> IntInf.int + val zsplit0 : num -> IntInf.int * num + val zlfm : fm -> fm + val unita : fm -> fm * (num list * IntInf.int) + val cooper : fm -> fm + val prep : fm -> fm + val qelim : fm -> (fm -> fm) -> fm + val pa : fm -> fm +end = struct + +type 'a eq = {eq : 'a -> 'a -> bool}; +val eq = #eq : 'a eq -> 'a -> 'a -> bool; + +fun eqa A_ a b = eq A_ a b; + +fun leta s f = f s; + +fun suc n = IntInf.+ (n, (1 : IntInf.int)); + +datatype num = C of IntInf.int | Bound of IntInf.int | + Cn of IntInf.int * IntInf.int * num | Neg of num | Add of num * num | + Sub of num * num | Mul of IntInf.int * num; + +datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | Eq of num + | NEq of num | Dvd of IntInf.int * num | NDvd of IntInf.int * num | Not of fm + | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm | + A of fm | Closed of IntInf.int | NClosed of IntInf.int; + +fun map f [] = [] + | map f (x :: xs) = f x :: map f xs; + +fun append [] ys = ys + | append (x :: xs) ys = x :: append xs ys; + +fun disjuncts (Or (p, q)) = append (disjuncts p) (disjuncts q) + | disjuncts F = [] + | disjuncts T = [T] + | disjuncts (Lt u) = [Lt u] + | disjuncts (Le v) = [Le v] + | disjuncts (Gt w) = [Gt w] + | disjuncts (Ge x) = [Ge x] + | disjuncts (Eq y) = [Eq y] + | disjuncts (NEq z) = [NEq z] + | disjuncts (Dvd (aa, ab)) = [Dvd (aa, ab)] + | disjuncts (NDvd (ac, ad)) = [NDvd (ac, ad)] + | disjuncts (Not ae) = [Not ae] + | disjuncts (And (af, ag)) = [And (af, ag)] + | disjuncts (Imp (aj, ak)) = [Imp (aj, ak)] + | disjuncts (Iff (al, am)) = [Iff (al, am)] + | disjuncts (E an) = [E an] + | disjuncts (A ao) = [A ao] + | disjuncts (Closed ap) = [Closed ap] + | disjuncts (NClosed aq) = [NClosed aq]; + +fun fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (NClosed nat) = f19 nat + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Closed nat) = f18 nat + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (A fm) = f17 fm + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (E fm) = f16 fm + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Iff (fm1, fm2)) = f15 fm1 fm2 + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Imp (fm1, fm2)) = f14 fm1 fm2 + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Or (fm1, fm2)) = f13 fm1 fm2 + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (And (fm1, fm2)) = f12 fm1 fm2 + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Not fm) = f11 fm + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (NDvd (inta, num)) = f10 inta num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Dvd (inta, num)) = f9 inta num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (NEq num) = f8 num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Eq num) = f7 num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Ge num) = f6 num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Gt num) = f5 num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Le num) = f4 num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 + (Lt num) = f3 num + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 F + = f2 + | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 T + = f1; + +fun eq_num (C intaa) (C inta) = ((intaa : IntInf.int) = inta) + | eq_num (Bound nata) (Bound nat) = ((nata : IntInf.int) = nat) + | eq_num (Cn (nata, intaa, numa)) (Cn (nat, inta, num)) = + ((nata : IntInf.int) = nat) andalso + (((intaa : IntInf.int) = inta) andalso eq_num numa num) + | eq_num (Neg numa) (Neg num) = eq_num numa num + | eq_num (Add (num1a, num2a)) (Add (num1, num2)) = + eq_num num1a num1 andalso eq_num num2a num2 + | eq_num (Sub (num1a, num2a)) (Sub (num1, num2)) = + eq_num num1a num1 andalso eq_num num2a num2 + | eq_num (Mul (intaa, numa)) (Mul (inta, num)) = + ((intaa : IntInf.int) = inta) andalso eq_num numa num + | eq_num (C inta) (Bound nat) = false + | eq_num (Bound nat) (C inta) = false + | eq_num (C intaa) (Cn (nat, inta, num)) = false + | eq_num (Cn (nat, intaa, num)) (C inta) = false + | eq_num (C inta) (Neg num) = false + | eq_num (Neg num) (C inta) = false + | eq_num (C inta) (Add (num1, num2)) = false + | eq_num (Add (num1, num2)) (C inta) = false + | eq_num (C inta) (Sub (num1, num2)) = false + | eq_num (Sub (num1, num2)) (C inta) = false + | eq_num (C intaa) (Mul (inta, num)) = false + | eq_num (Mul (intaa, num)) (C inta) = false + | eq_num (Bound nata) (Cn (nat, inta, num)) = false + | eq_num (Cn (nata, inta, num)) (Bound nat) = false + | eq_num (Bound nat) (Neg num) = false + | eq_num (Neg num) (Bound nat) = false + | eq_num (Bound nat) (Add (num1, num2)) = false + | eq_num (Add (num1, num2)) (Bound nat) = false + | eq_num (Bound nat) (Sub (num1, num2)) = false + | eq_num (Sub (num1, num2)) (Bound nat) = false + | eq_num (Bound nat) (Mul (inta, num)) = false + | eq_num (Mul (inta, num)) (Bound nat) = false + | eq_num (Cn (nat, inta, numa)) (Neg num) = false + | eq_num (Neg numa) (Cn (nat, inta, num)) = false + | eq_num (Cn (nat, inta, num)) (Add (num1, num2)) = false + | eq_num (Add (num1, num2)) (Cn (nat, inta, num)) = false + | eq_num (Cn (nat, inta, num)) (Sub (num1, num2)) = false + | eq_num (Sub (num1, num2)) (Cn (nat, inta, num)) = false + | eq_num (Cn (nat, intaa, numa)) (Mul (inta, num)) = false + | eq_num (Mul (intaa, numa)) (Cn (nat, inta, num)) = false + | eq_num (Neg num) (Add (num1, num2)) = false + | eq_num (Add (num1, num2)) (Neg num) = false + | eq_num (Neg num) (Sub (num1, num2)) = false + | eq_num (Sub (num1, num2)) (Neg num) = false + | eq_num (Neg numa) (Mul (inta, num)) = false + | eq_num (Mul (inta, numa)) (Neg num) = false + | eq_num (Add (num1a, num2a)) (Sub (num1, num2)) = false + | eq_num (Sub (num1a, num2a)) (Add (num1, num2)) = false + | eq_num (Add (num1, num2)) (Mul (inta, num)) = false + | eq_num (Mul (inta, num)) (Add (num1, num2)) = false + | eq_num (Sub (num1, num2)) (Mul (inta, num)) = false + | eq_num (Mul (inta, num)) (Sub (num1, num2)) = false; + +fun eq_fm T T = true + | eq_fm F F = true + | eq_fm (Lt numa) (Lt num) = eq_num numa num + | eq_fm (Le numa) (Le num) = eq_num numa num + | eq_fm (Gt numa) (Gt num) = eq_num numa num + | eq_fm (Ge numa) (Ge num) = eq_num numa num + | eq_fm (Eq numa) (Eq num) = eq_num numa num + | eq_fm (NEq numa) (NEq num) = eq_num numa num + | eq_fm (Dvd (intaa, numa)) (Dvd (inta, num)) = + ((intaa : IntInf.int) = inta) andalso eq_num numa num + | eq_fm (NDvd (intaa, numa)) (NDvd (inta, num)) = + ((intaa : IntInf.int) = inta) andalso eq_num numa num + | eq_fm (Not fma) (Not fm) = eq_fm fma fm + | eq_fm (And (fm1a, fm2a)) (And (fm1, fm2)) = + eq_fm fm1a fm1 andalso eq_fm fm2a fm2 + | eq_fm (Or (fm1a, fm2a)) (Or (fm1, fm2)) = + eq_fm fm1a fm1 andalso eq_fm fm2a fm2 + | eq_fm (Imp (fm1a, fm2a)) (Imp (fm1, fm2)) = + eq_fm fm1a fm1 andalso eq_fm fm2a fm2 + | eq_fm (Iff (fm1a, fm2a)) (Iff (fm1, fm2)) = + eq_fm fm1a fm1 andalso eq_fm fm2a fm2 + | eq_fm (E fma) (E fm) = eq_fm fma fm + | eq_fm (A fma) (A fm) = eq_fm fma fm + | eq_fm (Closed nata) (Closed nat) = ((nata : IntInf.int) = nat) + | eq_fm (NClosed nata) (NClosed nat) = ((nata : IntInf.int) = nat) + | eq_fm T F = false + | eq_fm F T = false + | eq_fm T (Lt num) = false + | eq_fm (Lt num) T = false + | eq_fm T (Le num) = false + | eq_fm (Le num) T = false + | eq_fm T (Gt num) = false + | eq_fm (Gt num) T = false + | eq_fm T (Ge num) = false + | eq_fm (Ge num) T = false + | eq_fm T (Eq num) = false + | eq_fm (Eq num) T = false + | eq_fm T (NEq num) = false + | eq_fm (NEq num) T = false + | eq_fm T (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) T = false + | eq_fm T (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) T = false + | eq_fm T (Not fm) = false + | eq_fm (Not fm) T = false + | eq_fm T (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) T = false + | eq_fm T (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) T = false + | eq_fm T (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) T = false + | eq_fm T (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) T = false + | eq_fm T (E fm) = false + | eq_fm (E fm) T = false + | eq_fm T (A fm) = false + | eq_fm (A fm) T = false + | eq_fm T (Closed nat) = false + | eq_fm (Closed nat) T = false + | eq_fm T (NClosed nat) = false + | eq_fm (NClosed nat) T = false + | eq_fm F (Lt num) = false + | eq_fm (Lt num) F = false + | eq_fm F (Le num) = false + | eq_fm (Le num) F = false + | eq_fm F (Gt num) = false + | eq_fm (Gt num) F = false + | eq_fm F (Ge num) = false + | eq_fm (Ge num) F = false + | eq_fm F (Eq num) = false + | eq_fm (Eq num) F = false + | eq_fm F (NEq num) = false + | eq_fm (NEq num) F = false + | eq_fm F (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) F = false + | eq_fm F (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) F = false + | eq_fm F (Not fm) = false + | eq_fm (Not fm) F = false + | eq_fm F (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) F = false + | eq_fm F (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) F = false + | eq_fm F (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) F = false + | eq_fm F (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) F = false + | eq_fm F (E fm) = false + | eq_fm (E fm) F = false + | eq_fm F (A fm) = false + | eq_fm (A fm) F = false + | eq_fm F (Closed nat) = false + | eq_fm (Closed nat) F = false + | eq_fm F (NClosed nat) = false + | eq_fm (NClosed nat) F = false + | eq_fm (Lt numa) (Le num) = false + | eq_fm (Le numa) (Lt num) = false + | eq_fm (Lt numa) (Gt num) = false + | eq_fm (Gt numa) (Lt num) = false + | eq_fm (Lt numa) (Ge num) = false + | eq_fm (Ge numa) (Lt num) = false + | eq_fm (Lt numa) (Eq num) = false + | eq_fm (Eq numa) (Lt num) = false + | eq_fm (Lt numa) (NEq num) = false + | eq_fm (NEq numa) (Lt num) = false + | eq_fm (Lt numa) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, numa)) (Lt num) = false + | eq_fm (Lt numa) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, numa)) (Lt num) = false + | eq_fm (Lt num) (Not fm) = false + | eq_fm (Not fm) (Lt num) = false + | eq_fm (Lt num) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Lt num) = false + | eq_fm (Lt num) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Lt num) = false + | eq_fm (Lt num) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Lt num) = false + | eq_fm (Lt num) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Lt num) = false + | eq_fm (Lt num) (E fm) = false + | eq_fm (E fm) (Lt num) = false + | eq_fm (Lt num) (A fm) = false + | eq_fm (A fm) (Lt num) = false + | eq_fm (Lt num) (Closed nat) = false + | eq_fm (Closed nat) (Lt num) = false + | eq_fm (Lt num) (NClosed nat) = false + | eq_fm (NClosed nat) (Lt num) = false + | eq_fm (Le numa) (Gt num) = false + | eq_fm (Gt numa) (Le num) = false + | eq_fm (Le numa) (Ge num) = false + | eq_fm (Ge numa) (Le num) = false + | eq_fm (Le numa) (Eq num) = false + | eq_fm (Eq numa) (Le num) = false + | eq_fm (Le numa) (NEq num) = false + | eq_fm (NEq numa) (Le num) = false + | eq_fm (Le numa) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, numa)) (Le num) = false + | eq_fm (Le numa) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, numa)) (Le num) = false + | eq_fm (Le num) (Not fm) = false + | eq_fm (Not fm) (Le num) = false + | eq_fm (Le num) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Le num) = false + | eq_fm (Le num) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Le num) = false + | eq_fm (Le num) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Le num) = false + | eq_fm (Le num) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Le num) = false + | eq_fm (Le num) (E fm) = false + | eq_fm (E fm) (Le num) = false + | eq_fm (Le num) (A fm) = false + | eq_fm (A fm) (Le num) = false + | eq_fm (Le num) (Closed nat) = false + | eq_fm (Closed nat) (Le num) = false + | eq_fm (Le num) (NClosed nat) = false + | eq_fm (NClosed nat) (Le num) = false + | eq_fm (Gt numa) (Ge num) = false + | eq_fm (Ge numa) (Gt num) = false + | eq_fm (Gt numa) (Eq num) = false + | eq_fm (Eq numa) (Gt num) = false + | eq_fm (Gt numa) (NEq num) = false + | eq_fm (NEq numa) (Gt num) = false + | eq_fm (Gt numa) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, numa)) (Gt num) = false + | eq_fm (Gt numa) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, numa)) (Gt num) = false + | eq_fm (Gt num) (Not fm) = false + | eq_fm (Not fm) (Gt num) = false + | eq_fm (Gt num) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Gt num) = false + | eq_fm (Gt num) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Gt num) = false + | eq_fm (Gt num) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Gt num) = false + | eq_fm (Gt num) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Gt num) = false + | eq_fm (Gt num) (E fm) = false + | eq_fm (E fm) (Gt num) = false + | eq_fm (Gt num) (A fm) = false + | eq_fm (A fm) (Gt num) = false + | eq_fm (Gt num) (Closed nat) = false + | eq_fm (Closed nat) (Gt num) = false + | eq_fm (Gt num) (NClosed nat) = false + | eq_fm (NClosed nat) (Gt num) = false + | eq_fm (Ge numa) (Eq num) = false + | eq_fm (Eq numa) (Ge num) = false + | eq_fm (Ge numa) (NEq num) = false + | eq_fm (NEq numa) (Ge num) = false + | eq_fm (Ge numa) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, numa)) (Ge num) = false + | eq_fm (Ge numa) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, numa)) (Ge num) = false + | eq_fm (Ge num) (Not fm) = false + | eq_fm (Not fm) (Ge num) = false + | eq_fm (Ge num) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Ge num) = false + | eq_fm (Ge num) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Ge num) = false + | eq_fm (Ge num) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Ge num) = false + | eq_fm (Ge num) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Ge num) = false + | eq_fm (Ge num) (E fm) = false + | eq_fm (E fm) (Ge num) = false + | eq_fm (Ge num) (A fm) = false + | eq_fm (A fm) (Ge num) = false + | eq_fm (Ge num) (Closed nat) = false + | eq_fm (Closed nat) (Ge num) = false + | eq_fm (Ge num) (NClosed nat) = false + | eq_fm (NClosed nat) (Ge num) = false + | eq_fm (Eq numa) (NEq num) = false + | eq_fm (NEq numa) (Eq num) = false + | eq_fm (Eq numa) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, numa)) (Eq num) = false + | eq_fm (Eq numa) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, numa)) (Eq num) = false + | eq_fm (Eq num) (Not fm) = false + | eq_fm (Not fm) (Eq num) = false + | eq_fm (Eq num) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Eq num) = false + | eq_fm (Eq num) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Eq num) = false + | eq_fm (Eq num) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Eq num) = false + | eq_fm (Eq num) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Eq num) = false + | eq_fm (Eq num) (E fm) = false + | eq_fm (E fm) (Eq num) = false + | eq_fm (Eq num) (A fm) = false + | eq_fm (A fm) (Eq num) = false + | eq_fm (Eq num) (Closed nat) = false + | eq_fm (Closed nat) (Eq num) = false + | eq_fm (Eq num) (NClosed nat) = false + | eq_fm (NClosed nat) (Eq num) = false + | eq_fm (NEq numa) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, numa)) (NEq num) = false + | eq_fm (NEq numa) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, numa)) (NEq num) = false + | eq_fm (NEq num) (Not fm) = false + | eq_fm (Not fm) (NEq num) = false + | eq_fm (NEq num) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (NEq num) = false + | eq_fm (NEq num) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (NEq num) = false + | eq_fm (NEq num) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (NEq num) = false + | eq_fm (NEq num) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (NEq num) = false + | eq_fm (NEq num) (E fm) = false + | eq_fm (E fm) (NEq num) = false + | eq_fm (NEq num) (A fm) = false + | eq_fm (A fm) (NEq num) = false + | eq_fm (NEq num) (Closed nat) = false + | eq_fm (Closed nat) (NEq num) = false + | eq_fm (NEq num) (NClosed nat) = false + | eq_fm (NClosed nat) (NEq num) = false + | eq_fm (Dvd (intaa, numa)) (NDvd (inta, num)) = false + | eq_fm (NDvd (intaa, numa)) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (Not fm) = false + | eq_fm (Not fm) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (E fm) = false + | eq_fm (E fm) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (A fm) = false + | eq_fm (A fm) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (Closed nat) = false + | eq_fm (Closed nat) (Dvd (inta, num)) = false + | eq_fm (Dvd (inta, num)) (NClosed nat) = false + | eq_fm (NClosed nat) (Dvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (Not fm) = false + | eq_fm (Not fm) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (E fm) = false + | eq_fm (E fm) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (A fm) = false + | eq_fm (A fm) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (Closed nat) = false + | eq_fm (Closed nat) (NDvd (inta, num)) = false + | eq_fm (NDvd (inta, num)) (NClosed nat) = false + | eq_fm (NClosed nat) (NDvd (inta, num)) = false + | eq_fm (Not fm) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Not fm) = false + | eq_fm (Not fm) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Not fm) = false + | eq_fm (Not fm) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Not fm) = false + | eq_fm (Not fm) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Not fm) = false + | eq_fm (Not fma) (E fm) = false + | eq_fm (E fma) (Not fm) = false + | eq_fm (Not fma) (A fm) = false + | eq_fm (A fma) (Not fm) = false + | eq_fm (Not fm) (Closed nat) = false + | eq_fm (Closed nat) (Not fm) = false + | eq_fm (Not fm) (NClosed nat) = false + | eq_fm (NClosed nat) (Not fm) = false + | eq_fm (And (fm1a, fm2a)) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1a, fm2a)) (And (fm1, fm2)) = false + | eq_fm (And (fm1a, fm2a)) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1a, fm2a)) (And (fm1, fm2)) = false + | eq_fm (And (fm1a, fm2a)) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1a, fm2a)) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (E fm) = false + | eq_fm (E fm) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (A fm) = false + | eq_fm (A fm) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (Closed nat) = false + | eq_fm (Closed nat) (And (fm1, fm2)) = false + | eq_fm (And (fm1, fm2)) (NClosed nat) = false + | eq_fm (NClosed nat) (And (fm1, fm2)) = false + | eq_fm (Or (fm1a, fm2a)) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1a, fm2a)) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1a, fm2a)) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1a, fm2a)) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (E fm) = false + | eq_fm (E fm) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (A fm) = false + | eq_fm (A fm) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (Closed nat) = false + | eq_fm (Closed nat) (Or (fm1, fm2)) = false + | eq_fm (Or (fm1, fm2)) (NClosed nat) = false + | eq_fm (NClosed nat) (Or (fm1, fm2)) = false + | eq_fm (Imp (fm1a, fm2a)) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1a, fm2a)) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (E fm) = false + | eq_fm (E fm) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (A fm) = false + | eq_fm (A fm) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (Closed nat) = false + | eq_fm (Closed nat) (Imp (fm1, fm2)) = false + | eq_fm (Imp (fm1, fm2)) (NClosed nat) = false + | eq_fm (NClosed nat) (Imp (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (E fm) = false + | eq_fm (E fm) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (A fm) = false + | eq_fm (A fm) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (Closed nat) = false + | eq_fm (Closed nat) (Iff (fm1, fm2)) = false + | eq_fm (Iff (fm1, fm2)) (NClosed nat) = false + | eq_fm (NClosed nat) (Iff (fm1, fm2)) = false + | eq_fm (E fma) (A fm) = false + | eq_fm (A fma) (E fm) = false + | eq_fm (E fm) (Closed nat) = false + | eq_fm (Closed nat) (E fm) = false + | eq_fm (E fm) (NClosed nat) = false + | eq_fm (NClosed nat) (E fm) = false + | eq_fm (A fm) (Closed nat) = false + | eq_fm (Closed nat) (A fm) = false + | eq_fm (A fm) (NClosed nat) = false + | eq_fm (NClosed nat) (A fm) = false + | eq_fm (Closed nata) (NClosed nat) = false + | eq_fm (NClosed nata) (Closed nat) = false; + +fun djf f p q = + (if eq_fm q T then T + else (if eq_fm q F then f p + else (case f p of T => T | F => q | Lt _ => Or (f p, q) + | Le _ => Or (f p, q) | Gt _ => Or (f p, q) + | Ge _ => Or (f p, q) | Eq _ => Or (f p, q) + | NEq _ => Or (f p, q) | Dvd (_, _) => Or (f p, q) + | NDvd (_, _) => Or (f p, q) | Not _ => Or (f p, q) + | And (_, _) => Or (f p, q) | Or (_, _) => Or (f p, q) + | Imp (_, _) => Or (f p, q) | Iff (_, _) => Or (f p, q) + | E _ => Or (f p, q) | A _ => Or (f p, q) + | Closed _ => Or (f p, q) | NClosed _ => Or (f p, q)))); + +fun foldr f [] a = a + | foldr f (x :: xs) a = f x (foldr f xs a); + +fun evaldjf f ps = foldr (djf f) ps F; + +fun dj f p = evaldjf f (disjuncts p); + +fun disj p q = + (if eq_fm p T orelse eq_fm q T then T + else (if eq_fm p F then q else (if eq_fm q F then p else Or (p, q)))); + +fun minus_nat n m = IntInf.max (0, (IntInf.- (n, m))); + +fun decrnum (Bound n) = Bound (minus_nat n (1 : IntInf.int)) + | decrnum (Neg a) = Neg (decrnum a) + | decrnum (Add (a, b)) = Add (decrnum a, decrnum b) + | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b) + | decrnum (Mul (c, a)) = Mul (c, decrnum a) + | decrnum (Cn (n, i, a)) = Cn (minus_nat n (1 : IntInf.int), i, decrnum a) + | decrnum (C u) = C u; + +fun decr (Lt a) = Lt (decrnum a) + | decr (Le a) = Le (decrnum a) + | decr (Gt a) = Gt (decrnum a) + | decr (Ge a) = Ge (decrnum a) + | decr (Eq a) = Eq (decrnum a) + | decr (NEq a) = NEq (decrnum a) + | decr (Dvd (i, a)) = Dvd (i, decrnum a) + | decr (NDvd (i, a)) = NDvd (i, decrnum a) + | decr (Not p) = Not (decr p) + | decr (And (p, q)) = And (decr p, decr q) + | decr (Or (p, q)) = Or (decr p, decr q) + | decr (Imp (p, q)) = Imp (decr p, decr q) + | decr (Iff (p, q)) = Iff (decr p, decr q) + | decr T = T + | decr F = F + | decr (E ao) = E ao + | decr (A ap) = A ap + | decr (Closed aq) = Closed aq + | decr (NClosed ar) = NClosed ar; + +fun concat_map f [] = [] + | concat_map f (x :: xs) = append (f x) (concat_map f xs); + +fun numsubst0 t (C c) = C c + | numsubst0 t (Bound n) = + (if ((n : IntInf.int) = (0 : IntInf.int)) then t else Bound n) + | numsubst0 t (Neg a) = Neg (numsubst0 t a) + | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b) + | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b) + | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a) + | numsubst0 t (Cn (v, i, a)) = + (if ((v : IntInf.int) = (0 : IntInf.int)) + then Add (Mul (i, t), numsubst0 t a) + else Cn (suc (minus_nat v (1 : IntInf.int)), i, numsubst0 t a)); + +fun subst0 t T = T + | subst0 t F = F + | subst0 t (Lt a) = Lt (numsubst0 t a) + | subst0 t (Le a) = Le (numsubst0 t a) + | subst0 t (Gt a) = Gt (numsubst0 t a) + | subst0 t (Ge a) = Ge (numsubst0 t a) + | subst0 t (Eq a) = Eq (numsubst0 t a) + | subst0 t (NEq a) = NEq (numsubst0 t a) + | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a) + | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a) + | subst0 t (Not p) = Not (subst0 t p) + | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q) + | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q) + | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q) + | subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q) + | subst0 t (Closed p) = Closed p + | subst0 t (NClosed p) = NClosed p; + +fun minusinf (And (p, q)) = And (minusinf p, minusinf q) + | minusinf (Or (p, q)) = Or (minusinf p, minusinf q) + | minusinf T = T + | minusinf F = F + | minusinf (Lt (C bo)) = Lt (C bo) + | minusinf (Lt (Bound bp)) = Lt (Bound bp) + | minusinf (Lt (Neg bt)) = Lt (Neg bt) + | minusinf (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) + | minusinf (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) + | minusinf (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) + | minusinf (Le (C co)) = Le (C co) + | minusinf (Le (Bound cp)) = Le (Bound cp) + | minusinf (Le (Neg ct)) = Le (Neg ct) + | minusinf (Le (Add (cu, cv))) = Le (Add (cu, cv)) + | minusinf (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) + | minusinf (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) + | minusinf (Gt (C doa)) = Gt (C doa) + | minusinf (Gt (Bound dp)) = Gt (Bound dp) + | minusinf (Gt (Neg dt)) = Gt (Neg dt) + | minusinf (Gt (Add (du, dv))) = Gt (Add (du, dv)) + | minusinf (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) + | minusinf (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) + | minusinf (Ge (C eo)) = Ge (C eo) + | minusinf (Ge (Bound ep)) = Ge (Bound ep) + | minusinf (Ge (Neg et)) = Ge (Neg et) + | minusinf (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) + | minusinf (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) + | minusinf (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) + | minusinf (Eq (C fo)) = Eq (C fo) + | minusinf (Eq (Bound fp)) = Eq (Bound fp) + | minusinf (Eq (Neg ft)) = Eq (Neg ft) + | minusinf (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) + | minusinf (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) + | minusinf (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) + | minusinf (NEq (C go)) = NEq (C go) + | minusinf (NEq (Bound gp)) = NEq (Bound gp) + | minusinf (NEq (Neg gt)) = NEq (Neg gt) + | minusinf (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) + | minusinf (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) + | minusinf (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) + | minusinf (Dvd (aa, ab)) = Dvd (aa, ab) + | minusinf (NDvd (ac, ad)) = NDvd (ac, ad) + | minusinf (Not ae) = Not ae + | minusinf (Imp (aj, ak)) = Imp (aj, ak) + | minusinf (Iff (al, am)) = Iff (al, am) + | minusinf (E an) = E an + | minusinf (A ao) = A ao + | minusinf (Closed ap) = Closed ap + | minusinf (NClosed aq) = NClosed aq + | minusinf (Lt (Cn (cm, c, e))) = + (if ((cm : IntInf.int) = (0 : IntInf.int)) then T + else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e))) + | minusinf (Le (Cn (dm, c, e))) = + (if ((dm : IntInf.int) = (0 : IntInf.int)) then T + else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e))) + | minusinf (Gt (Cn (em, c, e))) = + (if ((em : IntInf.int) = (0 : IntInf.int)) then F + else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e))) + | minusinf (Ge (Cn (fm, c, e))) = + (if ((fm : IntInf.int) = (0 : IntInf.int)) then F + else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e))) + | minusinf (Eq (Cn (gm, c, e))) = + (if ((gm : IntInf.int) = (0 : IntInf.int)) then F + else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e))) + | minusinf (NEq (Cn (hm, c, e))) = + (if ((hm : IntInf.int) = (0 : IntInf.int)) then T + else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e))); + +val eq_int = {eq = (fn a => fn b => ((a : IntInf.int) = b))} : IntInf.int eq; + +val zero_int : IntInf.int = (0 : IntInf.int); + +type 'a zero = {zero : 'a}; +val zero = #zero : 'a zero -> 'a; + +val zero_inta = {zero = zero_int} : IntInf.int zero; + +type 'a times = {times : 'a -> 'a -> 'a}; +val times = #times : 'a times -> 'a -> 'a -> 'a; + +type 'a no_zero_divisors = + {times_no_zero_divisors : 'a times, zero_no_zero_divisors : 'a zero}; +val times_no_zero_divisors = #times_no_zero_divisors : + 'a no_zero_divisors -> 'a times; +val zero_no_zero_divisors = #zero_no_zero_divisors : + 'a no_zero_divisors -> 'a zero; + +val times_int = {times = (fn a => fn b => IntInf.* (a, b))} : IntInf.int times; + +val no_zero_divisors_int = + {times_no_zero_divisors = times_int, zero_no_zero_divisors = zero_inta} : + IntInf.int no_zero_divisors; + +type 'a one = {one : 'a}; +val one = #one : 'a one -> 'a; + +type 'a zero_neq_one = {one_zero_neq_one : 'a one, zero_zero_neq_one : 'a zero}; +val one_zero_neq_one = #one_zero_neq_one : 'a zero_neq_one -> 'a one; +val zero_zero_neq_one = #zero_zero_neq_one : 'a zero_neq_one -> 'a zero; + +type 'a semigroup_mult = {times_semigroup_mult : 'a times}; +val times_semigroup_mult = #times_semigroup_mult : + 'a semigroup_mult -> 'a times; + +type 'a plus = {plus : 'a -> 'a -> 'a}; +val plus = #plus : 'a plus -> 'a -> 'a -> 'a; + +type 'a semigroup_add = {plus_semigroup_add : 'a plus}; +val plus_semigroup_add = #plus_semigroup_add : 'a semigroup_add -> 'a plus; + +type 'a ab_semigroup_add = {semigroup_add_ab_semigroup_add : 'a semigroup_add}; +val semigroup_add_ab_semigroup_add = #semigroup_add_ab_semigroup_add : + 'a ab_semigroup_add -> 'a semigroup_add; + +type 'a semiring = + {ab_semigroup_add_semiring : 'a ab_semigroup_add, + semigroup_mult_semiring : 'a semigroup_mult}; +val ab_semigroup_add_semiring = #ab_semigroup_add_semiring : + 'a semiring -> 'a ab_semigroup_add; +val semigroup_mult_semiring = #semigroup_mult_semiring : + 'a semiring -> 'a semigroup_mult; + +type 'a mult_zero = {times_mult_zero : 'a times, zero_mult_zero : 'a zero}; +val times_mult_zero = #times_mult_zero : 'a mult_zero -> 'a times; +val zero_mult_zero = #zero_mult_zero : 'a mult_zero -> 'a zero; + +type 'a monoid_add = + {semigroup_add_monoid_add : 'a semigroup_add, zero_monoid_add : 'a zero}; +val semigroup_add_monoid_add = #semigroup_add_monoid_add : + 'a monoid_add -> 'a semigroup_add; +val zero_monoid_add = #zero_monoid_add : 'a monoid_add -> 'a zero; + +type 'a comm_monoid_add = + {ab_semigroup_add_comm_monoid_add : 'a ab_semigroup_add, + monoid_add_comm_monoid_add : 'a monoid_add}; +val ab_semigroup_add_comm_monoid_add = #ab_semigroup_add_comm_monoid_add : + 'a comm_monoid_add -> 'a ab_semigroup_add; +val monoid_add_comm_monoid_add = #monoid_add_comm_monoid_add : + 'a comm_monoid_add -> 'a monoid_add; + +type 'a semiring_0 = + {comm_monoid_add_semiring_0 : 'a comm_monoid_add, + mult_zero_semiring_0 : 'a mult_zero, semiring_semiring_0 : 'a semiring}; +val comm_monoid_add_semiring_0 = #comm_monoid_add_semiring_0 : + 'a semiring_0 -> 'a comm_monoid_add; +val mult_zero_semiring_0 = #mult_zero_semiring_0 : + 'a semiring_0 -> 'a mult_zero; +val semiring_semiring_0 = #semiring_semiring_0 : 'a semiring_0 -> 'a semiring; + +type 'a power = {one_power : 'a one, times_power : 'a times}; +val one_power = #one_power : 'a power -> 'a one; +val times_power = #times_power : 'a power -> 'a times; + +type 'a monoid_mult = + {semigroup_mult_monoid_mult : 'a semigroup_mult, + power_monoid_mult : 'a power}; +val semigroup_mult_monoid_mult = #semigroup_mult_monoid_mult : + 'a monoid_mult -> 'a semigroup_mult; +val power_monoid_mult = #power_monoid_mult : 'a monoid_mult -> 'a power; + +type 'a semiring_1 = + {monoid_mult_semiring_1 : 'a monoid_mult, + semiring_0_semiring_1 : 'a semiring_0, + zero_neq_one_semiring_1 : 'a zero_neq_one}; +val monoid_mult_semiring_1 = #monoid_mult_semiring_1 : + 'a semiring_1 -> 'a monoid_mult; +val semiring_0_semiring_1 = #semiring_0_semiring_1 : + 'a semiring_1 -> 'a semiring_0; +val zero_neq_one_semiring_1 = #zero_neq_one_semiring_1 : + 'a semiring_1 -> 'a zero_neq_one; + +type 'a cancel_semigroup_add = + {semigroup_add_cancel_semigroup_add : 'a semigroup_add}; +val semigroup_add_cancel_semigroup_add = #semigroup_add_cancel_semigroup_add : + 'a cancel_semigroup_add -> 'a semigroup_add; + +type 'a cancel_ab_semigroup_add = + {ab_semigroup_add_cancel_ab_semigroup_add : 'a ab_semigroup_add, + cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_semigroup_add}; +val ab_semigroup_add_cancel_ab_semigroup_add = + #ab_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add; +val cancel_semigroup_add_cancel_ab_semigroup_add = + #cancel_semigroup_add_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add; + +type 'a cancel_comm_monoid_add = + {cancel_ab_semigroup_add_cancel_comm_monoid_add : 'a cancel_ab_semigroup_add, + comm_monoid_add_cancel_comm_monoid_add : 'a comm_monoid_add}; +val cancel_ab_semigroup_add_cancel_comm_monoid_add = + #cancel_ab_semigroup_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add; +val comm_monoid_add_cancel_comm_monoid_add = + #comm_monoid_add_cancel_comm_monoid_add : + 'a cancel_comm_monoid_add -> 'a comm_monoid_add; + +type 'a semiring_0_cancel = + {cancel_comm_monoid_add_semiring_0_cancel : 'a cancel_comm_monoid_add, + semiring_0_semiring_0_cancel : 'a semiring_0}; +val cancel_comm_monoid_add_semiring_0_cancel = + #cancel_comm_monoid_add_semiring_0_cancel : + 'a semiring_0_cancel -> 'a cancel_comm_monoid_add; +val semiring_0_semiring_0_cancel = #semiring_0_semiring_0_cancel : + 'a semiring_0_cancel -> 'a semiring_0; + +type 'a semiring_1_cancel = + {semiring_0_cancel_semiring_1_cancel : 'a semiring_0_cancel, + semiring_1_semiring_1_cancel : 'a semiring_1}; +val semiring_0_cancel_semiring_1_cancel = #semiring_0_cancel_semiring_1_cancel : + 'a semiring_1_cancel -> 'a semiring_0_cancel; +val semiring_1_semiring_1_cancel = #semiring_1_semiring_1_cancel : + 'a semiring_1_cancel -> 'a semiring_1; + +type 'a dvd = {times_dvd : 'a times}; +val times_dvd = #times_dvd : 'a dvd -> 'a times; + +type 'a ab_semigroup_mult = + {semigroup_mult_ab_semigroup_mult : 'a semigroup_mult}; +val semigroup_mult_ab_semigroup_mult = #semigroup_mult_ab_semigroup_mult : + 'a ab_semigroup_mult -> 'a semigroup_mult; + +type 'a comm_semiring = + {ab_semigroup_mult_comm_semiring : 'a ab_semigroup_mult, + semiring_comm_semiring : 'a semiring}; +val ab_semigroup_mult_comm_semiring = #ab_semigroup_mult_comm_semiring : + 'a comm_semiring -> 'a ab_semigroup_mult; +val semiring_comm_semiring = #semiring_comm_semiring : + 'a comm_semiring -> 'a semiring; + +type 'a comm_semiring_0 = + {comm_semiring_comm_semiring_0 : 'a comm_semiring, + semiring_0_comm_semiring_0 : 'a semiring_0}; +val comm_semiring_comm_semiring_0 = #comm_semiring_comm_semiring_0 : + 'a comm_semiring_0 -> 'a comm_semiring; +val semiring_0_comm_semiring_0 = #semiring_0_comm_semiring_0 : + 'a comm_semiring_0 -> 'a semiring_0; + +type 'a comm_monoid_mult = + {ab_semigroup_mult_comm_monoid_mult : 'a ab_semigroup_mult, + monoid_mult_comm_monoid_mult : 'a monoid_mult}; +val ab_semigroup_mult_comm_monoid_mult = #ab_semigroup_mult_comm_monoid_mult : + 'a comm_monoid_mult -> 'a ab_semigroup_mult; +val monoid_mult_comm_monoid_mult = #monoid_mult_comm_monoid_mult : + 'a comm_monoid_mult -> 'a monoid_mult; + +type 'a comm_semiring_1 = + {comm_monoid_mult_comm_semiring_1 : 'a comm_monoid_mult, + comm_semiring_0_comm_semiring_1 : 'a comm_semiring_0, + dvd_comm_semiring_1 : 'a dvd, semiring_1_comm_semiring_1 : 'a semiring_1}; +val comm_monoid_mult_comm_semiring_1 = #comm_monoid_mult_comm_semiring_1 : + 'a comm_semiring_1 -> 'a comm_monoid_mult; +val comm_semiring_0_comm_semiring_1 = #comm_semiring_0_comm_semiring_1 : + 'a comm_semiring_1 -> 'a comm_semiring_0; +val dvd_comm_semiring_1 = #dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd; +val semiring_1_comm_semiring_1 = #semiring_1_comm_semiring_1 : + 'a comm_semiring_1 -> 'a semiring_1; + +type 'a comm_semiring_0_cancel = + {comm_semiring_0_comm_semiring_0_cancel : 'a comm_semiring_0, + semiring_0_cancel_comm_semiring_0_cancel : 'a semiring_0_cancel}; +val comm_semiring_0_comm_semiring_0_cancel = + #comm_semiring_0_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a comm_semiring_0; +val semiring_0_cancel_comm_semiring_0_cancel = + #semiring_0_cancel_comm_semiring_0_cancel : + 'a comm_semiring_0_cancel -> 'a semiring_0_cancel; + +type 'a comm_semiring_1_cancel = + {comm_semiring_0_cancel_comm_semiring_1_cancel : 'a comm_semiring_0_cancel, + comm_semiring_1_comm_semiring_1_cancel : 'a comm_semiring_1, + semiring_1_cancel_comm_semiring_1_cancel : 'a semiring_1_cancel}; +val comm_semiring_0_cancel_comm_semiring_1_cancel = + #comm_semiring_0_cancel_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel; +val comm_semiring_1_comm_semiring_1_cancel = + #comm_semiring_1_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a comm_semiring_1; +val semiring_1_cancel_comm_semiring_1_cancel = + #semiring_1_cancel_comm_semiring_1_cancel : + 'a comm_semiring_1_cancel -> 'a semiring_1_cancel; + +type 'a diva = {dvd_div : 'a dvd, diva : 'a -> 'a -> 'a, moda : 'a -> 'a -> 'a}; +val dvd_div = #dvd_div : 'a diva -> 'a dvd; +val diva = #diva : 'a diva -> 'a -> 'a -> 'a; +val moda = #moda : 'a diva -> 'a -> 'a -> 'a; + +type 'a semiring_div = + {div_semiring_div : 'a diva, + comm_semiring_1_cancel_semiring_div : 'a comm_semiring_1_cancel, + no_zero_divisors_semiring_div : 'a no_zero_divisors}; +val div_semiring_div = #div_semiring_div : 'a semiring_div -> 'a diva; +val comm_semiring_1_cancel_semiring_div = #comm_semiring_1_cancel_semiring_div : + 'a semiring_div -> 'a comm_semiring_1_cancel; +val no_zero_divisors_semiring_div = #no_zero_divisors_semiring_div : + 'a semiring_div -> 'a no_zero_divisors; + +val one_int : IntInf.int = (1 : IntInf.int); + +val one_inta = {one = one_int} : IntInf.int one; + +val zero_neq_one_int = + {one_zero_neq_one = one_inta, zero_zero_neq_one = zero_inta} : + IntInf.int zero_neq_one; + +val semigroup_mult_int = {times_semigroup_mult = times_int} : + IntInf.int semigroup_mult; + +val plus_int = {plus = (fn a => fn b => IntInf.+ (a, b))} : IntInf.int plus; + +val semigroup_add_int = {plus_semigroup_add = plus_int} : + IntInf.int semigroup_add; + +val ab_semigroup_add_int = {semigroup_add_ab_semigroup_add = semigroup_add_int} + : IntInf.int ab_semigroup_add; + +val semiring_int = + {ab_semigroup_add_semiring = ab_semigroup_add_int, + semigroup_mult_semiring = semigroup_mult_int} + : IntInf.int semiring; + +val mult_zero_int = {times_mult_zero = times_int, zero_mult_zero = zero_inta} : + IntInf.int mult_zero; + +val monoid_add_int = + {semigroup_add_monoid_add = semigroup_add_int, zero_monoid_add = zero_inta} : + IntInf.int monoid_add; + +val comm_monoid_add_int = + {ab_semigroup_add_comm_monoid_add = ab_semigroup_add_int, + monoid_add_comm_monoid_add = monoid_add_int} + : IntInf.int comm_monoid_add; + +val semiring_0_int = + {comm_monoid_add_semiring_0 = comm_monoid_add_int, + mult_zero_semiring_0 = mult_zero_int, semiring_semiring_0 = semiring_int} + : IntInf.int semiring_0; + +val power_int = {one_power = one_inta, times_power = times_int} : + IntInf.int power; + +val monoid_mult_int = + {semigroup_mult_monoid_mult = semigroup_mult_int, + power_monoid_mult = power_int} + : IntInf.int monoid_mult; + +val semiring_1_int = + {monoid_mult_semiring_1 = monoid_mult_int, + semiring_0_semiring_1 = semiring_0_int, + zero_neq_one_semiring_1 = zero_neq_one_int} + : IntInf.int semiring_1; + +val cancel_semigroup_add_int = + {semigroup_add_cancel_semigroup_add = semigroup_add_int} : + IntInf.int cancel_semigroup_add; + +val cancel_ab_semigroup_add_int = + {ab_semigroup_add_cancel_ab_semigroup_add = ab_semigroup_add_int, + cancel_semigroup_add_cancel_ab_semigroup_add = cancel_semigroup_add_int} + : IntInf.int cancel_ab_semigroup_add; + +val cancel_comm_monoid_add_int = + {cancel_ab_semigroup_add_cancel_comm_monoid_add = cancel_ab_semigroup_add_int, + comm_monoid_add_cancel_comm_monoid_add = comm_monoid_add_int} + : IntInf.int cancel_comm_monoid_add; + +val semiring_0_cancel_int = + {cancel_comm_monoid_add_semiring_0_cancel = cancel_comm_monoid_add_int, + semiring_0_semiring_0_cancel = semiring_0_int} + : IntInf.int semiring_0_cancel; + +val semiring_1_cancel_int = + {semiring_0_cancel_semiring_1_cancel = semiring_0_cancel_int, + semiring_1_semiring_1_cancel = semiring_1_int} + : IntInf.int semiring_1_cancel; + +val dvd_int = {times_dvd = times_int} : IntInf.int dvd; + +val ab_semigroup_mult_int = + {semigroup_mult_ab_semigroup_mult = semigroup_mult_int} : + IntInf.int ab_semigroup_mult; + +val comm_semiring_int = + {ab_semigroup_mult_comm_semiring = ab_semigroup_mult_int, + semiring_comm_semiring = semiring_int} + : IntInf.int comm_semiring; + +val comm_semiring_0_int = + {comm_semiring_comm_semiring_0 = comm_semiring_int, + semiring_0_comm_semiring_0 = semiring_0_int} + : IntInf.int comm_semiring_0; + +val comm_monoid_mult_int = + {ab_semigroup_mult_comm_monoid_mult = ab_semigroup_mult_int, + monoid_mult_comm_monoid_mult = monoid_mult_int} + : IntInf.int comm_monoid_mult; + +val comm_semiring_1_int = + {comm_monoid_mult_comm_semiring_1 = comm_monoid_mult_int, + comm_semiring_0_comm_semiring_1 = comm_semiring_0_int, + dvd_comm_semiring_1 = dvd_int, semiring_1_comm_semiring_1 = semiring_1_int} + : IntInf.int comm_semiring_1; + +val comm_semiring_0_cancel_int = + {comm_semiring_0_comm_semiring_0_cancel = comm_semiring_0_int, + semiring_0_cancel_comm_semiring_0_cancel = semiring_0_cancel_int} + : IntInf.int comm_semiring_0_cancel; + +val comm_semiring_1_cancel_int = + {comm_semiring_0_cancel_comm_semiring_1_cancel = comm_semiring_0_cancel_int, + comm_semiring_1_comm_semiring_1_cancel = comm_semiring_1_int, + semiring_1_cancel_comm_semiring_1_cancel = semiring_1_cancel_int} + : IntInf.int comm_semiring_1_cancel; + +fun abs_int i = (if IntInf.< (i, (0 : IntInf.int)) then IntInf.~ i else i); + +fun split f (a, b) = f a b; + +fun sgn_int i = + (if ((i : IntInf.int) = (0 : IntInf.int)) then (0 : IntInf.int) + else (if IntInf.< ((0 : IntInf.int), i) then (1 : IntInf.int) + else IntInf.~ (1 : IntInf.int))); + +fun apsnd f (x, y) = (x, f y); + +fun divmod_int k l = + (if ((k : IntInf.int) = (0 : IntInf.int)) + then ((0 : IntInf.int), (0 : IntInf.int)) + else (if ((l : IntInf.int) = (0 : IntInf.int)) then ((0 : IntInf.int), k) + else apsnd (fn a => IntInf.* (sgn_int l, a)) + (if (((sgn_int k) : IntInf.int) = (sgn_int l)) + then IntInf.divMod (IntInf.abs k, IntInf.abs l) + else let + val (r, s) = + IntInf.divMod (IntInf.abs k, IntInf.abs l); + in + (if ((s : IntInf.int) = (0 : IntInf.int)) + then (IntInf.~ r, (0 : IntInf.int)) + else (IntInf.- (IntInf.~ r, (1 : IntInf.int)), + IntInf.- (abs_int l, s))) + end))); + +fun snd (a, b) = b; + +fun mod_int a b = snd (divmod_int a b); + +fun fst (a, b) = a; + +fun div_int a b = fst (divmod_int a b); + +val div_inta = {dvd_div = dvd_int, diva = div_int, moda = mod_int} : + IntInf.int diva; + +val semiring_div_int = + {div_semiring_div = div_inta, + comm_semiring_1_cancel_semiring_div = comm_semiring_1_cancel_int, + no_zero_divisors_semiring_div = no_zero_divisors_int} + : IntInf.int semiring_div; + +fun dvd (A1_, A2_) a b = + eqa A2_ (moda (div_semiring_div A1_) b a) + (zero ((zero_no_zero_divisors o no_zero_divisors_semiring_div) A1_)); + +fun num_case f1 f2 f3 f4 f5 f6 f7 (Mul (inta, num)) = f7 inta num + | num_case f1 f2 f3 f4 f5 f6 f7 (Sub (num1, num2)) = f6 num1 num2 + | num_case f1 f2 f3 f4 f5 f6 f7 (Add (num1, num2)) = f5 num1 num2 + | num_case f1 f2 f3 f4 f5 f6 f7 (Neg num) = f4 num + | num_case f1 f2 f3 f4 f5 f6 f7 (Cn (nat, inta, num)) = f3 nat inta num + | num_case f1 f2 f3 f4 f5 f6 f7 (Bound nat) = f2 nat + | num_case f1 f2 f3 f4 f5 f6 f7 (C inta) = f1 inta; + +fun nummul i (C j) = C (IntInf.* (i, j)) + | nummul i (Cn (n, c, t)) = Cn (n, IntInf.* (c, i), nummul i t) + | nummul i (Bound v) = Mul (i, Bound v) + | nummul i (Neg v) = Mul (i, Neg v) + | nummul i (Add (v, va)) = Mul (i, Add (v, va)) + | nummul i (Sub (v, va)) = Mul (i, Sub (v, va)) + | nummul i (Mul (v, va)) = Mul (i, Mul (v, va)); + +fun numneg t = nummul (IntInf.~ (1 : IntInf.int)) t; + +fun numadd (Cn (n1, c1, r1), Cn (n2, c2, r2)) = + (if ((n1 : IntInf.int) = n2) + then let + val c = IntInf.+ (c1, c2); + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then numadd (r1, r2) + else Cn (n1, c, numadd (r1, r2))) + end + else (if IntInf.<= (n1, n2) + then Cn (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2))) + else Cn (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2)))) + | numadd (Cn (n1, c1, r1), C dd) = Cn (n1, c1, numadd (r1, C dd)) + | numadd (Cn (n1, c1, r1), Bound de) = Cn (n1, c1, numadd (r1, Bound de)) + | numadd (Cn (n1, c1, r1), Neg di) = Cn (n1, c1, numadd (r1, Neg di)) + | numadd (Cn (n1, c1, r1), Add (dj, dk)) = + Cn (n1, c1, numadd (r1, Add (dj, dk))) + | numadd (Cn (n1, c1, r1), Sub (dl, dm)) = + Cn (n1, c1, numadd (r1, Sub (dl, dm))) + | numadd (Cn (n1, c1, r1), Mul (dn, doa)) = + Cn (n1, c1, numadd (r1, Mul (dn, doa))) + | numadd (C w, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (C w, r2)) + | numadd (Bound x, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Bound x, r2)) + | numadd (Neg ac, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Neg ac, r2)) + | numadd (Add (ad, ae), Cn (n2, c2, r2)) = + Cn (n2, c2, numadd (Add (ad, ae), r2)) + | numadd (Sub (af, ag), Cn (n2, c2, r2)) = + Cn (n2, c2, numadd (Sub (af, ag), r2)) + | numadd (Mul (ah, ai), Cn (n2, c2, r2)) = + Cn (n2, c2, numadd (Mul (ah, ai), r2)) + | numadd (C b1, C b2) = C (IntInf.+ (b1, b2)) + | numadd (C aj, Bound bi) = Add (C aj, Bound bi) + | numadd (C aj, Neg bm) = Add (C aj, Neg bm) + | numadd (C aj, Add (bn, bo)) = Add (C aj, Add (bn, bo)) + | numadd (C aj, Sub (bp, bq)) = Add (C aj, Sub (bp, bq)) + | numadd (C aj, Mul (br, bs)) = Add (C aj, Mul (br, bs)) + | numadd (Bound ak, C cf) = Add (Bound ak, C cf) + | numadd (Bound ak, Bound cg) = Add (Bound ak, Bound cg) + | numadd (Bound ak, Neg ck) = Add (Bound ak, Neg ck) + | numadd (Bound ak, Add (cl, cm)) = Add (Bound ak, Add (cl, cm)) + | numadd (Bound ak, Sub (cn, co)) = Add (Bound ak, Sub (cn, co)) + | numadd (Bound ak, Mul (cp, cq)) = Add (Bound ak, Mul (cp, cq)) + | numadd (Neg ao, C en) = Add (Neg ao, C en) + | numadd (Neg ao, Bound eo) = Add (Neg ao, Bound eo) + | numadd (Neg ao, Neg es) = Add (Neg ao, Neg es) + | numadd (Neg ao, Add (et, eu)) = Add (Neg ao, Add (et, eu)) + | numadd (Neg ao, Sub (ev, ew)) = Add (Neg ao, Sub (ev, ew)) + | numadd (Neg ao, Mul (ex, ey)) = Add (Neg ao, Mul (ex, ey)) + | numadd (Add (ap, aq), C fl) = Add (Add (ap, aq), C fl) + | numadd (Add (ap, aq), Bound fm) = Add (Add (ap, aq), Bound fm) + | numadd (Add (ap, aq), Neg fq) = Add (Add (ap, aq), Neg fq) + | numadd (Add (ap, aq), Add (fr, fs)) = Add (Add (ap, aq), Add (fr, fs)) + | numadd (Add (ap, aq), Sub (ft, fu)) = Add (Add (ap, aq), Sub (ft, fu)) + | numadd (Add (ap, aq), Mul (fv, fw)) = Add (Add (ap, aq), Mul (fv, fw)) + | numadd (Sub (ar, asa), C gj) = Add (Sub (ar, asa), C gj) + | numadd (Sub (ar, asa), Bound gk) = Add (Sub (ar, asa), Bound gk) + | numadd (Sub (ar, asa), Neg go) = Add (Sub (ar, asa), Neg go) + | numadd (Sub (ar, asa), Add (gp, gq)) = Add (Sub (ar, asa), Add (gp, gq)) + | numadd (Sub (ar, asa), Sub (gr, gs)) = Add (Sub (ar, asa), Sub (gr, gs)) + | numadd (Sub (ar, asa), Mul (gt, gu)) = Add (Sub (ar, asa), Mul (gt, gu)) + | numadd (Mul (at, au), C hh) = Add (Mul (at, au), C hh) + | numadd (Mul (at, au), Bound hi) = Add (Mul (at, au), Bound hi) + | numadd (Mul (at, au), Neg hm) = Add (Mul (at, au), Neg hm) + | numadd (Mul (at, au), Add (hn, ho)) = Add (Mul (at, au), Add (hn, ho)) + | numadd (Mul (at, au), Sub (hp, hq)) = Add (Mul (at, au), Sub (hp, hq)) + | numadd (Mul (at, au), Mul (hr, hs)) = Add (Mul (at, au), Mul (hr, hs)); + +fun numsub s t = + (if eq_num s t then C (0 : IntInf.int) else numadd (s, numneg t)); + +fun simpnum (C j) = C j + | simpnum (Bound n) = Cn (n, (1 : IntInf.int), C (0 : IntInf.int)) + | simpnum (Neg t) = numneg (simpnum t) + | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s) + | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s) + | simpnum (Mul (i, t)) = + (if ((i : IntInf.int) = (0 : IntInf.int)) then C (0 : IntInf.int) + else nummul i (simpnum t)) + | simpnum (Cn (v, va, vb)) = Cn (v, va, vb); + +fun nota (Not p) = p + | nota T = F + | nota F = T + | nota (Lt v) = Not (Lt v) + | nota (Le v) = Not (Le v) + | nota (Gt v) = Not (Gt v) + | nota (Ge v) = Not (Ge v) + | nota (Eq v) = Not (Eq v) + | nota (NEq v) = Not (NEq v) + | nota (Dvd (v, va)) = Not (Dvd (v, va)) + | nota (NDvd (v, va)) = Not (NDvd (v, va)) + | nota (And (v, va)) = Not (And (v, va)) + | nota (Or (v, va)) = Not (Or (v, va)) + | nota (Imp (v, va)) = Not (Imp (v, va)) + | nota (Iff (v, va)) = Not (Iff (v, va)) + | nota (E v) = Not (E v) + | nota (A v) = Not (A v) + | nota (Closed v) = Not (Closed v) + | nota (NClosed v) = Not (NClosed v); + +fun iffa p q = + (if eq_fm p q then T + else (if eq_fm p (nota q) orelse eq_fm (nota p) q then F + else (if eq_fm p F then nota q + else (if eq_fm q F then nota p + else (if eq_fm p T then q + else (if eq_fm q T then p else Iff (p, q))))))); + +fun impa p q = + (if eq_fm p F orelse eq_fm q T then T + else (if eq_fm p T then q else (if eq_fm q F then nota p else Imp (p, q)))); + +fun conj p q = + (if eq_fm p F orelse eq_fm q F then F + else (if eq_fm p T then q else (if eq_fm q T then p else And (p, q)))); + +fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q) + | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q) + | simpfm (Imp (p, q)) = impa (simpfm p) (simpfm q) + | simpfm (Iff (p, q)) = iffa (simpfm p) (simpfm q) + | simpfm (Not p) = nota (simpfm p) + | simpfm (Lt a) = + let + val aa = simpnum a; + in + (case aa of C v => (if IntInf.< (v, (0 : IntInf.int)) then T else F) + | Bound _ => Lt aa | Cn (_, _, _) => Lt aa | Neg _ => Lt aa + | Add (_, _) => Lt aa | Sub (_, _) => Lt aa | Mul (_, _) => Lt aa) + end + | simpfm (Le a) = + let + val aa = simpnum a; + in + (case aa of C v => (if IntInf.<= (v, (0 : IntInf.int)) then T else F) + | Bound _ => Le aa | Cn (_, _, _) => Le aa | Neg _ => Le aa + | Add (_, _) => Le aa | Sub (_, _) => Le aa | Mul (_, _) => Le aa) + end + | simpfm (Gt a) = + let + val aa = simpnum a; + in + (case aa of C v => (if IntInf.< ((0 : IntInf.int), v) then T else F) + | Bound _ => Gt aa | Cn (_, _, _) => Gt aa | Neg _ => Gt aa + | Add (_, _) => Gt aa | Sub (_, _) => Gt aa | Mul (_, _) => Gt aa) + end + | simpfm (Ge a) = + let + val aa = simpnum a; + in + (case aa of C v => (if IntInf.<= ((0 : IntInf.int), v) then T else F) + | Bound _ => Ge aa | Cn (_, _, _) => Ge aa | Neg _ => Ge aa + | Add (_, _) => Ge aa | Sub (_, _) => Ge aa | Mul (_, _) => Ge aa) + end + | simpfm (Eq a) = + let + val aa = simpnum a; + in + (case aa + of C v => (if ((v : IntInf.int) = (0 : IntInf.int)) then T else F) + | Bound _ => Eq aa | Cn (_, _, _) => Eq aa | Neg _ => Eq aa + | Add (_, _) => Eq aa | Sub (_, _) => Eq aa | Mul (_, _) => Eq aa) + end + | simpfm (NEq a) = + let + val aa = simpnum a; + in + (case aa + of C v => (if not ((v : IntInf.int) = (0 : IntInf.int)) then T else F) + | Bound _ => NEq aa | Cn (_, _, _) => NEq aa | Neg _ => NEq aa + | Add (_, _) => NEq aa | Sub (_, _) => NEq aa | Mul (_, _) => NEq aa) + end + | simpfm (Dvd (i, a)) = + (if ((i : IntInf.int) = (0 : IntInf.int)) then simpfm (Eq a) + else (if (((abs_int i) : IntInf.int) = (1 : IntInf.int)) then T + else let + val aa = simpnum a; + in + (case aa + of C v => + (if dvd (semiring_div_int, eq_int) i v then T else F) + | Bound _ => Dvd (i, aa) | Cn (_, _, _) => Dvd (i, aa) + | Neg _ => Dvd (i, aa) | Add (_, _) => Dvd (i, aa) + | Sub (_, _) => Dvd (i, aa) | Mul (_, _) => Dvd (i, aa)) + end)) + | simpfm (NDvd (i, a)) = + (if ((i : IntInf.int) = (0 : IntInf.int)) then simpfm (NEq a) + else (if (((abs_int i) : IntInf.int) = (1 : IntInf.int)) then F + else let + val aa = simpnum a; + in + (case aa + of C v => + (if not (dvd (semiring_div_int, eq_int) i v) then T + else F) + | Bound _ => NDvd (i, aa) | Cn (_, _, _) => NDvd (i, aa) + | Neg _ => NDvd (i, aa) | Add (_, _) => NDvd (i, aa) + | Sub (_, _) => NDvd (i, aa) | Mul (_, _) => NDvd (i, aa)) + end)) + | simpfm T = T + | simpfm F = F + | simpfm (E v) = E v + | simpfm (A v) = A v + | simpfm (Closed v) = Closed v + | simpfm (NClosed v) = NClosed v; + +fun iupt i j = + (if IntInf.< (j, i) then [] + else i :: iupt (IntInf.+ (i, (1 : IntInf.int))) j); + +fun mirror (And (p, q)) = And (mirror p, mirror q) + | mirror (Or (p, q)) = Or (mirror p, mirror q) + | mirror T = T + | mirror F = F + | mirror (Lt (C bo)) = Lt (C bo) + | mirror (Lt (Bound bp)) = Lt (Bound bp) + | mirror (Lt (Neg bt)) = Lt (Neg bt) + | mirror (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) + | mirror (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) + | mirror (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) + | mirror (Le (C co)) = Le (C co) + | mirror (Le (Bound cp)) = Le (Bound cp) + | mirror (Le (Neg ct)) = Le (Neg ct) + | mirror (Le (Add (cu, cv))) = Le (Add (cu, cv)) + | mirror (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) + | mirror (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) + | mirror (Gt (C doa)) = Gt (C doa) + | mirror (Gt (Bound dp)) = Gt (Bound dp) + | mirror (Gt (Neg dt)) = Gt (Neg dt) + | mirror (Gt (Add (du, dv))) = Gt (Add (du, dv)) + | mirror (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) + | mirror (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) + | mirror (Ge (C eo)) = Ge (C eo) + | mirror (Ge (Bound ep)) = Ge (Bound ep) + | mirror (Ge (Neg et)) = Ge (Neg et) + | mirror (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) + | mirror (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) + | mirror (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) + | mirror (Eq (C fo)) = Eq (C fo) + | mirror (Eq (Bound fp)) = Eq (Bound fp) + | mirror (Eq (Neg ft)) = Eq (Neg ft) + | mirror (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) + | mirror (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) + | mirror (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) + | mirror (NEq (C go)) = NEq (C go) + | mirror (NEq (Bound gp)) = NEq (Bound gp) + | mirror (NEq (Neg gt)) = NEq (Neg gt) + | mirror (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) + | mirror (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) + | mirror (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) + | mirror (Dvd (aa, C ho)) = Dvd (aa, C ho) + | mirror (Dvd (aa, Bound hp)) = Dvd (aa, Bound hp) + | mirror (Dvd (aa, Neg ht)) = Dvd (aa, Neg ht) + | mirror (Dvd (aa, Add (hu, hv))) = Dvd (aa, Add (hu, hv)) + | mirror (Dvd (aa, Sub (hw, hx))) = Dvd (aa, Sub (hw, hx)) + | mirror (Dvd (aa, Mul (hy, hz))) = Dvd (aa, Mul (hy, hz)) + | mirror (NDvd (ac, C io)) = NDvd (ac, C io) + | mirror (NDvd (ac, Bound ip)) = NDvd (ac, Bound ip) + | mirror (NDvd (ac, Neg it)) = NDvd (ac, Neg it) + | mirror (NDvd (ac, Add (iu, iv))) = NDvd (ac, Add (iu, iv)) + | mirror (NDvd (ac, Sub (iw, ix))) = NDvd (ac, Sub (iw, ix)) + | mirror (NDvd (ac, Mul (iy, iz))) = NDvd (ac, Mul (iy, iz)) + | mirror (Not ae) = Not ae + | mirror (Imp (aj, ak)) = Imp (aj, ak) + | mirror (Iff (al, am)) = Iff (al, am) + | mirror (E an) = E an + | mirror (A ao) = A ao + | mirror (Closed ap) = Closed ap + | mirror (NClosed aq) = NClosed aq + | mirror (Lt (Cn (cm, c, e))) = + (if ((cm : IntInf.int) = (0 : IntInf.int)) + then Gt (Cn ((0 : IntInf.int), c, Neg e)) + else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e))) + | mirror (Le (Cn (dm, c, e))) = + (if ((dm : IntInf.int) = (0 : IntInf.int)) + then Ge (Cn ((0 : IntInf.int), c, Neg e)) + else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e))) + | mirror (Gt (Cn (em, c, e))) = + (if ((em : IntInf.int) = (0 : IntInf.int)) + then Lt (Cn ((0 : IntInf.int), c, Neg e)) + else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e))) + | mirror (Ge (Cn (fm, c, e))) = + (if ((fm : IntInf.int) = (0 : IntInf.int)) + then Le (Cn ((0 : IntInf.int), c, Neg e)) + else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e))) + | mirror (Eq (Cn (gm, c, e))) = + (if ((gm : IntInf.int) = (0 : IntInf.int)) + then Eq (Cn ((0 : IntInf.int), c, Neg e)) + else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e))) + | mirror (NEq (Cn (hm, c, e))) = + (if ((hm : IntInf.int) = (0 : IntInf.int)) + then NEq (Cn ((0 : IntInf.int), c, Neg e)) + else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e))) + | mirror (Dvd (i, Cn (im, c, e))) = + (if ((im : IntInf.int) = (0 : IntInf.int)) + then Dvd (i, Cn ((0 : IntInf.int), c, Neg e)) + else Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e))) + | mirror (NDvd (i, Cn (jm, c, e))) = + (if ((jm : IntInf.int) = (0 : IntInf.int)) + then NDvd (i, Cn ((0 : IntInf.int), c, Neg e)) + else NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e))); + +fun size_list [] = (0 : IntInf.int) + | size_list (a :: lista) = IntInf.+ (size_list lista, suc (0 : IntInf.int)); + +fun alpha (And (p, q)) = append (alpha p) (alpha q) + | alpha (Or (p, q)) = append (alpha p) (alpha q) + | alpha T = [] + | alpha F = [] + | alpha (Lt (C bo)) = [] + | alpha (Lt (Bound bp)) = [] + | alpha (Lt (Neg bt)) = [] + | alpha (Lt (Add (bu, bv))) = [] + | alpha (Lt (Sub (bw, bx))) = [] + | alpha (Lt (Mul (by, bz))) = [] + | alpha (Le (C co)) = [] + | alpha (Le (Bound cp)) = [] + | alpha (Le (Neg ct)) = [] + | alpha (Le (Add (cu, cv))) = [] + | alpha (Le (Sub (cw, cx))) = [] + | alpha (Le (Mul (cy, cz))) = [] + | alpha (Gt (C doa)) = [] + | alpha (Gt (Bound dp)) = [] + | alpha (Gt (Neg dt)) = [] + | alpha (Gt (Add (du, dv))) = [] + | alpha (Gt (Sub (dw, dx))) = [] + | alpha (Gt (Mul (dy, dz))) = [] + | alpha (Ge (C eo)) = [] + | alpha (Ge (Bound ep)) = [] + | alpha (Ge (Neg et)) = [] + | alpha (Ge (Add (eu, ev))) = [] + | alpha (Ge (Sub (ew, ex))) = [] + | alpha (Ge (Mul (ey, ez))) = [] + | alpha (Eq (C fo)) = [] + | alpha (Eq (Bound fp)) = [] + | alpha (Eq (Neg ft)) = [] + | alpha (Eq (Add (fu, fv))) = [] + | alpha (Eq (Sub (fw, fx))) = [] + | alpha (Eq (Mul (fy, fz))) = [] + | alpha (NEq (C go)) = [] + | alpha (NEq (Bound gp)) = [] + | alpha (NEq (Neg gt)) = [] + | alpha (NEq (Add (gu, gv))) = [] + | alpha (NEq (Sub (gw, gx))) = [] + | alpha (NEq (Mul (gy, gz))) = [] + | alpha (Dvd (aa, ab)) = [] + | alpha (NDvd (ac, ad)) = [] + | alpha (Not ae) = [] + | alpha (Imp (aj, ak)) = [] + | alpha (Iff (al, am)) = [] + | alpha (E an) = [] + | alpha (A ao) = [] + | alpha (Closed ap) = [] + | alpha (NClosed aq) = [] + | alpha (Lt (Cn (cm, c, e))) = + (if ((cm : IntInf.int) = (0 : IntInf.int)) then [e] else []) + | alpha (Le (Cn (dm, c, e))) = + (if ((dm : IntInf.int) = (0 : IntInf.int)) + then [Add (C (~1 : IntInf.int), e)] else []) + | alpha (Gt (Cn (em, c, e))) = + (if ((em : IntInf.int) = (0 : IntInf.int)) then [] else []) + | alpha (Ge (Cn (fm, c, e))) = + (if ((fm : IntInf.int) = (0 : IntInf.int)) then [] else []) + | alpha (Eq (Cn (gm, c, e))) = + (if ((gm : IntInf.int) = (0 : IntInf.int)) + then [Add (C (~1 : IntInf.int), e)] else []) + | alpha (NEq (Cn (hm, c, e))) = + (if ((hm : IntInf.int) = (0 : IntInf.int)) then [e] else []); + +fun beta (And (p, q)) = append (beta p) (beta q) + | beta (Or (p, q)) = append (beta p) (beta q) + | beta T = [] + | beta F = [] + | beta (Lt (C bo)) = [] + | beta (Lt (Bound bp)) = [] + | beta (Lt (Neg bt)) = [] + | beta (Lt (Add (bu, bv))) = [] + | beta (Lt (Sub (bw, bx))) = [] + | beta (Lt (Mul (by, bz))) = [] + | beta (Le (C co)) = [] + | beta (Le (Bound cp)) = [] + | beta (Le (Neg ct)) = [] + | beta (Le (Add (cu, cv))) = [] + | beta (Le (Sub (cw, cx))) = [] + | beta (Le (Mul (cy, cz))) = [] + | beta (Gt (C doa)) = [] + | beta (Gt (Bound dp)) = [] + | beta (Gt (Neg dt)) = [] + | beta (Gt (Add (du, dv))) = [] + | beta (Gt (Sub (dw, dx))) = [] + | beta (Gt (Mul (dy, dz))) = [] + | beta (Ge (C eo)) = [] + | beta (Ge (Bound ep)) = [] + | beta (Ge (Neg et)) = [] + | beta (Ge (Add (eu, ev))) = [] + | beta (Ge (Sub (ew, ex))) = [] + | beta (Ge (Mul (ey, ez))) = [] + | beta (Eq (C fo)) = [] + | beta (Eq (Bound fp)) = [] + | beta (Eq (Neg ft)) = [] + | beta (Eq (Add (fu, fv))) = [] + | beta (Eq (Sub (fw, fx))) = [] + | beta (Eq (Mul (fy, fz))) = [] + | beta (NEq (C go)) = [] + | beta (NEq (Bound gp)) = [] + | beta (NEq (Neg gt)) = [] + | beta (NEq (Add (gu, gv))) = [] + | beta (NEq (Sub (gw, gx))) = [] + | beta (NEq (Mul (gy, gz))) = [] + | beta (Dvd (aa, ab)) = [] + | beta (NDvd (ac, ad)) = [] + | beta (Not ae) = [] + | beta (Imp (aj, ak)) = [] + | beta (Iff (al, am)) = [] + | beta (E an) = [] + | beta (A ao) = [] + | beta (Closed ap) = [] + | beta (NClosed aq) = [] + | beta (Lt (Cn (cm, c, e))) = + (if ((cm : IntInf.int) = (0 : IntInf.int)) then [] else []) + | beta (Le (Cn (dm, c, e))) = + (if ((dm : IntInf.int) = (0 : IntInf.int)) then [] else []) + | beta (Gt (Cn (em, c, e))) = + (if ((em : IntInf.int) = (0 : IntInf.int)) then [Neg e] else []) + | beta (Ge (Cn (fm, c, e))) = + (if ((fm : IntInf.int) = (0 : IntInf.int)) + then [Sub (C (~1 : IntInf.int), e)] else []) + | beta (Eq (Cn (gm, c, e))) = + (if ((gm : IntInf.int) = (0 : IntInf.int)) + then [Sub (C (~1 : IntInf.int), e)] else []) + | beta (NEq (Cn (hm, c, e))) = + (if ((hm : IntInf.int) = (0 : IntInf.int)) then [Neg e] else []); + +val eq_numa = {eq = eq_num} : num eq; + +fun member A_ x [] = false + | member A_ x (y :: ys) = eqa A_ x y orelse member A_ x ys; + +fun remdups A_ [] = [] + | remdups A_ (x :: xs) = + (if member A_ x xs then remdups A_ xs else x :: remdups A_ xs); + +fun gcd_int k l = + abs_int + (if ((l : IntInf.int) = (0 : IntInf.int)) then k + else gcd_int l (mod_int (abs_int k) (abs_int l))); + +fun lcm_int a b = div_int (IntInf.* (abs_int a, abs_int b)) (gcd_int a b); + +fun delta (And (p, q)) = lcm_int (delta p) (delta q) + | delta (Or (p, q)) = lcm_int (delta p) (delta q) + | delta T = (1 : IntInf.int) + | delta F = (1 : IntInf.int) + | delta (Lt u) = (1 : IntInf.int) + | delta (Le v) = (1 : IntInf.int) + | delta (Gt w) = (1 : IntInf.int) + | delta (Ge x) = (1 : IntInf.int) + | delta (Eq y) = (1 : IntInf.int) + | delta (NEq z) = (1 : IntInf.int) + | delta (Dvd (aa, C bo)) = (1 : IntInf.int) + | delta (Dvd (aa, Bound bp)) = (1 : IntInf.int) + | delta (Dvd (aa, Neg bt)) = (1 : IntInf.int) + | delta (Dvd (aa, Add (bu, bv))) = (1 : IntInf.int) + | delta (Dvd (aa, Sub (bw, bx))) = (1 : IntInf.int) + | delta (Dvd (aa, Mul (by, bz))) = (1 : IntInf.int) + | delta (NDvd (ac, C co)) = (1 : IntInf.int) + | delta (NDvd (ac, Bound cp)) = (1 : IntInf.int) + | delta (NDvd (ac, Neg ct)) = (1 : IntInf.int) + | delta (NDvd (ac, Add (cu, cv))) = (1 : IntInf.int) + | delta (NDvd (ac, Sub (cw, cx))) = (1 : IntInf.int) + | delta (NDvd (ac, Mul (cy, cz))) = (1 : IntInf.int) + | delta (Not ae) = (1 : IntInf.int) + | delta (Imp (aj, ak)) = (1 : IntInf.int) + | delta (Iff (al, am)) = (1 : IntInf.int) + | delta (E an) = (1 : IntInf.int) + | delta (A ao) = (1 : IntInf.int) + | delta (Closed ap) = (1 : IntInf.int) + | delta (NClosed aq) = (1 : IntInf.int) + | delta (Dvd (i, Cn (cm, c, e))) = + (if ((cm : IntInf.int) = (0 : IntInf.int)) then i else (1 : IntInf.int)) + | delta (NDvd (i, Cn (dm, c, e))) = + (if ((dm : IntInf.int) = (0 : IntInf.int)) then i else (1 : IntInf.int)); + +fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k)) + | a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k)) + | a_beta T = (fn _ => T) + | a_beta F = (fn _ => F) + | a_beta (Lt (C bo)) = (fn _ => Lt (C bo)) + | a_beta (Lt (Bound bp)) = (fn _ => Lt (Bound bp)) + | a_beta (Lt (Neg bt)) = (fn _ => Lt (Neg bt)) + | a_beta (Lt (Add (bu, bv))) = (fn _ => Lt (Add (bu, bv))) + | a_beta (Lt (Sub (bw, bx))) = (fn _ => Lt (Sub (bw, bx))) + | a_beta (Lt (Mul (by, bz))) = (fn _ => Lt (Mul (by, bz))) + | a_beta (Le (C co)) = (fn _ => Le (C co)) + | a_beta (Le (Bound cp)) = (fn _ => Le (Bound cp)) + | a_beta (Le (Neg ct)) = (fn _ => Le (Neg ct)) + | a_beta (Le (Add (cu, cv))) = (fn _ => Le (Add (cu, cv))) + | a_beta (Le (Sub (cw, cx))) = (fn _ => Le (Sub (cw, cx))) + | a_beta (Le (Mul (cy, cz))) = (fn _ => Le (Mul (cy, cz))) + | a_beta (Gt (C doa)) = (fn _ => Gt (C doa)) + | a_beta (Gt (Bound dp)) = (fn _ => Gt (Bound dp)) + | a_beta (Gt (Neg dt)) = (fn _ => Gt (Neg dt)) + | a_beta (Gt (Add (du, dv))) = (fn _ => Gt (Add (du, dv))) + | a_beta (Gt (Sub (dw, dx))) = (fn _ => Gt (Sub (dw, dx))) + | a_beta (Gt (Mul (dy, dz))) = (fn _ => Gt (Mul (dy, dz))) + | a_beta (Ge (C eo)) = (fn _ => Ge (C eo)) + | a_beta (Ge (Bound ep)) = (fn _ => Ge (Bound ep)) + | a_beta (Ge (Neg et)) = (fn _ => Ge (Neg et)) + | a_beta (Ge (Add (eu, ev))) = (fn _ => Ge (Add (eu, ev))) + | a_beta (Ge (Sub (ew, ex))) = (fn _ => Ge (Sub (ew, ex))) + | a_beta (Ge (Mul (ey, ez))) = (fn _ => Ge (Mul (ey, ez))) + | a_beta (Eq (C fo)) = (fn _ => Eq (C fo)) + | a_beta (Eq (Bound fp)) = (fn _ => Eq (Bound fp)) + | a_beta (Eq (Neg ft)) = (fn _ => Eq (Neg ft)) + | a_beta (Eq (Add (fu, fv))) = (fn _ => Eq (Add (fu, fv))) + | a_beta (Eq (Sub (fw, fx))) = (fn _ => Eq (Sub (fw, fx))) + | a_beta (Eq (Mul (fy, fz))) = (fn _ => Eq (Mul (fy, fz))) + | a_beta (NEq (C go)) = (fn _ => NEq (C go)) + | a_beta (NEq (Bound gp)) = (fn _ => NEq (Bound gp)) + | a_beta (NEq (Neg gt)) = (fn _ => NEq (Neg gt)) + | a_beta (NEq (Add (gu, gv))) = (fn _ => NEq (Add (gu, gv))) + | a_beta (NEq (Sub (gw, gx))) = (fn _ => NEq (Sub (gw, gx))) + | a_beta (NEq (Mul (gy, gz))) = (fn _ => NEq (Mul (gy, gz))) + | a_beta (Dvd (aa, C ho)) = (fn _ => Dvd (aa, C ho)) + | a_beta (Dvd (aa, Bound hp)) = (fn _ => Dvd (aa, Bound hp)) + | a_beta (Dvd (aa, Neg ht)) = (fn _ => Dvd (aa, Neg ht)) + | a_beta (Dvd (aa, Add (hu, hv))) = (fn _ => Dvd (aa, Add (hu, hv))) + | a_beta (Dvd (aa, Sub (hw, hx))) = (fn _ => Dvd (aa, Sub (hw, hx))) + | a_beta (Dvd (aa, Mul (hy, hz))) = (fn _ => Dvd (aa, Mul (hy, hz))) + | a_beta (NDvd (ac, C io)) = (fn _ => NDvd (ac, C io)) + | a_beta (NDvd (ac, Bound ip)) = (fn _ => NDvd (ac, Bound ip)) + | a_beta (NDvd (ac, Neg it)) = (fn _ => NDvd (ac, Neg it)) + | a_beta (NDvd (ac, Add (iu, iv))) = (fn _ => NDvd (ac, Add (iu, iv))) + | a_beta (NDvd (ac, Sub (iw, ix))) = (fn _ => NDvd (ac, Sub (iw, ix))) + | a_beta (NDvd (ac, Mul (iy, iz))) = (fn _ => NDvd (ac, Mul (iy, iz))) + | a_beta (Not ae) = (fn _ => Not ae) + | a_beta (Imp (aj, ak)) = (fn _ => Imp (aj, ak)) + | a_beta (Iff (al, am)) = (fn _ => Iff (al, am)) + | a_beta (E an) = (fn _ => E an) + | a_beta (A ao) = (fn _ => A ao) + | a_beta (Closed ap) = (fn _ => Closed ap) + | a_beta (NClosed aq) = (fn _ => NClosed aq) + | a_beta (Lt (Cn (cm, c, e))) = + (if ((cm : IntInf.int) = (0 : IntInf.int)) + then (fn k => + Lt (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) + else (fn _ => Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e)))) + | a_beta (Le (Cn (dm, c, e))) = + (if ((dm : IntInf.int) = (0 : IntInf.int)) + then (fn k => + Le (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) + else (fn _ => Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e)))) + | a_beta (Gt (Cn (em, c, e))) = + (if ((em : IntInf.int) = (0 : IntInf.int)) + then (fn k => + Gt (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) + else (fn _ => Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e)))) + | a_beta (Ge (Cn (fm, c, e))) = + (if ((fm : IntInf.int) = (0 : IntInf.int)) + then (fn k => + Ge (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) + else (fn _ => Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e)))) + | a_beta (Eq (Cn (gm, c, e))) = + (if ((gm : IntInf.int) = (0 : IntInf.int)) + then (fn k => + Eq (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) + else (fn _ => Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e)))) + | a_beta (NEq (Cn (hm, c, e))) = + (if ((hm : IntInf.int) = (0 : IntInf.int)) + then (fn k => + NEq (Cn ((0 : IntInf.int), (1 : IntInf.int), + Mul (div_int k c, e)))) + else (fn _ => NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e)))) + | a_beta (Dvd (i, Cn (im, c, e))) = + (if ((im : IntInf.int) = (0 : IntInf.int)) + then (fn k => + Dvd (IntInf.* (div_int k c, i), + Cn ((0 : IntInf.int), (1 : IntInf.int), + Mul (div_int k c, e)))) + else (fn _ => Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e)))) + | a_beta (NDvd (i, Cn (jm, c, e))) = + (if ((jm : IntInf.int) = (0 : IntInf.int)) + then (fn k => + NDvd (IntInf.* (div_int k c, i), + Cn ((0 : IntInf.int), (1 : IntInf.int), + Mul (div_int k c, e)))) + else (fn _ => NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e)))); + +fun zeta (And (p, q)) = lcm_int (zeta p) (zeta q) + | zeta (Or (p, q)) = lcm_int (zeta p) (zeta q) + | zeta T = (1 : IntInf.int) + | zeta F = (1 : IntInf.int) + | zeta (Lt (C bo)) = (1 : IntInf.int) + | zeta (Lt (Bound bp)) = (1 : IntInf.int) + | zeta (Lt (Neg bt)) = (1 : IntInf.int) + | zeta (Lt (Add (bu, bv))) = (1 : IntInf.int) + | zeta (Lt (Sub (bw, bx))) = (1 : IntInf.int) + | zeta (Lt (Mul (by, bz))) = (1 : IntInf.int) + | zeta (Le (C co)) = (1 : IntInf.int) + | zeta (Le (Bound cp)) = (1 : IntInf.int) + | zeta (Le (Neg ct)) = (1 : IntInf.int) + | zeta (Le (Add (cu, cv))) = (1 : IntInf.int) + | zeta (Le (Sub (cw, cx))) = (1 : IntInf.int) + | zeta (Le (Mul (cy, cz))) = (1 : IntInf.int) + | zeta (Gt (C doa)) = (1 : IntInf.int) + | zeta (Gt (Bound dp)) = (1 : IntInf.int) + | zeta (Gt (Neg dt)) = (1 : IntInf.int) + | zeta (Gt (Add (du, dv))) = (1 : IntInf.int) + | zeta (Gt (Sub (dw, dx))) = (1 : IntInf.int) + | zeta (Gt (Mul (dy, dz))) = (1 : IntInf.int) + | zeta (Ge (C eo)) = (1 : IntInf.int) + | zeta (Ge (Bound ep)) = (1 : IntInf.int) + | zeta (Ge (Neg et)) = (1 : IntInf.int) + | zeta (Ge (Add (eu, ev))) = (1 : IntInf.int) + | zeta (Ge (Sub (ew, ex))) = (1 : IntInf.int) + | zeta (Ge (Mul (ey, ez))) = (1 : IntInf.int) + | zeta (Eq (C fo)) = (1 : IntInf.int) + | zeta (Eq (Bound fp)) = (1 : IntInf.int) + | zeta (Eq (Neg ft)) = (1 : IntInf.int) + | zeta (Eq (Add (fu, fv))) = (1 : IntInf.int) + | zeta (Eq (Sub (fw, fx))) = (1 : IntInf.int) + | zeta (Eq (Mul (fy, fz))) = (1 : IntInf.int) + | zeta (NEq (C go)) = (1 : IntInf.int) + | zeta (NEq (Bound gp)) = (1 : IntInf.int) + | zeta (NEq (Neg gt)) = (1 : IntInf.int) + | zeta (NEq (Add (gu, gv))) = (1 : IntInf.int) + | zeta (NEq (Sub (gw, gx))) = (1 : IntInf.int) + | zeta (NEq (Mul (gy, gz))) = (1 : IntInf.int) + | zeta (Dvd (aa, C ho)) = (1 : IntInf.int) + | zeta (Dvd (aa, Bound hp)) = (1 : IntInf.int) + | zeta (Dvd (aa, Neg ht)) = (1 : IntInf.int) + | zeta (Dvd (aa, Add (hu, hv))) = (1 : IntInf.int) + | zeta (Dvd (aa, Sub (hw, hx))) = (1 : IntInf.int) + | zeta (Dvd (aa, Mul (hy, hz))) = (1 : IntInf.int) + | zeta (NDvd (ac, C io)) = (1 : IntInf.int) + | zeta (NDvd (ac, Bound ip)) = (1 : IntInf.int) + | zeta (NDvd (ac, Neg it)) = (1 : IntInf.int) + | zeta (NDvd (ac, Add (iu, iv))) = (1 : IntInf.int) + | zeta (NDvd (ac, Sub (iw, ix))) = (1 : IntInf.int) + | zeta (NDvd (ac, Mul (iy, iz))) = (1 : IntInf.int) + | zeta (Not ae) = (1 : IntInf.int) + | zeta (Imp (aj, ak)) = (1 : IntInf.int) + | zeta (Iff (al, am)) = (1 : IntInf.int) + | zeta (E an) = (1 : IntInf.int) + | zeta (A ao) = (1 : IntInf.int) + | zeta (Closed ap) = (1 : IntInf.int) + | zeta (NClosed aq) = (1 : IntInf.int) + | zeta (Lt (Cn (cm, c, e))) = + (if ((cm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) + | zeta (Le (Cn (dm, c, e))) = + (if ((dm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) + | zeta (Gt (Cn (em, c, e))) = + (if ((em : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) + | zeta (Ge (Cn (fm, c, e))) = + (if ((fm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) + | zeta (Eq (Cn (gm, c, e))) = + (if ((gm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) + | zeta (NEq (Cn (hm, c, e))) = + (if ((hm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) + | zeta (Dvd (i, Cn (im, c, e))) = + (if ((im : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) + | zeta (NDvd (i, Cn (jm, c, e))) = + (if ((jm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)); + +fun zsplit0 (C c) = ((0 : IntInf.int), C c) + | zsplit0 (Bound n) = + (if ((n : IntInf.int) = (0 : IntInf.int)) + then ((1 : IntInf.int), C (0 : IntInf.int)) + else ((0 : IntInf.int), Bound n)) + | zsplit0 (Cn (n, i, a)) = + let + val (ia, aa) = zsplit0 a; + in + (if ((n : IntInf.int) = (0 : IntInf.int)) then (IntInf.+ (i, ia), aa) + else (ia, Cn (n, i, aa))) + end + | zsplit0 (Neg a) = + let + val (i, aa) = zsplit0 a; + in + (IntInf.~ i, Neg aa) + end + | zsplit0 (Add (a, b)) = + let + val (ia, aa) = zsplit0 a; + val (ib, ba) = zsplit0 b; + in + (IntInf.+ (ia, ib), Add (aa, ba)) + end + | zsplit0 (Sub (a, b)) = + let + val (ia, aa) = zsplit0 a; + val (ib, ba) = zsplit0 b; + in + (IntInf.- (ia, ib), Sub (aa, ba)) + end + | zsplit0 (Mul (i, a)) = + let + val (ia, aa) = zsplit0 a; + in + (IntInf.* (i, ia), Mul (i, aa)) + end; + +fun zlfm (And (p, q)) = And (zlfm p, zlfm q) + | zlfm (Or (p, q)) = Or (zlfm p, zlfm q) + | zlfm (Imp (p, q)) = Or (zlfm (Not p), zlfm q) + | zlfm (Iff (p, q)) = + Or (And (zlfm p, zlfm q), And (zlfm (Not p), zlfm (Not q))) + | zlfm (Lt a) = + let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then Lt r + else (if IntInf.< ((0 : IntInf.int), c) + then Lt (Cn ((0 : IntInf.int), c, r)) + else Gt (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end + | zlfm (Le a) = + let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then Le r + else (if IntInf.< ((0 : IntInf.int), c) + then Le (Cn ((0 : IntInf.int), c, r)) + else Ge (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end + | zlfm (Gt a) = + let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then Gt r + else (if IntInf.< ((0 : IntInf.int), c) + then Gt (Cn ((0 : IntInf.int), c, r)) + else Lt (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end + | zlfm (Ge a) = + let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then Ge r + else (if IntInf.< ((0 : IntInf.int), c) + then Ge (Cn ((0 : IntInf.int), c, r)) + else Le (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end + | zlfm (Eq a) = + let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then Eq r + else (if IntInf.< ((0 : IntInf.int), c) + then Eq (Cn ((0 : IntInf.int), c, r)) + else Eq (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end + | zlfm (NEq a) = + let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then NEq r + else (if IntInf.< ((0 : IntInf.int), c) + then NEq (Cn ((0 : IntInf.int), c, r)) + else NEq (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end + | zlfm (Dvd (i, a)) = + (if ((i : IntInf.int) = (0 : IntInf.int)) then zlfm (Eq a) + else let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then Dvd (abs_int i, r) + else (if IntInf.< ((0 : IntInf.int), c) + then Dvd (abs_int i, Cn ((0 : IntInf.int), c, r)) + else Dvd (abs_int i, + Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end) + | zlfm (NDvd (i, a)) = + (if ((i : IntInf.int) = (0 : IntInf.int)) then zlfm (NEq a) + else let + val (c, r) = zsplit0 a; + in + (if ((c : IntInf.int) = (0 : IntInf.int)) then NDvd (abs_int i, r) + else (if IntInf.< ((0 : IntInf.int), c) + then NDvd (abs_int i, Cn ((0 : IntInf.int), c, r)) + else NDvd (abs_int i, + Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) + end) + | zlfm (Not (And (p, q))) = Or (zlfm (Not p), zlfm (Not q)) + | zlfm (Not (Or (p, q))) = And (zlfm (Not p), zlfm (Not q)) + | zlfm (Not (Imp (p, q))) = And (zlfm p, zlfm (Not q)) + | zlfm (Not (Iff (p, q))) = + Or (And (zlfm p, zlfm (Not q)), And (zlfm (Not p), zlfm q)) + | zlfm (Not (Not p)) = zlfm p + | zlfm (Not T) = F + | zlfm (Not F) = T + | zlfm (Not (Lt a)) = zlfm (Ge a) + | zlfm (Not (Le a)) = zlfm (Gt a) + | zlfm (Not (Gt a)) = zlfm (Le a) + | zlfm (Not (Ge a)) = zlfm (Lt a) + | zlfm (Not (Eq a)) = zlfm (NEq a) + | zlfm (Not (NEq a)) = zlfm (Eq a) + | zlfm (Not (Dvd (i, a))) = zlfm (NDvd (i, a)) + | zlfm (Not (NDvd (i, a))) = zlfm (Dvd (i, a)) + | zlfm (Not (Closed p)) = NClosed p + | zlfm (Not (NClosed p)) = Closed p + | zlfm T = T + | zlfm F = F + | zlfm (Not (E ci)) = Not (E ci) + | zlfm (Not (A cj)) = Not (A cj) + | zlfm (E ao) = E ao + | zlfm (A ap) = A ap + | zlfm (Closed aq) = Closed aq + | zlfm (NClosed ar) = NClosed ar; + +fun unita p = + let + val pa = zlfm p; + val l = zeta pa; + val q = + And (Dvd (l, Cn ((0 : IntInf.int), (1 : IntInf.int), C (0 : IntInf.int))), + a_beta pa l); + val d = delta q; + val b = remdups eq_numa (map simpnum (beta q)); + val a = remdups eq_numa (map simpnum (alpha q)); + in + (if IntInf.<= (size_list b, size_list a) then (q, (b, d)) + else (mirror q, (a, d))) + end; + +fun cooper p = + let + val (q, (b, d)) = unita p; + val js = iupt (1 : IntInf.int) d; + val mq = simpfm (minusinf q); + val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js; + in + (if eq_fm md T then T + else let + val qd = + evaldjf (fn (ba, j) => simpfm (subst0 (Add (ba, C j)) q)) + (concat_map (fn ba => map (fn a => (ba, a)) js) b); + in + decr (disj md qd) + end) + end; + +fun prep (E T) = T + | prep (E F) = F + | prep (E (Or (p, q))) = Or (prep (E p), prep (E q)) + | prep (E (Imp (p, q))) = Or (prep (E (Not p)), prep (E q)) + | prep (E (Iff (p, q))) = + Or (prep (E (And (p, q))), prep (E (And (Not p, Not q)))) + | prep (E (Not (And (p, q)))) = Or (prep (E (Not p)), prep (E (Not q))) + | prep (E (Not (Imp (p, q)))) = prep (E (And (p, Not q))) + | prep (E (Not (Iff (p, q)))) = + Or (prep (E (And (p, Not q))), prep (E (And (Not p, q)))) + | prep (E (Lt ef)) = E (prep (Lt ef)) + | prep (E (Le eg)) = E (prep (Le eg)) + | prep (E (Gt eh)) = E (prep (Gt eh)) + | prep (E (Ge ei)) = E (prep (Ge ei)) + | prep (E (Eq ej)) = E (prep (Eq ej)) + | prep (E (NEq ek)) = E (prep (NEq ek)) + | prep (E (Dvd (el, em))) = E (prep (Dvd (el, em))) + | prep (E (NDvd (en, eo))) = E (prep (NDvd (en, eo))) + | prep (E (Not T)) = E (prep (Not T)) + | prep (E (Not F)) = E (prep (Not F)) + | prep (E (Not (Lt gw))) = E (prep (Not (Lt gw))) + | prep (E (Not (Le gx))) = E (prep (Not (Le gx))) + | prep (E (Not (Gt gy))) = E (prep (Not (Gt gy))) + | prep (E (Not (Ge gz))) = E (prep (Not (Ge gz))) + | prep (E (Not (Eq ha))) = E (prep (Not (Eq ha))) + | prep (E (Not (NEq hb))) = E (prep (Not (NEq hb))) + | prep (E (Not (Dvd (hc, hd)))) = E (prep (Not (Dvd (hc, hd)))) + | prep (E (Not (NDvd (he, hf)))) = E (prep (Not (NDvd (he, hf)))) + | prep (E (Not (Not hg))) = E (prep (Not (Not hg))) + | prep (E (Not (Or (hj, hk)))) = E (prep (Not (Or (hj, hk)))) + | prep (E (Not (E hp))) = E (prep (Not (E hp))) + | prep (E (Not (A hq))) = E (prep (Not (A hq))) + | prep (E (Not (Closed hr))) = E (prep (Not (Closed hr))) + | prep (E (Not (NClosed hs))) = E (prep (Not (NClosed hs))) + | prep (E (And (eq, er))) = E (prep (And (eq, er))) + | prep (E (E ey)) = E (prep (E ey)) + | prep (E (A ez)) = E (prep (A ez)) + | prep (E (Closed fa)) = E (prep (Closed fa)) + | prep (E (NClosed fb)) = E (prep (NClosed fb)) + | prep (A (And (p, q))) = And (prep (A p), prep (A q)) + | prep (A T) = prep (Not (E (Not T))) + | prep (A F) = prep (Not (E (Not F))) + | prep (A (Lt jn)) = prep (Not (E (Not (Lt jn)))) + | prep (A (Le jo)) = prep (Not (E (Not (Le jo)))) + | prep (A (Gt jp)) = prep (Not (E (Not (Gt jp)))) + | prep (A (Ge jq)) = prep (Not (E (Not (Ge jq)))) + | prep (A (Eq jr)) = prep (Not (E (Not (Eq jr)))) + | prep (A (NEq js)) = prep (Not (E (Not (NEq js)))) + | prep (A (Dvd (jt, ju))) = prep (Not (E (Not (Dvd (jt, ju))))) + | prep (A (NDvd (jv, jw))) = prep (Not (E (Not (NDvd (jv, jw))))) + | prep (A (Not jx)) = prep (Not (E (Not (Not jx)))) + | prep (A (Or (ka, kb))) = prep (Not (E (Not (Or (ka, kb))))) + | prep (A (Imp (kc, kd))) = prep (Not (E (Not (Imp (kc, kd))))) + | prep (A (Iff (ke, kf))) = prep (Not (E (Not (Iff (ke, kf))))) + | prep (A (E kg)) = prep (Not (E (Not (E kg)))) + | prep (A (A kh)) = prep (Not (E (Not (A kh)))) + | prep (A (Closed ki)) = prep (Not (E (Not (Closed ki)))) + | prep (A (NClosed kj)) = prep (Not (E (Not (NClosed kj)))) + | prep (Not (Not p)) = prep p + | prep (Not (And (p, q))) = Or (prep (Not p), prep (Not q)) + | prep (Not (A p)) = prep (E (Not p)) + | prep (Not (Or (p, q))) = And (prep (Not p), prep (Not q)) + | prep (Not (Imp (p, q))) = And (prep p, prep (Not q)) + | prep (Not (Iff (p, q))) = Or (prep (And (p, Not q)), prep (And (Not p, q))) + | prep (Not T) = Not (prep T) + | prep (Not F) = Not (prep F) + | prep (Not (Lt bo)) = Not (prep (Lt bo)) + | prep (Not (Le bp)) = Not (prep (Le bp)) + | prep (Not (Gt bq)) = Not (prep (Gt bq)) + | prep (Not (Ge br)) = Not (prep (Ge br)) + | prep (Not (Eq bs)) = Not (prep (Eq bs)) + | prep (Not (NEq bt)) = Not (prep (NEq bt)) + | prep (Not (Dvd (bu, bv))) = Not (prep (Dvd (bu, bv))) + | prep (Not (NDvd (bw, bx))) = Not (prep (NDvd (bw, bx))) + | prep (Not (E ch)) = Not (prep (E ch)) + | prep (Not (Closed cj)) = Not (prep (Closed cj)) + | prep (Not (NClosed ck)) = Not (prep (NClosed ck)) + | prep (Or (p, q)) = Or (prep p, prep q) + | prep (And (p, q)) = And (prep p, prep q) + | prep (Imp (p, q)) = prep (Or (Not p, q)) + | prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (Not p, Not q))) + | prep T = T + | prep F = F + | prep (Lt u) = Lt u + | prep (Le v) = Le v + | prep (Gt w) = Gt w + | prep (Ge x) = Ge x + | prep (Eq y) = Eq y + | prep (NEq z) = NEq z + | prep (Dvd (aa, ab)) = Dvd (aa, ab) + | prep (NDvd (ac, ad)) = NDvd (ac, ad) + | prep (Closed ap) = Closed ap + | prep (NClosed aq) = NClosed aq; + +fun qelim (E p) = (fn qe => dj qe (qelim p qe)) + | qelim (A p) = (fn qe => nota (qe (qelim (Not p) qe))) + | qelim (Not p) = (fn qe => nota (qelim p qe)) + | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe)) + | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe)) + | qelim (Imp (p, q)) = (fn qe => impa (qelim p qe) (qelim q qe)) + | qelim (Iff (p, q)) = (fn qe => iffa (qelim p qe) (qelim q qe)) + | qelim T = (fn _ => simpfm T) + | qelim F = (fn _ => simpfm F) + | qelim (Lt u) = (fn _ => simpfm (Lt u)) + | qelim (Le v) = (fn _ => simpfm (Le v)) + | qelim (Gt w) = (fn _ => simpfm (Gt w)) + | qelim (Ge x) = (fn _ => simpfm (Ge x)) + | qelim (Eq y) = (fn _ => simpfm (Eq y)) + | qelim (NEq z) = (fn _ => simpfm (NEq z)) + | qelim (Dvd (aa, ab)) = (fn _ => simpfm (Dvd (aa, ab))) + | qelim (NDvd (ac, ad)) = (fn _ => simpfm (NDvd (ac, ad))) + | qelim (Closed ap) = (fn _ => simpfm (Closed ap)) + | qelim (NClosed aq) = (fn _ => simpfm (NClosed aq)); + +fun pa p = qelim (prep p) cooper; + +end; (*struct Cooper_Procedure*) diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Tools/Qelim/generated_cooper.ML --- a/src/HOL/Tools/Qelim/generated_cooper.ML Tue May 11 09:10:31 2010 -0700 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,2274 +0,0 @@ -(* Generated from Cooper.thy; DO NOT EDIT! *) - -structure Generated_Cooper : sig - type 'a eq - val eq : 'a eq -> 'a -> 'a -> bool - val eqa : 'a eq -> 'a -> 'a -> bool - val leta : 'a -> ('a -> 'b) -> 'b - val suc : IntInf.int -> IntInf.int - datatype num = C of IntInf.int | Bound of IntInf.int | - Cn of IntInf.int * IntInf.int * num | Neg of num | Add of num * num | - Sub of num * num | Mul of IntInf.int * num - datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | - Eq of num | NEq of num | Dvd of IntInf.int * num | NDvd of IntInf.int * num - | Not of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | - Iff of fm * fm | E of fm | A of fm | Closed of IntInf.int | - NClosed of IntInf.int - val map : ('a -> 'b) -> 'a list -> 'b list - val append : 'a list -> 'a list -> 'a list - val disjuncts : fm -> fm list - val fm_case : - 'a -> 'a -> (num -> 'a) -> - (num -> 'a) -> - (num -> 'a) -> - (num -> 'a) -> - (num -> 'a) -> - (num -> 'a) -> - (IntInf.int -> num -> 'a) -> - (IntInf.int -> num -> 'a) -> - (fm -> 'a) -> - (fm -> fm -> 'a) -> - (fm -> fm -> 'a) -> - (fm -> fm -> 'a) -> -(fm -> fm -> 'a) -> - (fm -> 'a) -> - (fm -> 'a) -> (IntInf.int -> 'a) -> (IntInf.int -> 'a) -> fm -> 'a - val eq_num : num -> num -> bool - val eq_fm : fm -> fm -> bool - val djf : ('a -> fm) -> 'a -> fm -> fm - val foldr : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b - val evaldjf : ('a -> fm) -> 'a list -> fm - val dj : (fm -> fm) -> fm -> fm - val disj : fm -> fm -> fm - val minus_nat : IntInf.int -> IntInf.int -> IntInf.int - val decrnum : num -> num - val decr : fm -> fm - val concat_map : ('a -> 'b list) -> 'a list -> 'b list - val numsubst0 : num -> num -> num - val subst0 : num -> fm -> fm - val minusinf : fm -> fm - val eq_int : IntInf.int eq - val zero_int : IntInf.int - type 'a zero - val zero : 'a zero -> 'a - val zero_inta : IntInf.int zero - type 'a times - val times : 'a times -> 'a -> 'a -> 'a - type 'a no_zero_divisors - val times_no_zero_divisors : 'a no_zero_divisors -> 'a times - val zero_no_zero_divisors : 'a no_zero_divisors -> 'a zero - val times_int : IntInf.int times - val no_zero_divisors_int : IntInf.int no_zero_divisors - type 'a one - val one : 'a one -> 'a - type 'a zero_neq_one - val one_zero_neq_one : 'a zero_neq_one -> 'a one - val zero_zero_neq_one : 'a zero_neq_one -> 'a zero - type 'a semigroup_mult - val times_semigroup_mult : 'a semigroup_mult -> 'a times - type 'a plus - val plus : 'a plus -> 'a -> 'a -> 'a - type 'a semigroup_add - val plus_semigroup_add : 'a semigroup_add -> 'a plus - type 'a ab_semigroup_add - val semigroup_add_ab_semigroup_add : 'a ab_semigroup_add -> 'a semigroup_add - type 'a semiring - val ab_semigroup_add_semiring : 'a semiring -> 'a ab_semigroup_add - val semigroup_mult_semiring : 'a semiring -> 'a semigroup_mult - type 'a mult_zero - val times_mult_zero : 'a mult_zero -> 'a times - val zero_mult_zero : 'a mult_zero -> 'a zero - type 'a monoid_add - val semigroup_add_monoid_add : 'a monoid_add -> 'a semigroup_add - val zero_monoid_add : 'a monoid_add -> 'a zero - type 'a comm_monoid_add - val ab_semigroup_add_comm_monoid_add : - 'a comm_monoid_add -> 'a ab_semigroup_add - val monoid_add_comm_monoid_add : 'a comm_monoid_add -> 'a monoid_add - type 'a semiring_0 - val comm_monoid_add_semiring_0 : 'a semiring_0 -> 'a comm_monoid_add - val mult_zero_semiring_0 : 'a semiring_0 -> 'a mult_zero - val semiring_semiring_0 : 'a semiring_0 -> 'a semiring - type 'a power - val one_power : 'a power -> 'a one - val times_power : 'a power -> 'a times - type 'a monoid_mult - val semigroup_mult_monoid_mult : 'a monoid_mult -> 'a semigroup_mult - val power_monoid_mult : 'a monoid_mult -> 'a power - type 'a semiring_1 - val monoid_mult_semiring_1 : 'a semiring_1 -> 'a monoid_mult - val semiring_0_semiring_1 : 'a semiring_1 -> 'a semiring_0 - val zero_neq_one_semiring_1 : 'a semiring_1 -> 'a zero_neq_one - type 'a cancel_semigroup_add - val semigroup_add_cancel_semigroup_add : - 'a cancel_semigroup_add -> 'a semigroup_add - type 'a cancel_ab_semigroup_add - val ab_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add - val cancel_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add - type 'a cancel_comm_monoid_add - val cancel_ab_semigroup_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add - val comm_monoid_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a comm_monoid_add - type 'a semiring_0_cancel - val cancel_comm_monoid_add_semiring_0_cancel : - 'a semiring_0_cancel -> 'a cancel_comm_monoid_add - val semiring_0_semiring_0_cancel : 'a semiring_0_cancel -> 'a semiring_0 - type 'a semiring_1_cancel - val semiring_0_cancel_semiring_1_cancel : - 'a semiring_1_cancel -> 'a semiring_0_cancel - val semiring_1_semiring_1_cancel : 'a semiring_1_cancel -> 'a semiring_1 - type 'a dvd - val times_dvd : 'a dvd -> 'a times - type 'a ab_semigroup_mult - val semigroup_mult_ab_semigroup_mult : - 'a ab_semigroup_mult -> 'a semigroup_mult - type 'a comm_semiring - val ab_semigroup_mult_comm_semiring : 'a comm_semiring -> 'a ab_semigroup_mult - val semiring_comm_semiring : 'a comm_semiring -> 'a semiring - type 'a comm_semiring_0 - val comm_semiring_comm_semiring_0 : 'a comm_semiring_0 -> 'a comm_semiring - val semiring_0_comm_semiring_0 : 'a comm_semiring_0 -> 'a semiring_0 - type 'a comm_monoid_mult - val ab_semigroup_mult_comm_monoid_mult : - 'a comm_monoid_mult -> 'a ab_semigroup_mult - val monoid_mult_comm_monoid_mult : 'a comm_monoid_mult -> 'a monoid_mult - type 'a comm_semiring_1 - val comm_monoid_mult_comm_semiring_1 : - 'a comm_semiring_1 -> 'a comm_monoid_mult - val comm_semiring_0_comm_semiring_1 : 'a comm_semiring_1 -> 'a comm_semiring_0 - val dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd - val semiring_1_comm_semiring_1 : 'a comm_semiring_1 -> 'a semiring_1 - type 'a comm_semiring_0_cancel - val comm_semiring_0_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a comm_semiring_0 - val semiring_0_cancel_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a semiring_0_cancel - type 'a comm_semiring_1_cancel - val comm_semiring_0_cancel_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel - val comm_semiring_1_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a comm_semiring_1 - val semiring_1_cancel_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a semiring_1_cancel - type 'a diva - val dvd_div : 'a diva -> 'a dvd - val diva : 'a diva -> 'a -> 'a -> 'a - val moda : 'a diva -> 'a -> 'a -> 'a - type 'a semiring_div - val div_semiring_div : 'a semiring_div -> 'a diva - val comm_semiring_1_cancel_semiring_div : - 'a semiring_div -> 'a comm_semiring_1_cancel - val no_zero_divisors_semiring_div : 'a semiring_div -> 'a no_zero_divisors - val one_int : IntInf.int - val one_inta : IntInf.int one - val zero_neq_one_int : IntInf.int zero_neq_one - val semigroup_mult_int : IntInf.int semigroup_mult - val plus_int : IntInf.int plus - val semigroup_add_int : IntInf.int semigroup_add - val ab_semigroup_add_int : IntInf.int ab_semigroup_add - val semiring_int : IntInf.int semiring - val mult_zero_int : IntInf.int mult_zero - val monoid_add_int : IntInf.int monoid_add - val comm_monoid_add_int : IntInf.int comm_monoid_add - val semiring_0_int : IntInf.int semiring_0 - val power_int : IntInf.int power - val monoid_mult_int : IntInf.int monoid_mult - val semiring_1_int : IntInf.int semiring_1 - val cancel_semigroup_add_int : IntInf.int cancel_semigroup_add - val cancel_ab_semigroup_add_int : IntInf.int cancel_ab_semigroup_add - val cancel_comm_monoid_add_int : IntInf.int cancel_comm_monoid_add - val semiring_0_cancel_int : IntInf.int semiring_0_cancel - val semiring_1_cancel_int : IntInf.int semiring_1_cancel - val dvd_int : IntInf.int dvd - val ab_semigroup_mult_int : IntInf.int ab_semigroup_mult - val comm_semiring_int : IntInf.int comm_semiring - val comm_semiring_0_int : IntInf.int comm_semiring_0 - val comm_monoid_mult_int : IntInf.int comm_monoid_mult - val comm_semiring_1_int : IntInf.int comm_semiring_1 - val comm_semiring_0_cancel_int : IntInf.int comm_semiring_0_cancel - val comm_semiring_1_cancel_int : IntInf.int comm_semiring_1_cancel - val abs_int : IntInf.int -> IntInf.int - val split : ('a -> 'b -> 'c) -> 'a * 'b -> 'c - val sgn_int : IntInf.int -> IntInf.int - val apsnd : ('a -> 'b) -> 'c * 'a -> 'c * 'b - val divmod_int : IntInf.int -> IntInf.int -> IntInf.int * IntInf.int - val snd : 'a * 'b -> 'b - val mod_int : IntInf.int -> IntInf.int -> IntInf.int - val fst : 'a * 'b -> 'a - val div_int : IntInf.int -> IntInf.int -> IntInf.int - val div_inta : IntInf.int diva - val semiring_div_int : IntInf.int semiring_div - val dvd : 'a semiring_div * 'a eq -> 'a -> 'a -> bool - val num_case : - (IntInf.int -> 'a) -> - (IntInf.int -> 'a) -> - (IntInf.int -> IntInf.int -> num -> 'a) -> - (num -> 'a) -> - (num -> num -> 'a) -> - (num -> num -> 'a) -> (IntInf.int -> num -> 'a) -> num -> 'a - val nummul : IntInf.int -> num -> num - val numneg : num -> num - val numadd : num * num -> num - val numsub : num -> num -> num - val simpnum : num -> num - val nota : fm -> fm - val iffa : fm -> fm -> fm - val impa : fm -> fm -> fm - val conj : fm -> fm -> fm - val simpfm : fm -> fm - val iupt : IntInf.int -> IntInf.int -> IntInf.int list - val mirror : fm -> fm - val size_list : 'a list -> IntInf.int - val alpha : fm -> num list - val beta : fm -> num list - val eq_numa : num eq - val member : 'a eq -> 'a -> 'a list -> bool - val remdups : 'a eq -> 'a list -> 'a list - val gcd_int : IntInf.int -> IntInf.int -> IntInf.int - val lcm_int : IntInf.int -> IntInf.int -> IntInf.int - val delta : fm -> IntInf.int - val a_beta : fm -> IntInf.int -> fm - val zeta : fm -> IntInf.int - val zsplit0 : num -> IntInf.int * num - val zlfm : fm -> fm - val unita : fm -> fm * (num list * IntInf.int) - val cooper : fm -> fm - val prep : fm -> fm - val qelim : fm -> (fm -> fm) -> fm - val pa : fm -> fm -end = struct - -type 'a eq = {eq : 'a -> 'a -> bool}; -val eq = #eq : 'a eq -> 'a -> 'a -> bool; - -fun eqa A_ a b = eq A_ a b; - -fun leta s f = f s; - -fun suc n = IntInf.+ (n, (1 : IntInf.int)); - -datatype num = C of IntInf.int | Bound of IntInf.int | - Cn of IntInf.int * IntInf.int * num | Neg of num | Add of num * num | - Sub of num * num | Mul of IntInf.int * num; - -datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | Eq of num - | NEq of num | Dvd of IntInf.int * num | NDvd of IntInf.int * num | Not of fm - | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm | - A of fm | Closed of IntInf.int | NClosed of IntInf.int; - -fun map f [] = [] - | map f (x :: xs) = f x :: map f xs; - -fun append [] ys = ys - | append (x :: xs) ys = x :: append xs ys; - -fun disjuncts (Or (p, q)) = append (disjuncts p) (disjuncts q) - | disjuncts F = [] - | disjuncts T = [T] - | disjuncts (Lt u) = [Lt u] - | disjuncts (Le v) = [Le v] - | disjuncts (Gt w) = [Gt w] - | disjuncts (Ge x) = [Ge x] - | disjuncts (Eq y) = [Eq y] - | disjuncts (NEq z) = [NEq z] - | disjuncts (Dvd (aa, ab)) = [Dvd (aa, ab)] - | disjuncts (NDvd (ac, ad)) = [NDvd (ac, ad)] - | disjuncts (Not ae) = [Not ae] - | disjuncts (And (af, ag)) = [And (af, ag)] - | disjuncts (Imp (aj, ak)) = [Imp (aj, ak)] - | disjuncts (Iff (al, am)) = [Iff (al, am)] - | disjuncts (E an) = [E an] - | disjuncts (A ao) = [A ao] - | disjuncts (Closed ap) = [Closed ap] - | disjuncts (NClosed aq) = [NClosed aq]; - -fun fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (NClosed nat) = f19 nat - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Closed nat) = f18 nat - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (A fm) = f17 fm - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (E fm) = f16 fm - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Iff (fm1, fm2)) = f15 fm1 fm2 - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Imp (fm1, fm2)) = f14 fm1 fm2 - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Or (fm1, fm2)) = f13 fm1 fm2 - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (And (fm1, fm2)) = f12 fm1 fm2 - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Not fm) = f11 fm - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (NDvd (inta, num)) = f10 inta num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Dvd (inta, num)) = f9 inta num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (NEq num) = f8 num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Eq num) = f7 num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Ge num) = f6 num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Gt num) = f5 num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Le num) = f4 num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 - (Lt num) = f3 num - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 F - = f2 - | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 T - = f1; - -fun eq_num (C intaa) (C inta) = ((intaa : IntInf.int) = inta) - | eq_num (Bound nata) (Bound nat) = ((nata : IntInf.int) = nat) - | eq_num (Cn (nata, intaa, numa)) (Cn (nat, inta, num)) = - ((nata : IntInf.int) = nat) andalso - (((intaa : IntInf.int) = inta) andalso eq_num numa num) - | eq_num (Neg numa) (Neg num) = eq_num numa num - | eq_num (Add (num1a, num2a)) (Add (num1, num2)) = - eq_num num1a num1 andalso eq_num num2a num2 - | eq_num (Sub (num1a, num2a)) (Sub (num1, num2)) = - eq_num num1a num1 andalso eq_num num2a num2 - | eq_num (Mul (intaa, numa)) (Mul (inta, num)) = - ((intaa : IntInf.int) = inta) andalso eq_num numa num - | eq_num (C inta) (Bound nat) = false - | eq_num (Bound nat) (C inta) = false - | eq_num (C intaa) (Cn (nat, inta, num)) = false - | eq_num (Cn (nat, intaa, num)) (C inta) = false - | eq_num (C inta) (Neg num) = false - | eq_num (Neg num) (C inta) = false - | eq_num (C inta) (Add (num1, num2)) = false - | eq_num (Add (num1, num2)) (C inta) = false - | eq_num (C inta) (Sub (num1, num2)) = false - | eq_num (Sub (num1, num2)) (C inta) = false - | eq_num (C intaa) (Mul (inta, num)) = false - | eq_num (Mul (intaa, num)) (C inta) = false - | eq_num (Bound nata) (Cn (nat, inta, num)) = false - | eq_num (Cn (nata, inta, num)) (Bound nat) = false - | eq_num (Bound nat) (Neg num) = false - | eq_num (Neg num) (Bound nat) = false - | eq_num (Bound nat) (Add (num1, num2)) = false - | eq_num (Add (num1, num2)) (Bound nat) = false - | eq_num (Bound nat) (Sub (num1, num2)) = false - | eq_num (Sub (num1, num2)) (Bound nat) = false - | eq_num (Bound nat) (Mul (inta, num)) = false - | eq_num (Mul (inta, num)) (Bound nat) = false - | eq_num (Cn (nat, inta, numa)) (Neg num) = false - | eq_num (Neg numa) (Cn (nat, inta, num)) = false - | eq_num (Cn (nat, inta, num)) (Add (num1, num2)) = false - | eq_num (Add (num1, num2)) (Cn (nat, inta, num)) = false - | eq_num (Cn (nat, inta, num)) (Sub (num1, num2)) = false - | eq_num (Sub (num1, num2)) (Cn (nat, inta, num)) = false - | eq_num (Cn (nat, intaa, numa)) (Mul (inta, num)) = false - | eq_num (Mul (intaa, numa)) (Cn (nat, inta, num)) = false - | eq_num (Neg num) (Add (num1, num2)) = false - | eq_num (Add (num1, num2)) (Neg num) = false - | eq_num (Neg num) (Sub (num1, num2)) = false - | eq_num (Sub (num1, num2)) (Neg num) = false - | eq_num (Neg numa) (Mul (inta, num)) = false - | eq_num (Mul (inta, numa)) (Neg num) = false - | eq_num (Add (num1a, num2a)) (Sub (num1, num2)) = false - | eq_num (Sub (num1a, num2a)) (Add (num1, num2)) = false - | eq_num (Add (num1, num2)) (Mul (inta, num)) = false - | eq_num (Mul (inta, num)) (Add (num1, num2)) = false - | eq_num (Sub (num1, num2)) (Mul (inta, num)) = false - | eq_num (Mul (inta, num)) (Sub (num1, num2)) = false; - -fun eq_fm T T = true - | eq_fm F F = true - | eq_fm (Lt numa) (Lt num) = eq_num numa num - | eq_fm (Le numa) (Le num) = eq_num numa num - | eq_fm (Gt numa) (Gt num) = eq_num numa num - | eq_fm (Ge numa) (Ge num) = eq_num numa num - | eq_fm (Eq numa) (Eq num) = eq_num numa num - | eq_fm (NEq numa) (NEq num) = eq_num numa num - | eq_fm (Dvd (intaa, numa)) (Dvd (inta, num)) = - ((intaa : IntInf.int) = inta) andalso eq_num numa num - | eq_fm (NDvd (intaa, numa)) (NDvd (inta, num)) = - ((intaa : IntInf.int) = inta) andalso eq_num numa num - | eq_fm (Not fma) (Not fm) = eq_fm fma fm - | eq_fm (And (fm1a, fm2a)) (And (fm1, fm2)) = - eq_fm fm1a fm1 andalso eq_fm fm2a fm2 - | eq_fm (Or (fm1a, fm2a)) (Or (fm1, fm2)) = - eq_fm fm1a fm1 andalso eq_fm fm2a fm2 - | eq_fm (Imp (fm1a, fm2a)) (Imp (fm1, fm2)) = - eq_fm fm1a fm1 andalso eq_fm fm2a fm2 - | eq_fm (Iff (fm1a, fm2a)) (Iff (fm1, fm2)) = - eq_fm fm1a fm1 andalso eq_fm fm2a fm2 - | eq_fm (E fma) (E fm) = eq_fm fma fm - | eq_fm (A fma) (A fm) = eq_fm fma fm - | eq_fm (Closed nata) (Closed nat) = ((nata : IntInf.int) = nat) - | eq_fm (NClosed nata) (NClosed nat) = ((nata : IntInf.int) = nat) - | eq_fm T F = false - | eq_fm F T = false - | eq_fm T (Lt num) = false - | eq_fm (Lt num) T = false - | eq_fm T (Le num) = false - | eq_fm (Le num) T = false - | eq_fm T (Gt num) = false - | eq_fm (Gt num) T = false - | eq_fm T (Ge num) = false - | eq_fm (Ge num) T = false - | eq_fm T (Eq num) = false - | eq_fm (Eq num) T = false - | eq_fm T (NEq num) = false - | eq_fm (NEq num) T = false - | eq_fm T (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) T = false - | eq_fm T (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) T = false - | eq_fm T (Not fm) = false - | eq_fm (Not fm) T = false - | eq_fm T (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) T = false - | eq_fm T (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) T = false - | eq_fm T (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) T = false - | eq_fm T (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) T = false - | eq_fm T (E fm) = false - | eq_fm (E fm) T = false - | eq_fm T (A fm) = false - | eq_fm (A fm) T = false - | eq_fm T (Closed nat) = false - | eq_fm (Closed nat) T = false - | eq_fm T (NClosed nat) = false - | eq_fm (NClosed nat) T = false - | eq_fm F (Lt num) = false - | eq_fm (Lt num) F = false - | eq_fm F (Le num) = false - | eq_fm (Le num) F = false - | eq_fm F (Gt num) = false - | eq_fm (Gt num) F = false - | eq_fm F (Ge num) = false - | eq_fm (Ge num) F = false - | eq_fm F (Eq num) = false - | eq_fm (Eq num) F = false - | eq_fm F (NEq num) = false - | eq_fm (NEq num) F = false - | eq_fm F (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) F = false - | eq_fm F (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) F = false - | eq_fm F (Not fm) = false - | eq_fm (Not fm) F = false - | eq_fm F (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) F = false - | eq_fm F (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) F = false - | eq_fm F (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) F = false - | eq_fm F (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) F = false - | eq_fm F (E fm) = false - | eq_fm (E fm) F = false - | eq_fm F (A fm) = false - | eq_fm (A fm) F = false - | eq_fm F (Closed nat) = false - | eq_fm (Closed nat) F = false - | eq_fm F (NClosed nat) = false - | eq_fm (NClosed nat) F = false - | eq_fm (Lt numa) (Le num) = false - | eq_fm (Le numa) (Lt num) = false - | eq_fm (Lt numa) (Gt num) = false - | eq_fm (Gt numa) (Lt num) = false - | eq_fm (Lt numa) (Ge num) = false - | eq_fm (Ge numa) (Lt num) = false - | eq_fm (Lt numa) (Eq num) = false - | eq_fm (Eq numa) (Lt num) = false - | eq_fm (Lt numa) (NEq num) = false - | eq_fm (NEq numa) (Lt num) = false - | eq_fm (Lt numa) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, numa)) (Lt num) = false - | eq_fm (Lt numa) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, numa)) (Lt num) = false - | eq_fm (Lt num) (Not fm) = false - | eq_fm (Not fm) (Lt num) = false - | eq_fm (Lt num) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Lt num) = false - | eq_fm (Lt num) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Lt num) = false - | eq_fm (Lt num) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Lt num) = false - | eq_fm (Lt num) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Lt num) = false - | eq_fm (Lt num) (E fm) = false - | eq_fm (E fm) (Lt num) = false - | eq_fm (Lt num) (A fm) = false - | eq_fm (A fm) (Lt num) = false - | eq_fm (Lt num) (Closed nat) = false - | eq_fm (Closed nat) (Lt num) = false - | eq_fm (Lt num) (NClosed nat) = false - | eq_fm (NClosed nat) (Lt num) = false - | eq_fm (Le numa) (Gt num) = false - | eq_fm (Gt numa) (Le num) = false - | eq_fm (Le numa) (Ge num) = false - | eq_fm (Ge numa) (Le num) = false - | eq_fm (Le numa) (Eq num) = false - | eq_fm (Eq numa) (Le num) = false - | eq_fm (Le numa) (NEq num) = false - | eq_fm (NEq numa) (Le num) = false - | eq_fm (Le numa) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, numa)) (Le num) = false - | eq_fm (Le numa) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, numa)) (Le num) = false - | eq_fm (Le num) (Not fm) = false - | eq_fm (Not fm) (Le num) = false - | eq_fm (Le num) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Le num) = false - | eq_fm (Le num) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Le num) = false - | eq_fm (Le num) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Le num) = false - | eq_fm (Le num) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Le num) = false - | eq_fm (Le num) (E fm) = false - | eq_fm (E fm) (Le num) = false - | eq_fm (Le num) (A fm) = false - | eq_fm (A fm) (Le num) = false - | eq_fm (Le num) (Closed nat) = false - | eq_fm (Closed nat) (Le num) = false - | eq_fm (Le num) (NClosed nat) = false - | eq_fm (NClosed nat) (Le num) = false - | eq_fm (Gt numa) (Ge num) = false - | eq_fm (Ge numa) (Gt num) = false - | eq_fm (Gt numa) (Eq num) = false - | eq_fm (Eq numa) (Gt num) = false - | eq_fm (Gt numa) (NEq num) = false - | eq_fm (NEq numa) (Gt num) = false - | eq_fm (Gt numa) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, numa)) (Gt num) = false - | eq_fm (Gt numa) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, numa)) (Gt num) = false - | eq_fm (Gt num) (Not fm) = false - | eq_fm (Not fm) (Gt num) = false - | eq_fm (Gt num) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Gt num) = false - | eq_fm (Gt num) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Gt num) = false - | eq_fm (Gt num) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Gt num) = false - | eq_fm (Gt num) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Gt num) = false - | eq_fm (Gt num) (E fm) = false - | eq_fm (E fm) (Gt num) = false - | eq_fm (Gt num) (A fm) = false - | eq_fm (A fm) (Gt num) = false - | eq_fm (Gt num) (Closed nat) = false - | eq_fm (Closed nat) (Gt num) = false - | eq_fm (Gt num) (NClosed nat) = false - | eq_fm (NClosed nat) (Gt num) = false - | eq_fm (Ge numa) (Eq num) = false - | eq_fm (Eq numa) (Ge num) = false - | eq_fm (Ge numa) (NEq num) = false - | eq_fm (NEq numa) (Ge num) = false - | eq_fm (Ge numa) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, numa)) (Ge num) = false - | eq_fm (Ge numa) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, numa)) (Ge num) = false - | eq_fm (Ge num) (Not fm) = false - | eq_fm (Not fm) (Ge num) = false - | eq_fm (Ge num) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Ge num) = false - | eq_fm (Ge num) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Ge num) = false - | eq_fm (Ge num) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Ge num) = false - | eq_fm (Ge num) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Ge num) = false - | eq_fm (Ge num) (E fm) = false - | eq_fm (E fm) (Ge num) = false - | eq_fm (Ge num) (A fm) = false - | eq_fm (A fm) (Ge num) = false - | eq_fm (Ge num) (Closed nat) = false - | eq_fm (Closed nat) (Ge num) = false - | eq_fm (Ge num) (NClosed nat) = false - | eq_fm (NClosed nat) (Ge num) = false - | eq_fm (Eq numa) (NEq num) = false - | eq_fm (NEq numa) (Eq num) = false - | eq_fm (Eq numa) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, numa)) (Eq num) = false - | eq_fm (Eq numa) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, numa)) (Eq num) = false - | eq_fm (Eq num) (Not fm) = false - | eq_fm (Not fm) (Eq num) = false - | eq_fm (Eq num) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Eq num) = false - | eq_fm (Eq num) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Eq num) = false - | eq_fm (Eq num) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Eq num) = false - | eq_fm (Eq num) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Eq num) = false - | eq_fm (Eq num) (E fm) = false - | eq_fm (E fm) (Eq num) = false - | eq_fm (Eq num) (A fm) = false - | eq_fm (A fm) (Eq num) = false - | eq_fm (Eq num) (Closed nat) = false - | eq_fm (Closed nat) (Eq num) = false - | eq_fm (Eq num) (NClosed nat) = false - | eq_fm (NClosed nat) (Eq num) = false - | eq_fm (NEq numa) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, numa)) (NEq num) = false - | eq_fm (NEq numa) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, numa)) (NEq num) = false - | eq_fm (NEq num) (Not fm) = false - | eq_fm (Not fm) (NEq num) = false - | eq_fm (NEq num) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (NEq num) = false - | eq_fm (NEq num) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (NEq num) = false - | eq_fm (NEq num) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (NEq num) = false - | eq_fm (NEq num) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (NEq num) = false - | eq_fm (NEq num) (E fm) = false - | eq_fm (E fm) (NEq num) = false - | eq_fm (NEq num) (A fm) = false - | eq_fm (A fm) (NEq num) = false - | eq_fm (NEq num) (Closed nat) = false - | eq_fm (Closed nat) (NEq num) = false - | eq_fm (NEq num) (NClosed nat) = false - | eq_fm (NClosed nat) (NEq num) = false - | eq_fm (Dvd (intaa, numa)) (NDvd (inta, num)) = false - | eq_fm (NDvd (intaa, numa)) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (Not fm) = false - | eq_fm (Not fm) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (E fm) = false - | eq_fm (E fm) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (A fm) = false - | eq_fm (A fm) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (Closed nat) = false - | eq_fm (Closed nat) (Dvd (inta, num)) = false - | eq_fm (Dvd (inta, num)) (NClosed nat) = false - | eq_fm (NClosed nat) (Dvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (Not fm) = false - | eq_fm (Not fm) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (E fm) = false - | eq_fm (E fm) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (A fm) = false - | eq_fm (A fm) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (Closed nat) = false - | eq_fm (Closed nat) (NDvd (inta, num)) = false - | eq_fm (NDvd (inta, num)) (NClosed nat) = false - | eq_fm (NClosed nat) (NDvd (inta, num)) = false - | eq_fm (Not fm) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Not fm) = false - | eq_fm (Not fm) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Not fm) = false - | eq_fm (Not fm) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Not fm) = false - | eq_fm (Not fm) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Not fm) = false - | eq_fm (Not fma) (E fm) = false - | eq_fm (E fma) (Not fm) = false - | eq_fm (Not fma) (A fm) = false - | eq_fm (A fma) (Not fm) = false - | eq_fm (Not fm) (Closed nat) = false - | eq_fm (Closed nat) (Not fm) = false - | eq_fm (Not fm) (NClosed nat) = false - | eq_fm (NClosed nat) (Not fm) = false - | eq_fm (And (fm1a, fm2a)) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1a, fm2a)) (And (fm1, fm2)) = false - | eq_fm (And (fm1a, fm2a)) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1a, fm2a)) (And (fm1, fm2)) = false - | eq_fm (And (fm1a, fm2a)) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1a, fm2a)) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (E fm) = false - | eq_fm (E fm) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (A fm) = false - | eq_fm (A fm) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (Closed nat) = false - | eq_fm (Closed nat) (And (fm1, fm2)) = false - | eq_fm (And (fm1, fm2)) (NClosed nat) = false - | eq_fm (NClosed nat) (And (fm1, fm2)) = false - | eq_fm (Or (fm1a, fm2a)) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1a, fm2a)) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1a, fm2a)) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1a, fm2a)) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (E fm) = false - | eq_fm (E fm) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (A fm) = false - | eq_fm (A fm) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (Closed nat) = false - | eq_fm (Closed nat) (Or (fm1, fm2)) = false - | eq_fm (Or (fm1, fm2)) (NClosed nat) = false - | eq_fm (NClosed nat) (Or (fm1, fm2)) = false - | eq_fm (Imp (fm1a, fm2a)) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1a, fm2a)) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (E fm) = false - | eq_fm (E fm) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (A fm) = false - | eq_fm (A fm) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (Closed nat) = false - | eq_fm (Closed nat) (Imp (fm1, fm2)) = false - | eq_fm (Imp (fm1, fm2)) (NClosed nat) = false - | eq_fm (NClosed nat) (Imp (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (E fm) = false - | eq_fm (E fm) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (A fm) = false - | eq_fm (A fm) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (Closed nat) = false - | eq_fm (Closed nat) (Iff (fm1, fm2)) = false - | eq_fm (Iff (fm1, fm2)) (NClosed nat) = false - | eq_fm (NClosed nat) (Iff (fm1, fm2)) = false - | eq_fm (E fma) (A fm) = false - | eq_fm (A fma) (E fm) = false - | eq_fm (E fm) (Closed nat) = false - | eq_fm (Closed nat) (E fm) = false - | eq_fm (E fm) (NClosed nat) = false - | eq_fm (NClosed nat) (E fm) = false - | eq_fm (A fm) (Closed nat) = false - | eq_fm (Closed nat) (A fm) = false - | eq_fm (A fm) (NClosed nat) = false - | eq_fm (NClosed nat) (A fm) = false - | eq_fm (Closed nata) (NClosed nat) = false - | eq_fm (NClosed nata) (Closed nat) = false; - -fun djf f p q = - (if eq_fm q T then T - else (if eq_fm q F then f p - else (case f p of T => T | F => q | Lt _ => Or (f p, q) - | Le _ => Or (f p, q) | Gt _ => Or (f p, q) - | Ge _ => Or (f p, q) | Eq _ => Or (f p, q) - | NEq _ => Or (f p, q) | Dvd (_, _) => Or (f p, q) - | NDvd (_, _) => Or (f p, q) | Not _ => Or (f p, q) - | And (_, _) => Or (f p, q) | Or (_, _) => Or (f p, q) - | Imp (_, _) => Or (f p, q) | Iff (_, _) => Or (f p, q) - | E _ => Or (f p, q) | A _ => Or (f p, q) - | Closed _ => Or (f p, q) | NClosed _ => Or (f p, q)))); - -fun foldr f [] a = a - | foldr f (x :: xs) a = f x (foldr f xs a); - -fun evaldjf f ps = foldr (djf f) ps F; - -fun dj f p = evaldjf f (disjuncts p); - -fun disj p q = - (if eq_fm p T orelse eq_fm q T then T - else (if eq_fm p F then q else (if eq_fm q F then p else Or (p, q)))); - -fun minus_nat n m = IntInf.max (0, (IntInf.- (n, m))); - -fun decrnum (Bound n) = Bound (minus_nat n (1 : IntInf.int)) - | decrnum (Neg a) = Neg (decrnum a) - | decrnum (Add (a, b)) = Add (decrnum a, decrnum b) - | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b) - | decrnum (Mul (c, a)) = Mul (c, decrnum a) - | decrnum (Cn (n, i, a)) = Cn (minus_nat n (1 : IntInf.int), i, decrnum a) - | decrnum (C u) = C u; - -fun decr (Lt a) = Lt (decrnum a) - | decr (Le a) = Le (decrnum a) - | decr (Gt a) = Gt (decrnum a) - | decr (Ge a) = Ge (decrnum a) - | decr (Eq a) = Eq (decrnum a) - | decr (NEq a) = NEq (decrnum a) - | decr (Dvd (i, a)) = Dvd (i, decrnum a) - | decr (NDvd (i, a)) = NDvd (i, decrnum a) - | decr (Not p) = Not (decr p) - | decr (And (p, q)) = And (decr p, decr q) - | decr (Or (p, q)) = Or (decr p, decr q) - | decr (Imp (p, q)) = Imp (decr p, decr q) - | decr (Iff (p, q)) = Iff (decr p, decr q) - | decr T = T - | decr F = F - | decr (E ao) = E ao - | decr (A ap) = A ap - | decr (Closed aq) = Closed aq - | decr (NClosed ar) = NClosed ar; - -fun concat_map f [] = [] - | concat_map f (x :: xs) = append (f x) (concat_map f xs); - -fun numsubst0 t (C c) = C c - | numsubst0 t (Bound n) = - (if ((n : IntInf.int) = (0 : IntInf.int)) then t else Bound n) - | numsubst0 t (Neg a) = Neg (numsubst0 t a) - | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b) - | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b) - | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a) - | numsubst0 t (Cn (v, i, a)) = - (if ((v : IntInf.int) = (0 : IntInf.int)) - then Add (Mul (i, t), numsubst0 t a) - else Cn (suc (minus_nat v (1 : IntInf.int)), i, numsubst0 t a)); - -fun subst0 t T = T - | subst0 t F = F - | subst0 t (Lt a) = Lt (numsubst0 t a) - | subst0 t (Le a) = Le (numsubst0 t a) - | subst0 t (Gt a) = Gt (numsubst0 t a) - | subst0 t (Ge a) = Ge (numsubst0 t a) - | subst0 t (Eq a) = Eq (numsubst0 t a) - | subst0 t (NEq a) = NEq (numsubst0 t a) - | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a) - | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a) - | subst0 t (Not p) = Not (subst0 t p) - | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q) - | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q) - | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q) - | subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q) - | subst0 t (Closed p) = Closed p - | subst0 t (NClosed p) = NClosed p; - -fun minusinf (And (p, q)) = And (minusinf p, minusinf q) - | minusinf (Or (p, q)) = Or (minusinf p, minusinf q) - | minusinf T = T - | minusinf F = F - | minusinf (Lt (C bo)) = Lt (C bo) - | minusinf (Lt (Bound bp)) = Lt (Bound bp) - | minusinf (Lt (Neg bt)) = Lt (Neg bt) - | minusinf (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) - | minusinf (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) - | minusinf (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) - | minusinf (Le (C co)) = Le (C co) - | minusinf (Le (Bound cp)) = Le (Bound cp) - | minusinf (Le (Neg ct)) = Le (Neg ct) - | minusinf (Le (Add (cu, cv))) = Le (Add (cu, cv)) - | minusinf (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) - | minusinf (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) - | minusinf (Gt (C doa)) = Gt (C doa) - | minusinf (Gt (Bound dp)) = Gt (Bound dp) - | minusinf (Gt (Neg dt)) = Gt (Neg dt) - | minusinf (Gt (Add (du, dv))) = Gt (Add (du, dv)) - | minusinf (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) - | minusinf (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) - | minusinf (Ge (C eo)) = Ge (C eo) - | minusinf (Ge (Bound ep)) = Ge (Bound ep) - | minusinf (Ge (Neg et)) = Ge (Neg et) - | minusinf (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) - | minusinf (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) - | minusinf (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) - | minusinf (Eq (C fo)) = Eq (C fo) - | minusinf (Eq (Bound fp)) = Eq (Bound fp) - | minusinf (Eq (Neg ft)) = Eq (Neg ft) - | minusinf (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) - | minusinf (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) - | minusinf (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) - | minusinf (NEq (C go)) = NEq (C go) - | minusinf (NEq (Bound gp)) = NEq (Bound gp) - | minusinf (NEq (Neg gt)) = NEq (Neg gt) - | minusinf (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) - | minusinf (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) - | minusinf (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) - | minusinf (Dvd (aa, ab)) = Dvd (aa, ab) - | minusinf (NDvd (ac, ad)) = NDvd (ac, ad) - | minusinf (Not ae) = Not ae - | minusinf (Imp (aj, ak)) = Imp (aj, ak) - | minusinf (Iff (al, am)) = Iff (al, am) - | minusinf (E an) = E an - | minusinf (A ao) = A ao - | minusinf (Closed ap) = Closed ap - | minusinf (NClosed aq) = NClosed aq - | minusinf (Lt (Cn (cm, c, e))) = - (if ((cm : IntInf.int) = (0 : IntInf.int)) then T - else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e))) - | minusinf (Le (Cn (dm, c, e))) = - (if ((dm : IntInf.int) = (0 : IntInf.int)) then T - else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e))) - | minusinf (Gt (Cn (em, c, e))) = - (if ((em : IntInf.int) = (0 : IntInf.int)) then F - else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e))) - | minusinf (Ge (Cn (fm, c, e))) = - (if ((fm : IntInf.int) = (0 : IntInf.int)) then F - else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e))) - | minusinf (Eq (Cn (gm, c, e))) = - (if ((gm : IntInf.int) = (0 : IntInf.int)) then F - else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e))) - | minusinf (NEq (Cn (hm, c, e))) = - (if ((hm : IntInf.int) = (0 : IntInf.int)) then T - else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e))); - -val eq_int = {eq = (fn a => fn b => ((a : IntInf.int) = b))} : IntInf.int eq; - -val zero_int : IntInf.int = (0 : IntInf.int); - -type 'a zero = {zero : 'a}; -val zero = #zero : 'a zero -> 'a; - -val zero_inta = {zero = zero_int} : IntInf.int zero; - -type 'a times = {times : 'a -> 'a -> 'a}; -val times = #times : 'a times -> 'a -> 'a -> 'a; - -type 'a no_zero_divisors = - {times_no_zero_divisors : 'a times, zero_no_zero_divisors : 'a zero}; -val times_no_zero_divisors = #times_no_zero_divisors : - 'a no_zero_divisors -> 'a times; -val zero_no_zero_divisors = #zero_no_zero_divisors : - 'a no_zero_divisors -> 'a zero; - -val times_int = {times = (fn a => fn b => IntInf.* (a, b))} : IntInf.int times; - -val no_zero_divisors_int = - {times_no_zero_divisors = times_int, zero_no_zero_divisors = zero_inta} : - IntInf.int no_zero_divisors; - -type 'a one = {one : 'a}; -val one = #one : 'a one -> 'a; - -type 'a zero_neq_one = {one_zero_neq_one : 'a one, zero_zero_neq_one : 'a zero}; -val one_zero_neq_one = #one_zero_neq_one : 'a zero_neq_one -> 'a one; -val zero_zero_neq_one = #zero_zero_neq_one : 'a zero_neq_one -> 'a zero; - -type 'a semigroup_mult = {times_semigroup_mult : 'a times}; -val times_semigroup_mult = #times_semigroup_mult : - 'a semigroup_mult -> 'a times; - -type 'a plus = {plus : 'a -> 'a -> 'a}; -val plus = #plus : 'a plus -> 'a -> 'a -> 'a; - -type 'a semigroup_add = {plus_semigroup_add : 'a plus}; -val plus_semigroup_add = #plus_semigroup_add : 'a semigroup_add -> 'a plus; - -type 'a ab_semigroup_add = {semigroup_add_ab_semigroup_add : 'a semigroup_add}; -val semigroup_add_ab_semigroup_add = #semigroup_add_ab_semigroup_add : - 'a ab_semigroup_add -> 'a semigroup_add; - -type 'a semiring = - {ab_semigroup_add_semiring : 'a ab_semigroup_add, - semigroup_mult_semiring : 'a semigroup_mult}; -val ab_semigroup_add_semiring = #ab_semigroup_add_semiring : - 'a semiring -> 'a ab_semigroup_add; -val semigroup_mult_semiring = #semigroup_mult_semiring : - 'a semiring -> 'a semigroup_mult; - -type 'a mult_zero = {times_mult_zero : 'a times, zero_mult_zero : 'a zero}; -val times_mult_zero = #times_mult_zero : 'a mult_zero -> 'a times; -val zero_mult_zero = #zero_mult_zero : 'a mult_zero -> 'a zero; - -type 'a monoid_add = - {semigroup_add_monoid_add : 'a semigroup_add, zero_monoid_add : 'a zero}; -val semigroup_add_monoid_add = #semigroup_add_monoid_add : - 'a monoid_add -> 'a semigroup_add; -val zero_monoid_add = #zero_monoid_add : 'a monoid_add -> 'a zero; - -type 'a comm_monoid_add = - {ab_semigroup_add_comm_monoid_add : 'a ab_semigroup_add, - monoid_add_comm_monoid_add : 'a monoid_add}; -val ab_semigroup_add_comm_monoid_add = #ab_semigroup_add_comm_monoid_add : - 'a comm_monoid_add -> 'a ab_semigroup_add; -val monoid_add_comm_monoid_add = #monoid_add_comm_monoid_add : - 'a comm_monoid_add -> 'a monoid_add; - -type 'a semiring_0 = - {comm_monoid_add_semiring_0 : 'a comm_monoid_add, - mult_zero_semiring_0 : 'a mult_zero, semiring_semiring_0 : 'a semiring}; -val comm_monoid_add_semiring_0 = #comm_monoid_add_semiring_0 : - 'a semiring_0 -> 'a comm_monoid_add; -val mult_zero_semiring_0 = #mult_zero_semiring_0 : - 'a semiring_0 -> 'a mult_zero; -val semiring_semiring_0 = #semiring_semiring_0 : 'a semiring_0 -> 'a semiring; - -type 'a power = {one_power : 'a one, times_power : 'a times}; -val one_power = #one_power : 'a power -> 'a one; -val times_power = #times_power : 'a power -> 'a times; - -type 'a monoid_mult = - {semigroup_mult_monoid_mult : 'a semigroup_mult, - power_monoid_mult : 'a power}; -val semigroup_mult_monoid_mult = #semigroup_mult_monoid_mult : - 'a monoid_mult -> 'a semigroup_mult; -val power_monoid_mult = #power_monoid_mult : 'a monoid_mult -> 'a power; - -type 'a semiring_1 = - {monoid_mult_semiring_1 : 'a monoid_mult, - semiring_0_semiring_1 : 'a semiring_0, - zero_neq_one_semiring_1 : 'a zero_neq_one}; -val monoid_mult_semiring_1 = #monoid_mult_semiring_1 : - 'a semiring_1 -> 'a monoid_mult; -val semiring_0_semiring_1 = #semiring_0_semiring_1 : - 'a semiring_1 -> 'a semiring_0; -val zero_neq_one_semiring_1 = #zero_neq_one_semiring_1 : - 'a semiring_1 -> 'a zero_neq_one; - -type 'a cancel_semigroup_add = - {semigroup_add_cancel_semigroup_add : 'a semigroup_add}; -val semigroup_add_cancel_semigroup_add = #semigroup_add_cancel_semigroup_add : - 'a cancel_semigroup_add -> 'a semigroup_add; - -type 'a cancel_ab_semigroup_add = - {ab_semigroup_add_cancel_ab_semigroup_add : 'a ab_semigroup_add, - cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_semigroup_add}; -val ab_semigroup_add_cancel_ab_semigroup_add = - #ab_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add; -val cancel_semigroup_add_cancel_ab_semigroup_add = - #cancel_semigroup_add_cancel_ab_semigroup_add : - 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add; - -type 'a cancel_comm_monoid_add = - {cancel_ab_semigroup_add_cancel_comm_monoid_add : 'a cancel_ab_semigroup_add, - comm_monoid_add_cancel_comm_monoid_add : 'a comm_monoid_add}; -val cancel_ab_semigroup_add_cancel_comm_monoid_add = - #cancel_ab_semigroup_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add; -val comm_monoid_add_cancel_comm_monoid_add = - #comm_monoid_add_cancel_comm_monoid_add : - 'a cancel_comm_monoid_add -> 'a comm_monoid_add; - -type 'a semiring_0_cancel = - {cancel_comm_monoid_add_semiring_0_cancel : 'a cancel_comm_monoid_add, - semiring_0_semiring_0_cancel : 'a semiring_0}; -val cancel_comm_monoid_add_semiring_0_cancel = - #cancel_comm_monoid_add_semiring_0_cancel : - 'a semiring_0_cancel -> 'a cancel_comm_monoid_add; -val semiring_0_semiring_0_cancel = #semiring_0_semiring_0_cancel : - 'a semiring_0_cancel -> 'a semiring_0; - -type 'a semiring_1_cancel = - {semiring_0_cancel_semiring_1_cancel : 'a semiring_0_cancel, - semiring_1_semiring_1_cancel : 'a semiring_1}; -val semiring_0_cancel_semiring_1_cancel = #semiring_0_cancel_semiring_1_cancel : - 'a semiring_1_cancel -> 'a semiring_0_cancel; -val semiring_1_semiring_1_cancel = #semiring_1_semiring_1_cancel : - 'a semiring_1_cancel -> 'a semiring_1; - -type 'a dvd = {times_dvd : 'a times}; -val times_dvd = #times_dvd : 'a dvd -> 'a times; - -type 'a ab_semigroup_mult = - {semigroup_mult_ab_semigroup_mult : 'a semigroup_mult}; -val semigroup_mult_ab_semigroup_mult = #semigroup_mult_ab_semigroup_mult : - 'a ab_semigroup_mult -> 'a semigroup_mult; - -type 'a comm_semiring = - {ab_semigroup_mult_comm_semiring : 'a ab_semigroup_mult, - semiring_comm_semiring : 'a semiring}; -val ab_semigroup_mult_comm_semiring = #ab_semigroup_mult_comm_semiring : - 'a comm_semiring -> 'a ab_semigroup_mult; -val semiring_comm_semiring = #semiring_comm_semiring : - 'a comm_semiring -> 'a semiring; - -type 'a comm_semiring_0 = - {comm_semiring_comm_semiring_0 : 'a comm_semiring, - semiring_0_comm_semiring_0 : 'a semiring_0}; -val comm_semiring_comm_semiring_0 = #comm_semiring_comm_semiring_0 : - 'a comm_semiring_0 -> 'a comm_semiring; -val semiring_0_comm_semiring_0 = #semiring_0_comm_semiring_0 : - 'a comm_semiring_0 -> 'a semiring_0; - -type 'a comm_monoid_mult = - {ab_semigroup_mult_comm_monoid_mult : 'a ab_semigroup_mult, - monoid_mult_comm_monoid_mult : 'a monoid_mult}; -val ab_semigroup_mult_comm_monoid_mult = #ab_semigroup_mult_comm_monoid_mult : - 'a comm_monoid_mult -> 'a ab_semigroup_mult; -val monoid_mult_comm_monoid_mult = #monoid_mult_comm_monoid_mult : - 'a comm_monoid_mult -> 'a monoid_mult; - -type 'a comm_semiring_1 = - {comm_monoid_mult_comm_semiring_1 : 'a comm_monoid_mult, - comm_semiring_0_comm_semiring_1 : 'a comm_semiring_0, - dvd_comm_semiring_1 : 'a dvd, semiring_1_comm_semiring_1 : 'a semiring_1}; -val comm_monoid_mult_comm_semiring_1 = #comm_monoid_mult_comm_semiring_1 : - 'a comm_semiring_1 -> 'a comm_monoid_mult; -val comm_semiring_0_comm_semiring_1 = #comm_semiring_0_comm_semiring_1 : - 'a comm_semiring_1 -> 'a comm_semiring_0; -val dvd_comm_semiring_1 = #dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd; -val semiring_1_comm_semiring_1 = #semiring_1_comm_semiring_1 : - 'a comm_semiring_1 -> 'a semiring_1; - -type 'a comm_semiring_0_cancel = - {comm_semiring_0_comm_semiring_0_cancel : 'a comm_semiring_0, - semiring_0_cancel_comm_semiring_0_cancel : 'a semiring_0_cancel}; -val comm_semiring_0_comm_semiring_0_cancel = - #comm_semiring_0_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a comm_semiring_0; -val semiring_0_cancel_comm_semiring_0_cancel = - #semiring_0_cancel_comm_semiring_0_cancel : - 'a comm_semiring_0_cancel -> 'a semiring_0_cancel; - -type 'a comm_semiring_1_cancel = - {comm_semiring_0_cancel_comm_semiring_1_cancel : 'a comm_semiring_0_cancel, - comm_semiring_1_comm_semiring_1_cancel : 'a comm_semiring_1, - semiring_1_cancel_comm_semiring_1_cancel : 'a semiring_1_cancel}; -val comm_semiring_0_cancel_comm_semiring_1_cancel = - #comm_semiring_0_cancel_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel; -val comm_semiring_1_comm_semiring_1_cancel = - #comm_semiring_1_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a comm_semiring_1; -val semiring_1_cancel_comm_semiring_1_cancel = - #semiring_1_cancel_comm_semiring_1_cancel : - 'a comm_semiring_1_cancel -> 'a semiring_1_cancel; - -type 'a diva = {dvd_div : 'a dvd, diva : 'a -> 'a -> 'a, moda : 'a -> 'a -> 'a}; -val dvd_div = #dvd_div : 'a diva -> 'a dvd; -val diva = #diva : 'a diva -> 'a -> 'a -> 'a; -val moda = #moda : 'a diva -> 'a -> 'a -> 'a; - -type 'a semiring_div = - {div_semiring_div : 'a diva, - comm_semiring_1_cancel_semiring_div : 'a comm_semiring_1_cancel, - no_zero_divisors_semiring_div : 'a no_zero_divisors}; -val div_semiring_div = #div_semiring_div : 'a semiring_div -> 'a diva; -val comm_semiring_1_cancel_semiring_div = #comm_semiring_1_cancel_semiring_div : - 'a semiring_div -> 'a comm_semiring_1_cancel; -val no_zero_divisors_semiring_div = #no_zero_divisors_semiring_div : - 'a semiring_div -> 'a no_zero_divisors; - -val one_int : IntInf.int = (1 : IntInf.int); - -val one_inta = {one = one_int} : IntInf.int one; - -val zero_neq_one_int = - {one_zero_neq_one = one_inta, zero_zero_neq_one = zero_inta} : - IntInf.int zero_neq_one; - -val semigroup_mult_int = {times_semigroup_mult = times_int} : - IntInf.int semigroup_mult; - -val plus_int = {plus = (fn a => fn b => IntInf.+ (a, b))} : IntInf.int plus; - -val semigroup_add_int = {plus_semigroup_add = plus_int} : - IntInf.int semigroup_add; - -val ab_semigroup_add_int = {semigroup_add_ab_semigroup_add = semigroup_add_int} - : IntInf.int ab_semigroup_add; - -val semiring_int = - {ab_semigroup_add_semiring = ab_semigroup_add_int, - semigroup_mult_semiring = semigroup_mult_int} - : IntInf.int semiring; - -val mult_zero_int = {times_mult_zero = times_int, zero_mult_zero = zero_inta} : - IntInf.int mult_zero; - -val monoid_add_int = - {semigroup_add_monoid_add = semigroup_add_int, zero_monoid_add = zero_inta} : - IntInf.int monoid_add; - -val comm_monoid_add_int = - {ab_semigroup_add_comm_monoid_add = ab_semigroup_add_int, - monoid_add_comm_monoid_add = monoid_add_int} - : IntInf.int comm_monoid_add; - -val semiring_0_int = - {comm_monoid_add_semiring_0 = comm_monoid_add_int, - mult_zero_semiring_0 = mult_zero_int, semiring_semiring_0 = semiring_int} - : IntInf.int semiring_0; - -val power_int = {one_power = one_inta, times_power = times_int} : - IntInf.int power; - -val monoid_mult_int = - {semigroup_mult_monoid_mult = semigroup_mult_int, - power_monoid_mult = power_int} - : IntInf.int monoid_mult; - -val semiring_1_int = - {monoid_mult_semiring_1 = monoid_mult_int, - semiring_0_semiring_1 = semiring_0_int, - zero_neq_one_semiring_1 = zero_neq_one_int} - : IntInf.int semiring_1; - -val cancel_semigroup_add_int = - {semigroup_add_cancel_semigroup_add = semigroup_add_int} : - IntInf.int cancel_semigroup_add; - -val cancel_ab_semigroup_add_int = - {ab_semigroup_add_cancel_ab_semigroup_add = ab_semigroup_add_int, - cancel_semigroup_add_cancel_ab_semigroup_add = cancel_semigroup_add_int} - : IntInf.int cancel_ab_semigroup_add; - -val cancel_comm_monoid_add_int = - {cancel_ab_semigroup_add_cancel_comm_monoid_add = cancel_ab_semigroup_add_int, - comm_monoid_add_cancel_comm_monoid_add = comm_monoid_add_int} - : IntInf.int cancel_comm_monoid_add; - -val semiring_0_cancel_int = - {cancel_comm_monoid_add_semiring_0_cancel = cancel_comm_monoid_add_int, - semiring_0_semiring_0_cancel = semiring_0_int} - : IntInf.int semiring_0_cancel; - -val semiring_1_cancel_int = - {semiring_0_cancel_semiring_1_cancel = semiring_0_cancel_int, - semiring_1_semiring_1_cancel = semiring_1_int} - : IntInf.int semiring_1_cancel; - -val dvd_int = {times_dvd = times_int} : IntInf.int dvd; - -val ab_semigroup_mult_int = - {semigroup_mult_ab_semigroup_mult = semigroup_mult_int} : - IntInf.int ab_semigroup_mult; - -val comm_semiring_int = - {ab_semigroup_mult_comm_semiring = ab_semigroup_mult_int, - semiring_comm_semiring = semiring_int} - : IntInf.int comm_semiring; - -val comm_semiring_0_int = - {comm_semiring_comm_semiring_0 = comm_semiring_int, - semiring_0_comm_semiring_0 = semiring_0_int} - : IntInf.int comm_semiring_0; - -val comm_monoid_mult_int = - {ab_semigroup_mult_comm_monoid_mult = ab_semigroup_mult_int, - monoid_mult_comm_monoid_mult = monoid_mult_int} - : IntInf.int comm_monoid_mult; - -val comm_semiring_1_int = - {comm_monoid_mult_comm_semiring_1 = comm_monoid_mult_int, - comm_semiring_0_comm_semiring_1 = comm_semiring_0_int, - dvd_comm_semiring_1 = dvd_int, semiring_1_comm_semiring_1 = semiring_1_int} - : IntInf.int comm_semiring_1; - -val comm_semiring_0_cancel_int = - {comm_semiring_0_comm_semiring_0_cancel = comm_semiring_0_int, - semiring_0_cancel_comm_semiring_0_cancel = semiring_0_cancel_int} - : IntInf.int comm_semiring_0_cancel; - -val comm_semiring_1_cancel_int = - {comm_semiring_0_cancel_comm_semiring_1_cancel = comm_semiring_0_cancel_int, - comm_semiring_1_comm_semiring_1_cancel = comm_semiring_1_int, - semiring_1_cancel_comm_semiring_1_cancel = semiring_1_cancel_int} - : IntInf.int comm_semiring_1_cancel; - -fun abs_int i = (if IntInf.< (i, (0 : IntInf.int)) then IntInf.~ i else i); - -fun split f (a, b) = f a b; - -fun sgn_int i = - (if ((i : IntInf.int) = (0 : IntInf.int)) then (0 : IntInf.int) - else (if IntInf.< ((0 : IntInf.int), i) then (1 : IntInf.int) - else IntInf.~ (1 : IntInf.int))); - -fun apsnd f (x, y) = (x, f y); - -fun divmod_int k l = - (if ((k : IntInf.int) = (0 : IntInf.int)) - then ((0 : IntInf.int), (0 : IntInf.int)) - else (if ((l : IntInf.int) = (0 : IntInf.int)) then ((0 : IntInf.int), k) - else apsnd (fn a => IntInf.* (sgn_int l, a)) - (if (((sgn_int k) : IntInf.int) = (sgn_int l)) - then IntInf.divMod (IntInf.abs k, IntInf.abs l) - else let - val (r, s) = - IntInf.divMod (IntInf.abs k, IntInf.abs l); - in - (if ((s : IntInf.int) = (0 : IntInf.int)) - then (IntInf.~ r, (0 : IntInf.int)) - else (IntInf.- (IntInf.~ r, (1 : IntInf.int)), - IntInf.- (abs_int l, s))) - end))); - -fun snd (a, b) = b; - -fun mod_int a b = snd (divmod_int a b); - -fun fst (a, b) = a; - -fun div_int a b = fst (divmod_int a b); - -val div_inta = {dvd_div = dvd_int, diva = div_int, moda = mod_int} : - IntInf.int diva; - -val semiring_div_int = - {div_semiring_div = div_inta, - comm_semiring_1_cancel_semiring_div = comm_semiring_1_cancel_int, - no_zero_divisors_semiring_div = no_zero_divisors_int} - : IntInf.int semiring_div; - -fun dvd (A1_, A2_) a b = - eqa A2_ (moda (div_semiring_div A1_) b a) - (zero ((zero_no_zero_divisors o no_zero_divisors_semiring_div) A1_)); - -fun num_case f1 f2 f3 f4 f5 f6 f7 (Mul (inta, num)) = f7 inta num - | num_case f1 f2 f3 f4 f5 f6 f7 (Sub (num1, num2)) = f6 num1 num2 - | num_case f1 f2 f3 f4 f5 f6 f7 (Add (num1, num2)) = f5 num1 num2 - | num_case f1 f2 f3 f4 f5 f6 f7 (Neg num) = f4 num - | num_case f1 f2 f3 f4 f5 f6 f7 (Cn (nat, inta, num)) = f3 nat inta num - | num_case f1 f2 f3 f4 f5 f6 f7 (Bound nat) = f2 nat - | num_case f1 f2 f3 f4 f5 f6 f7 (C inta) = f1 inta; - -fun nummul i (C j) = C (IntInf.* (i, j)) - | nummul i (Cn (n, c, t)) = Cn (n, IntInf.* (c, i), nummul i t) - | nummul i (Bound v) = Mul (i, Bound v) - | nummul i (Neg v) = Mul (i, Neg v) - | nummul i (Add (v, va)) = Mul (i, Add (v, va)) - | nummul i (Sub (v, va)) = Mul (i, Sub (v, va)) - | nummul i (Mul (v, va)) = Mul (i, Mul (v, va)); - -fun numneg t = nummul (IntInf.~ (1 : IntInf.int)) t; - -fun numadd (Cn (n1, c1, r1), Cn (n2, c2, r2)) = - (if ((n1 : IntInf.int) = n2) - then let - val c = IntInf.+ (c1, c2); - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then numadd (r1, r2) - else Cn (n1, c, numadd (r1, r2))) - end - else (if IntInf.<= (n1, n2) - then Cn (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2))) - else Cn (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2)))) - | numadd (Cn (n1, c1, r1), C dd) = Cn (n1, c1, numadd (r1, C dd)) - | numadd (Cn (n1, c1, r1), Bound de) = Cn (n1, c1, numadd (r1, Bound de)) - | numadd (Cn (n1, c1, r1), Neg di) = Cn (n1, c1, numadd (r1, Neg di)) - | numadd (Cn (n1, c1, r1), Add (dj, dk)) = - Cn (n1, c1, numadd (r1, Add (dj, dk))) - | numadd (Cn (n1, c1, r1), Sub (dl, dm)) = - Cn (n1, c1, numadd (r1, Sub (dl, dm))) - | numadd (Cn (n1, c1, r1), Mul (dn, doa)) = - Cn (n1, c1, numadd (r1, Mul (dn, doa))) - | numadd (C w, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (C w, r2)) - | numadd (Bound x, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Bound x, r2)) - | numadd (Neg ac, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Neg ac, r2)) - | numadd (Add (ad, ae), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Add (ad, ae), r2)) - | numadd (Sub (af, ag), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Sub (af, ag), r2)) - | numadd (Mul (ah, ai), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Mul (ah, ai), r2)) - | numadd (C b1, C b2) = C (IntInf.+ (b1, b2)) - | numadd (C aj, Bound bi) = Add (C aj, Bound bi) - | numadd (C aj, Neg bm) = Add (C aj, Neg bm) - | numadd (C aj, Add (bn, bo)) = Add (C aj, Add (bn, bo)) - | numadd (C aj, Sub (bp, bq)) = Add (C aj, Sub (bp, bq)) - | numadd (C aj, Mul (br, bs)) = Add (C aj, Mul (br, bs)) - | numadd (Bound ak, C cf) = Add (Bound ak, C cf) - | numadd (Bound ak, Bound cg) = Add (Bound ak, Bound cg) - | numadd (Bound ak, Neg ck) = Add (Bound ak, Neg ck) - | numadd (Bound ak, Add (cl, cm)) = Add (Bound ak, Add (cl, cm)) - | numadd (Bound ak, Sub (cn, co)) = Add (Bound ak, Sub (cn, co)) - | numadd (Bound ak, Mul (cp, cq)) = Add (Bound ak, Mul (cp, cq)) - | numadd (Neg ao, C en) = Add (Neg ao, C en) - | numadd (Neg ao, Bound eo) = Add (Neg ao, Bound eo) - | numadd (Neg ao, Neg es) = Add (Neg ao, Neg es) - | numadd (Neg ao, Add (et, eu)) = Add (Neg ao, Add (et, eu)) - | numadd (Neg ao, Sub (ev, ew)) = Add (Neg ao, Sub (ev, ew)) - | numadd (Neg ao, Mul (ex, ey)) = Add (Neg ao, Mul (ex, ey)) - | numadd (Add (ap, aq), C fl) = Add (Add (ap, aq), C fl) - | numadd (Add (ap, aq), Bound fm) = Add (Add (ap, aq), Bound fm) - | numadd (Add (ap, aq), Neg fq) = Add (Add (ap, aq), Neg fq) - | numadd (Add (ap, aq), Add (fr, fs)) = Add (Add (ap, aq), Add (fr, fs)) - | numadd (Add (ap, aq), Sub (ft, fu)) = Add (Add (ap, aq), Sub (ft, fu)) - | numadd (Add (ap, aq), Mul (fv, fw)) = Add (Add (ap, aq), Mul (fv, fw)) - | numadd (Sub (ar, asa), C gj) = Add (Sub (ar, asa), C gj) - | numadd (Sub (ar, asa), Bound gk) = Add (Sub (ar, asa), Bound gk) - | numadd (Sub (ar, asa), Neg go) = Add (Sub (ar, asa), Neg go) - | numadd (Sub (ar, asa), Add (gp, gq)) = Add (Sub (ar, asa), Add (gp, gq)) - | numadd (Sub (ar, asa), Sub (gr, gs)) = Add (Sub (ar, asa), Sub (gr, gs)) - | numadd (Sub (ar, asa), Mul (gt, gu)) = Add (Sub (ar, asa), Mul (gt, gu)) - | numadd (Mul (at, au), C hh) = Add (Mul (at, au), C hh) - | numadd (Mul (at, au), Bound hi) = Add (Mul (at, au), Bound hi) - | numadd (Mul (at, au), Neg hm) = Add (Mul (at, au), Neg hm) - | numadd (Mul (at, au), Add (hn, ho)) = Add (Mul (at, au), Add (hn, ho)) - | numadd (Mul (at, au), Sub (hp, hq)) = Add (Mul (at, au), Sub (hp, hq)) - | numadd (Mul (at, au), Mul (hr, hs)) = Add (Mul (at, au), Mul (hr, hs)); - -fun numsub s t = - (if eq_num s t then C (0 : IntInf.int) else numadd (s, numneg t)); - -fun simpnum (C j) = C j - | simpnum (Bound n) = Cn (n, (1 : IntInf.int), C (0 : IntInf.int)) - | simpnum (Neg t) = numneg (simpnum t) - | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s) - | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s) - | simpnum (Mul (i, t)) = - (if ((i : IntInf.int) = (0 : IntInf.int)) then C (0 : IntInf.int) - else nummul i (simpnum t)) - | simpnum (Cn (v, va, vb)) = Cn (v, va, vb); - -fun nota (Not p) = p - | nota T = F - | nota F = T - | nota (Lt v) = Not (Lt v) - | nota (Le v) = Not (Le v) - | nota (Gt v) = Not (Gt v) - | nota (Ge v) = Not (Ge v) - | nota (Eq v) = Not (Eq v) - | nota (NEq v) = Not (NEq v) - | nota (Dvd (v, va)) = Not (Dvd (v, va)) - | nota (NDvd (v, va)) = Not (NDvd (v, va)) - | nota (And (v, va)) = Not (And (v, va)) - | nota (Or (v, va)) = Not (Or (v, va)) - | nota (Imp (v, va)) = Not (Imp (v, va)) - | nota (Iff (v, va)) = Not (Iff (v, va)) - | nota (E v) = Not (E v) - | nota (A v) = Not (A v) - | nota (Closed v) = Not (Closed v) - | nota (NClosed v) = Not (NClosed v); - -fun iffa p q = - (if eq_fm p q then T - else (if eq_fm p (nota q) orelse eq_fm (nota p) q then F - else (if eq_fm p F then nota q - else (if eq_fm q F then nota p - else (if eq_fm p T then q - else (if eq_fm q T then p else Iff (p, q))))))); - -fun impa p q = - (if eq_fm p F orelse eq_fm q T then T - else (if eq_fm p T then q else (if eq_fm q F then nota p else Imp (p, q)))); - -fun conj p q = - (if eq_fm p F orelse eq_fm q F then F - else (if eq_fm p T then q else (if eq_fm q T then p else And (p, q)))); - -fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q) - | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q) - | simpfm (Imp (p, q)) = impa (simpfm p) (simpfm q) - | simpfm (Iff (p, q)) = iffa (simpfm p) (simpfm q) - | simpfm (Not p) = nota (simpfm p) - | simpfm (Lt a) = - let - val aa = simpnum a; - in - (case aa of C v => (if IntInf.< (v, (0 : IntInf.int)) then T else F) - | Bound _ => Lt aa | Cn (_, _, _) => Lt aa | Neg _ => Lt aa - | Add (_, _) => Lt aa | Sub (_, _) => Lt aa | Mul (_, _) => Lt aa) - end - | simpfm (Le a) = - let - val aa = simpnum a; - in - (case aa of C v => (if IntInf.<= (v, (0 : IntInf.int)) then T else F) - | Bound _ => Le aa | Cn (_, _, _) => Le aa | Neg _ => Le aa - | Add (_, _) => Le aa | Sub (_, _) => Le aa | Mul (_, _) => Le aa) - end - | simpfm (Gt a) = - let - val aa = simpnum a; - in - (case aa of C v => (if IntInf.< ((0 : IntInf.int), v) then T else F) - | Bound _ => Gt aa | Cn (_, _, _) => Gt aa | Neg _ => Gt aa - | Add (_, _) => Gt aa | Sub (_, _) => Gt aa | Mul (_, _) => Gt aa) - end - | simpfm (Ge a) = - let - val aa = simpnum a; - in - (case aa of C v => (if IntInf.<= ((0 : IntInf.int), v) then T else F) - | Bound _ => Ge aa | Cn (_, _, _) => Ge aa | Neg _ => Ge aa - | Add (_, _) => Ge aa | Sub (_, _) => Ge aa | Mul (_, _) => Ge aa) - end - | simpfm (Eq a) = - let - val aa = simpnum a; - in - (case aa - of C v => (if ((v : IntInf.int) = (0 : IntInf.int)) then T else F) - | Bound _ => Eq aa | Cn (_, _, _) => Eq aa | Neg _ => Eq aa - | Add (_, _) => Eq aa | Sub (_, _) => Eq aa | Mul (_, _) => Eq aa) - end - | simpfm (NEq a) = - let - val aa = simpnum a; - in - (case aa - of C v => (if not ((v : IntInf.int) = (0 : IntInf.int)) then T else F) - | Bound _ => NEq aa | Cn (_, _, _) => NEq aa | Neg _ => NEq aa - | Add (_, _) => NEq aa | Sub (_, _) => NEq aa | Mul (_, _) => NEq aa) - end - | simpfm (Dvd (i, a)) = - (if ((i : IntInf.int) = (0 : IntInf.int)) then simpfm (Eq a) - else (if (((abs_int i) : IntInf.int) = (1 : IntInf.int)) then T - else let - val aa = simpnum a; - in - (case aa - of C v => - (if dvd (semiring_div_int, eq_int) i v then T else F) - | Bound _ => Dvd (i, aa) | Cn (_, _, _) => Dvd (i, aa) - | Neg _ => Dvd (i, aa) | Add (_, _) => Dvd (i, aa) - | Sub (_, _) => Dvd (i, aa) | Mul (_, _) => Dvd (i, aa)) - end)) - | simpfm (NDvd (i, a)) = - (if ((i : IntInf.int) = (0 : IntInf.int)) then simpfm (NEq a) - else (if (((abs_int i) : IntInf.int) = (1 : IntInf.int)) then F - else let - val aa = simpnum a; - in - (case aa - of C v => - (if not (dvd (semiring_div_int, eq_int) i v) then T - else F) - | Bound _ => NDvd (i, aa) | Cn (_, _, _) => NDvd (i, aa) - | Neg _ => NDvd (i, aa) | Add (_, _) => NDvd (i, aa) - | Sub (_, _) => NDvd (i, aa) | Mul (_, _) => NDvd (i, aa)) - end)) - | simpfm T = T - | simpfm F = F - | simpfm (E v) = E v - | simpfm (A v) = A v - | simpfm (Closed v) = Closed v - | simpfm (NClosed v) = NClosed v; - -fun iupt i j = - (if IntInf.< (j, i) then [] - else i :: iupt (IntInf.+ (i, (1 : IntInf.int))) j); - -fun mirror (And (p, q)) = And (mirror p, mirror q) - | mirror (Or (p, q)) = Or (mirror p, mirror q) - | mirror T = T - | mirror F = F - | mirror (Lt (C bo)) = Lt (C bo) - | mirror (Lt (Bound bp)) = Lt (Bound bp) - | mirror (Lt (Neg bt)) = Lt (Neg bt) - | mirror (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) - | mirror (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) - | mirror (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) - | mirror (Le (C co)) = Le (C co) - | mirror (Le (Bound cp)) = Le (Bound cp) - | mirror (Le (Neg ct)) = Le (Neg ct) - | mirror (Le (Add (cu, cv))) = Le (Add (cu, cv)) - | mirror (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) - | mirror (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) - | mirror (Gt (C doa)) = Gt (C doa) - | mirror (Gt (Bound dp)) = Gt (Bound dp) - | mirror (Gt (Neg dt)) = Gt (Neg dt) - | mirror (Gt (Add (du, dv))) = Gt (Add (du, dv)) - | mirror (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) - | mirror (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) - | mirror (Ge (C eo)) = Ge (C eo) - | mirror (Ge (Bound ep)) = Ge (Bound ep) - | mirror (Ge (Neg et)) = Ge (Neg et) - | mirror (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) - | mirror (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) - | mirror (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) - | mirror (Eq (C fo)) = Eq (C fo) - | mirror (Eq (Bound fp)) = Eq (Bound fp) - | mirror (Eq (Neg ft)) = Eq (Neg ft) - | mirror (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) - | mirror (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) - | mirror (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) - | mirror (NEq (C go)) = NEq (C go) - | mirror (NEq (Bound gp)) = NEq (Bound gp) - | mirror (NEq (Neg gt)) = NEq (Neg gt) - | mirror (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) - | mirror (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) - | mirror (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) - | mirror (Dvd (aa, C ho)) = Dvd (aa, C ho) - | mirror (Dvd (aa, Bound hp)) = Dvd (aa, Bound hp) - | mirror (Dvd (aa, Neg ht)) = Dvd (aa, Neg ht) - | mirror (Dvd (aa, Add (hu, hv))) = Dvd (aa, Add (hu, hv)) - | mirror (Dvd (aa, Sub (hw, hx))) = Dvd (aa, Sub (hw, hx)) - | mirror (Dvd (aa, Mul (hy, hz))) = Dvd (aa, Mul (hy, hz)) - | mirror (NDvd (ac, C io)) = NDvd (ac, C io) - | mirror (NDvd (ac, Bound ip)) = NDvd (ac, Bound ip) - | mirror (NDvd (ac, Neg it)) = NDvd (ac, Neg it) - | mirror (NDvd (ac, Add (iu, iv))) = NDvd (ac, Add (iu, iv)) - | mirror (NDvd (ac, Sub (iw, ix))) = NDvd (ac, Sub (iw, ix)) - | mirror (NDvd (ac, Mul (iy, iz))) = NDvd (ac, Mul (iy, iz)) - | mirror (Not ae) = Not ae - | mirror (Imp (aj, ak)) = Imp (aj, ak) - | mirror (Iff (al, am)) = Iff (al, am) - | mirror (E an) = E an - | mirror (A ao) = A ao - | mirror (Closed ap) = Closed ap - | mirror (NClosed aq) = NClosed aq - | mirror (Lt (Cn (cm, c, e))) = - (if ((cm : IntInf.int) = (0 : IntInf.int)) - then Gt (Cn ((0 : IntInf.int), c, Neg e)) - else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e))) - | mirror (Le (Cn (dm, c, e))) = - (if ((dm : IntInf.int) = (0 : IntInf.int)) - then Ge (Cn ((0 : IntInf.int), c, Neg e)) - else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e))) - | mirror (Gt (Cn (em, c, e))) = - (if ((em : IntInf.int) = (0 : IntInf.int)) - then Lt (Cn ((0 : IntInf.int), c, Neg e)) - else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e))) - | mirror (Ge (Cn (fm, c, e))) = - (if ((fm : IntInf.int) = (0 : IntInf.int)) - then Le (Cn ((0 : IntInf.int), c, Neg e)) - else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e))) - | mirror (Eq (Cn (gm, c, e))) = - (if ((gm : IntInf.int) = (0 : IntInf.int)) - then Eq (Cn ((0 : IntInf.int), c, Neg e)) - else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e))) - | mirror (NEq (Cn (hm, c, e))) = - (if ((hm : IntInf.int) = (0 : IntInf.int)) - then NEq (Cn ((0 : IntInf.int), c, Neg e)) - else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e))) - | mirror (Dvd (i, Cn (im, c, e))) = - (if ((im : IntInf.int) = (0 : IntInf.int)) - then Dvd (i, Cn ((0 : IntInf.int), c, Neg e)) - else Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e))) - | mirror (NDvd (i, Cn (jm, c, e))) = - (if ((jm : IntInf.int) = (0 : IntInf.int)) - then NDvd (i, Cn ((0 : IntInf.int), c, Neg e)) - else NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e))); - -fun size_list [] = (0 : IntInf.int) - | size_list (a :: lista) = IntInf.+ (size_list lista, suc (0 : IntInf.int)); - -fun alpha (And (p, q)) = append (alpha p) (alpha q) - | alpha (Or (p, q)) = append (alpha p) (alpha q) - | alpha T = [] - | alpha F = [] - | alpha (Lt (C bo)) = [] - | alpha (Lt (Bound bp)) = [] - | alpha (Lt (Neg bt)) = [] - | alpha (Lt (Add (bu, bv))) = [] - | alpha (Lt (Sub (bw, bx))) = [] - | alpha (Lt (Mul (by, bz))) = [] - | alpha (Le (C co)) = [] - | alpha (Le (Bound cp)) = [] - | alpha (Le (Neg ct)) = [] - | alpha (Le (Add (cu, cv))) = [] - | alpha (Le (Sub (cw, cx))) = [] - | alpha (Le (Mul (cy, cz))) = [] - | alpha (Gt (C doa)) = [] - | alpha (Gt (Bound dp)) = [] - | alpha (Gt (Neg dt)) = [] - | alpha (Gt (Add (du, dv))) = [] - | alpha (Gt (Sub (dw, dx))) = [] - | alpha (Gt (Mul (dy, dz))) = [] - | alpha (Ge (C eo)) = [] - | alpha (Ge (Bound ep)) = [] - | alpha (Ge (Neg et)) = [] - | alpha (Ge (Add (eu, ev))) = [] - | alpha (Ge (Sub (ew, ex))) = [] - | alpha (Ge (Mul (ey, ez))) = [] - | alpha (Eq (C fo)) = [] - | alpha (Eq (Bound fp)) = [] - | alpha (Eq (Neg ft)) = [] - | alpha (Eq (Add (fu, fv))) = [] - | alpha (Eq (Sub (fw, fx))) = [] - | alpha (Eq (Mul (fy, fz))) = [] - | alpha (NEq (C go)) = [] - | alpha (NEq (Bound gp)) = [] - | alpha (NEq (Neg gt)) = [] - | alpha (NEq (Add (gu, gv))) = [] - | alpha (NEq (Sub (gw, gx))) = [] - | alpha (NEq (Mul (gy, gz))) = [] - | alpha (Dvd (aa, ab)) = [] - | alpha (NDvd (ac, ad)) = [] - | alpha (Not ae) = [] - | alpha (Imp (aj, ak)) = [] - | alpha (Iff (al, am)) = [] - | alpha (E an) = [] - | alpha (A ao) = [] - | alpha (Closed ap) = [] - | alpha (NClosed aq) = [] - | alpha (Lt (Cn (cm, c, e))) = - (if ((cm : IntInf.int) = (0 : IntInf.int)) then [e] else []) - | alpha (Le (Cn (dm, c, e))) = - (if ((dm : IntInf.int) = (0 : IntInf.int)) - then [Add (C (~1 : IntInf.int), e)] else []) - | alpha (Gt (Cn (em, c, e))) = - (if ((em : IntInf.int) = (0 : IntInf.int)) then [] else []) - | alpha (Ge (Cn (fm, c, e))) = - (if ((fm : IntInf.int) = (0 : IntInf.int)) then [] else []) - | alpha (Eq (Cn (gm, c, e))) = - (if ((gm : IntInf.int) = (0 : IntInf.int)) - then [Add (C (~1 : IntInf.int), e)] else []) - | alpha (NEq (Cn (hm, c, e))) = - (if ((hm : IntInf.int) = (0 : IntInf.int)) then [e] else []); - -fun beta (And (p, q)) = append (beta p) (beta q) - | beta (Or (p, q)) = append (beta p) (beta q) - | beta T = [] - | beta F = [] - | beta (Lt (C bo)) = [] - | beta (Lt (Bound bp)) = [] - | beta (Lt (Neg bt)) = [] - | beta (Lt (Add (bu, bv))) = [] - | beta (Lt (Sub (bw, bx))) = [] - | beta (Lt (Mul (by, bz))) = [] - | beta (Le (C co)) = [] - | beta (Le (Bound cp)) = [] - | beta (Le (Neg ct)) = [] - | beta (Le (Add (cu, cv))) = [] - | beta (Le (Sub (cw, cx))) = [] - | beta (Le (Mul (cy, cz))) = [] - | beta (Gt (C doa)) = [] - | beta (Gt (Bound dp)) = [] - | beta (Gt (Neg dt)) = [] - | beta (Gt (Add (du, dv))) = [] - | beta (Gt (Sub (dw, dx))) = [] - | beta (Gt (Mul (dy, dz))) = [] - | beta (Ge (C eo)) = [] - | beta (Ge (Bound ep)) = [] - | beta (Ge (Neg et)) = [] - | beta (Ge (Add (eu, ev))) = [] - | beta (Ge (Sub (ew, ex))) = [] - | beta (Ge (Mul (ey, ez))) = [] - | beta (Eq (C fo)) = [] - | beta (Eq (Bound fp)) = [] - | beta (Eq (Neg ft)) = [] - | beta (Eq (Add (fu, fv))) = [] - | beta (Eq (Sub (fw, fx))) = [] - | beta (Eq (Mul (fy, fz))) = [] - | beta (NEq (C go)) = [] - | beta (NEq (Bound gp)) = [] - | beta (NEq (Neg gt)) = [] - | beta (NEq (Add (gu, gv))) = [] - | beta (NEq (Sub (gw, gx))) = [] - | beta (NEq (Mul (gy, gz))) = [] - | beta (Dvd (aa, ab)) = [] - | beta (NDvd (ac, ad)) = [] - | beta (Not ae) = [] - | beta (Imp (aj, ak)) = [] - | beta (Iff (al, am)) = [] - | beta (E an) = [] - | beta (A ao) = [] - | beta (Closed ap) = [] - | beta (NClosed aq) = [] - | beta (Lt (Cn (cm, c, e))) = - (if ((cm : IntInf.int) = (0 : IntInf.int)) then [] else []) - | beta (Le (Cn (dm, c, e))) = - (if ((dm : IntInf.int) = (0 : IntInf.int)) then [] else []) - | beta (Gt (Cn (em, c, e))) = - (if ((em : IntInf.int) = (0 : IntInf.int)) then [Neg e] else []) - | beta (Ge (Cn (fm, c, e))) = - (if ((fm : IntInf.int) = (0 : IntInf.int)) - then [Sub (C (~1 : IntInf.int), e)] else []) - | beta (Eq (Cn (gm, c, e))) = - (if ((gm : IntInf.int) = (0 : IntInf.int)) - then [Sub (C (~1 : IntInf.int), e)] else []) - | beta (NEq (Cn (hm, c, e))) = - (if ((hm : IntInf.int) = (0 : IntInf.int)) then [Neg e] else []); - -val eq_numa = {eq = eq_num} : num eq; - -fun member A_ x [] = false - | member A_ x (y :: ys) = eqa A_ x y orelse member A_ x ys; - -fun remdups A_ [] = [] - | remdups A_ (x :: xs) = - (if member A_ x xs then remdups A_ xs else x :: remdups A_ xs); - -fun gcd_int k l = - abs_int - (if ((l : IntInf.int) = (0 : IntInf.int)) then k - else gcd_int l (mod_int (abs_int k) (abs_int l))); - -fun lcm_int a b = div_int (IntInf.* (abs_int a, abs_int b)) (gcd_int a b); - -fun delta (And (p, q)) = lcm_int (delta p) (delta q) - | delta (Or (p, q)) = lcm_int (delta p) (delta q) - | delta T = (1 : IntInf.int) - | delta F = (1 : IntInf.int) - | delta (Lt u) = (1 : IntInf.int) - | delta (Le v) = (1 : IntInf.int) - | delta (Gt w) = (1 : IntInf.int) - | delta (Ge x) = (1 : IntInf.int) - | delta (Eq y) = (1 : IntInf.int) - | delta (NEq z) = (1 : IntInf.int) - | delta (Dvd (aa, C bo)) = (1 : IntInf.int) - | delta (Dvd (aa, Bound bp)) = (1 : IntInf.int) - | delta (Dvd (aa, Neg bt)) = (1 : IntInf.int) - | delta (Dvd (aa, Add (bu, bv))) = (1 : IntInf.int) - | delta (Dvd (aa, Sub (bw, bx))) = (1 : IntInf.int) - | delta (Dvd (aa, Mul (by, bz))) = (1 : IntInf.int) - | delta (NDvd (ac, C co)) = (1 : IntInf.int) - | delta (NDvd (ac, Bound cp)) = (1 : IntInf.int) - | delta (NDvd (ac, Neg ct)) = (1 : IntInf.int) - | delta (NDvd (ac, Add (cu, cv))) = (1 : IntInf.int) - | delta (NDvd (ac, Sub (cw, cx))) = (1 : IntInf.int) - | delta (NDvd (ac, Mul (cy, cz))) = (1 : IntInf.int) - | delta (Not ae) = (1 : IntInf.int) - | delta (Imp (aj, ak)) = (1 : IntInf.int) - | delta (Iff (al, am)) = (1 : IntInf.int) - | delta (E an) = (1 : IntInf.int) - | delta (A ao) = (1 : IntInf.int) - | delta (Closed ap) = (1 : IntInf.int) - | delta (NClosed aq) = (1 : IntInf.int) - | delta (Dvd (i, Cn (cm, c, e))) = - (if ((cm : IntInf.int) = (0 : IntInf.int)) then i else (1 : IntInf.int)) - | delta (NDvd (i, Cn (dm, c, e))) = - (if ((dm : IntInf.int) = (0 : IntInf.int)) then i else (1 : IntInf.int)); - -fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k)) - | a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k)) - | a_beta T = (fn _ => T) - | a_beta F = (fn _ => F) - | a_beta (Lt (C bo)) = (fn _ => Lt (C bo)) - | a_beta (Lt (Bound bp)) = (fn _ => Lt (Bound bp)) - | a_beta (Lt (Neg bt)) = (fn _ => Lt (Neg bt)) - | a_beta (Lt (Add (bu, bv))) = (fn _ => Lt (Add (bu, bv))) - | a_beta (Lt (Sub (bw, bx))) = (fn _ => Lt (Sub (bw, bx))) - | a_beta (Lt (Mul (by, bz))) = (fn _ => Lt (Mul (by, bz))) - | a_beta (Le (C co)) = (fn _ => Le (C co)) - | a_beta (Le (Bound cp)) = (fn _ => Le (Bound cp)) - | a_beta (Le (Neg ct)) = (fn _ => Le (Neg ct)) - | a_beta (Le (Add (cu, cv))) = (fn _ => Le (Add (cu, cv))) - | a_beta (Le (Sub (cw, cx))) = (fn _ => Le (Sub (cw, cx))) - | a_beta (Le (Mul (cy, cz))) = (fn _ => Le (Mul (cy, cz))) - | a_beta (Gt (C doa)) = (fn _ => Gt (C doa)) - | a_beta (Gt (Bound dp)) = (fn _ => Gt (Bound dp)) - | a_beta (Gt (Neg dt)) = (fn _ => Gt (Neg dt)) - | a_beta (Gt (Add (du, dv))) = (fn _ => Gt (Add (du, dv))) - | a_beta (Gt (Sub (dw, dx))) = (fn _ => Gt (Sub (dw, dx))) - | a_beta (Gt (Mul (dy, dz))) = (fn _ => Gt (Mul (dy, dz))) - | a_beta (Ge (C eo)) = (fn _ => Ge (C eo)) - | a_beta (Ge (Bound ep)) = (fn _ => Ge (Bound ep)) - | a_beta (Ge (Neg et)) = (fn _ => Ge (Neg et)) - | a_beta (Ge (Add (eu, ev))) = (fn _ => Ge (Add (eu, ev))) - | a_beta (Ge (Sub (ew, ex))) = (fn _ => Ge (Sub (ew, ex))) - | a_beta (Ge (Mul (ey, ez))) = (fn _ => Ge (Mul (ey, ez))) - | a_beta (Eq (C fo)) = (fn _ => Eq (C fo)) - | a_beta (Eq (Bound fp)) = (fn _ => Eq (Bound fp)) - | a_beta (Eq (Neg ft)) = (fn _ => Eq (Neg ft)) - | a_beta (Eq (Add (fu, fv))) = (fn _ => Eq (Add (fu, fv))) - | a_beta (Eq (Sub (fw, fx))) = (fn _ => Eq (Sub (fw, fx))) - | a_beta (Eq (Mul (fy, fz))) = (fn _ => Eq (Mul (fy, fz))) - | a_beta (NEq (C go)) = (fn _ => NEq (C go)) - | a_beta (NEq (Bound gp)) = (fn _ => NEq (Bound gp)) - | a_beta (NEq (Neg gt)) = (fn _ => NEq (Neg gt)) - | a_beta (NEq (Add (gu, gv))) = (fn _ => NEq (Add (gu, gv))) - | a_beta (NEq (Sub (gw, gx))) = (fn _ => NEq (Sub (gw, gx))) - | a_beta (NEq (Mul (gy, gz))) = (fn _ => NEq (Mul (gy, gz))) - | a_beta (Dvd (aa, C ho)) = (fn _ => Dvd (aa, C ho)) - | a_beta (Dvd (aa, Bound hp)) = (fn _ => Dvd (aa, Bound hp)) - | a_beta (Dvd (aa, Neg ht)) = (fn _ => Dvd (aa, Neg ht)) - | a_beta (Dvd (aa, Add (hu, hv))) = (fn _ => Dvd (aa, Add (hu, hv))) - | a_beta (Dvd (aa, Sub (hw, hx))) = (fn _ => Dvd (aa, Sub (hw, hx))) - | a_beta (Dvd (aa, Mul (hy, hz))) = (fn _ => Dvd (aa, Mul (hy, hz))) - | a_beta (NDvd (ac, C io)) = (fn _ => NDvd (ac, C io)) - | a_beta (NDvd (ac, Bound ip)) = (fn _ => NDvd (ac, Bound ip)) - | a_beta (NDvd (ac, Neg it)) = (fn _ => NDvd (ac, Neg it)) - | a_beta (NDvd (ac, Add (iu, iv))) = (fn _ => NDvd (ac, Add (iu, iv))) - | a_beta (NDvd (ac, Sub (iw, ix))) = (fn _ => NDvd (ac, Sub (iw, ix))) - | a_beta (NDvd (ac, Mul (iy, iz))) = (fn _ => NDvd (ac, Mul (iy, iz))) - | a_beta (Not ae) = (fn _ => Not ae) - | a_beta (Imp (aj, ak)) = (fn _ => Imp (aj, ak)) - | a_beta (Iff (al, am)) = (fn _ => Iff (al, am)) - | a_beta (E an) = (fn _ => E an) - | a_beta (A ao) = (fn _ => A ao) - | a_beta (Closed ap) = (fn _ => Closed ap) - | a_beta (NClosed aq) = (fn _ => NClosed aq) - | a_beta (Lt (Cn (cm, c, e))) = - (if ((cm : IntInf.int) = (0 : IntInf.int)) - then (fn k => - Lt (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) - else (fn _ => Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e)))) - | a_beta (Le (Cn (dm, c, e))) = - (if ((dm : IntInf.int) = (0 : IntInf.int)) - then (fn k => - Le (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) - else (fn _ => Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e)))) - | a_beta (Gt (Cn (em, c, e))) = - (if ((em : IntInf.int) = (0 : IntInf.int)) - then (fn k => - Gt (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) - else (fn _ => Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e)))) - | a_beta (Ge (Cn (fm, c, e))) = - (if ((fm : IntInf.int) = (0 : IntInf.int)) - then (fn k => - Ge (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) - else (fn _ => Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e)))) - | a_beta (Eq (Cn (gm, c, e))) = - (if ((gm : IntInf.int) = (0 : IntInf.int)) - then (fn k => - Eq (Cn ((0 : IntInf.int), (1 : IntInf.int), Mul (div_int k c, e)))) - else (fn _ => Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e)))) - | a_beta (NEq (Cn (hm, c, e))) = - (if ((hm : IntInf.int) = (0 : IntInf.int)) - then (fn k => - NEq (Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_int k c, e)))) - else (fn _ => NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e)))) - | a_beta (Dvd (i, Cn (im, c, e))) = - (if ((im : IntInf.int) = (0 : IntInf.int)) - then (fn k => - Dvd (IntInf.* (div_int k c, i), - Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_int k c, e)))) - else (fn _ => Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e)))) - | a_beta (NDvd (i, Cn (jm, c, e))) = - (if ((jm : IntInf.int) = (0 : IntInf.int)) - then (fn k => - NDvd (IntInf.* (div_int k c, i), - Cn ((0 : IntInf.int), (1 : IntInf.int), - Mul (div_int k c, e)))) - else (fn _ => NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e)))); - -fun zeta (And (p, q)) = lcm_int (zeta p) (zeta q) - | zeta (Or (p, q)) = lcm_int (zeta p) (zeta q) - | zeta T = (1 : IntInf.int) - | zeta F = (1 : IntInf.int) - | zeta (Lt (C bo)) = (1 : IntInf.int) - | zeta (Lt (Bound bp)) = (1 : IntInf.int) - | zeta (Lt (Neg bt)) = (1 : IntInf.int) - | zeta (Lt (Add (bu, bv))) = (1 : IntInf.int) - | zeta (Lt (Sub (bw, bx))) = (1 : IntInf.int) - | zeta (Lt (Mul (by, bz))) = (1 : IntInf.int) - | zeta (Le (C co)) = (1 : IntInf.int) - | zeta (Le (Bound cp)) = (1 : IntInf.int) - | zeta (Le (Neg ct)) = (1 : IntInf.int) - | zeta (Le (Add (cu, cv))) = (1 : IntInf.int) - | zeta (Le (Sub (cw, cx))) = (1 : IntInf.int) - | zeta (Le (Mul (cy, cz))) = (1 : IntInf.int) - | zeta (Gt (C doa)) = (1 : IntInf.int) - | zeta (Gt (Bound dp)) = (1 : IntInf.int) - | zeta (Gt (Neg dt)) = (1 : IntInf.int) - | zeta (Gt (Add (du, dv))) = (1 : IntInf.int) - | zeta (Gt (Sub (dw, dx))) = (1 : IntInf.int) - | zeta (Gt (Mul (dy, dz))) = (1 : IntInf.int) - | zeta (Ge (C eo)) = (1 : IntInf.int) - | zeta (Ge (Bound ep)) = (1 : IntInf.int) - | zeta (Ge (Neg et)) = (1 : IntInf.int) - | zeta (Ge (Add (eu, ev))) = (1 : IntInf.int) - | zeta (Ge (Sub (ew, ex))) = (1 : IntInf.int) - | zeta (Ge (Mul (ey, ez))) = (1 : IntInf.int) - | zeta (Eq (C fo)) = (1 : IntInf.int) - | zeta (Eq (Bound fp)) = (1 : IntInf.int) - | zeta (Eq (Neg ft)) = (1 : IntInf.int) - | zeta (Eq (Add (fu, fv))) = (1 : IntInf.int) - | zeta (Eq (Sub (fw, fx))) = (1 : IntInf.int) - | zeta (Eq (Mul (fy, fz))) = (1 : IntInf.int) - | zeta (NEq (C go)) = (1 : IntInf.int) - | zeta (NEq (Bound gp)) = (1 : IntInf.int) - | zeta (NEq (Neg gt)) = (1 : IntInf.int) - | zeta (NEq (Add (gu, gv))) = (1 : IntInf.int) - | zeta (NEq (Sub (gw, gx))) = (1 : IntInf.int) - | zeta (NEq (Mul (gy, gz))) = (1 : IntInf.int) - | zeta (Dvd (aa, C ho)) = (1 : IntInf.int) - | zeta (Dvd (aa, Bound hp)) = (1 : IntInf.int) - | zeta (Dvd (aa, Neg ht)) = (1 : IntInf.int) - | zeta (Dvd (aa, Add (hu, hv))) = (1 : IntInf.int) - | zeta (Dvd (aa, Sub (hw, hx))) = (1 : IntInf.int) - | zeta (Dvd (aa, Mul (hy, hz))) = (1 : IntInf.int) - | zeta (NDvd (ac, C io)) = (1 : IntInf.int) - | zeta (NDvd (ac, Bound ip)) = (1 : IntInf.int) - | zeta (NDvd (ac, Neg it)) = (1 : IntInf.int) - | zeta (NDvd (ac, Add (iu, iv))) = (1 : IntInf.int) - | zeta (NDvd (ac, Sub (iw, ix))) = (1 : IntInf.int) - | zeta (NDvd (ac, Mul (iy, iz))) = (1 : IntInf.int) - | zeta (Not ae) = (1 : IntInf.int) - | zeta (Imp (aj, ak)) = (1 : IntInf.int) - | zeta (Iff (al, am)) = (1 : IntInf.int) - | zeta (E an) = (1 : IntInf.int) - | zeta (A ao) = (1 : IntInf.int) - | zeta (Closed ap) = (1 : IntInf.int) - | zeta (NClosed aq) = (1 : IntInf.int) - | zeta (Lt (Cn (cm, c, e))) = - (if ((cm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) - | zeta (Le (Cn (dm, c, e))) = - (if ((dm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) - | zeta (Gt (Cn (em, c, e))) = - (if ((em : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) - | zeta (Ge (Cn (fm, c, e))) = - (if ((fm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) - | zeta (Eq (Cn (gm, c, e))) = - (if ((gm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) - | zeta (NEq (Cn (hm, c, e))) = - (if ((hm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) - | zeta (Dvd (i, Cn (im, c, e))) = - (if ((im : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)) - | zeta (NDvd (i, Cn (jm, c, e))) = - (if ((jm : IntInf.int) = (0 : IntInf.int)) then c else (1 : IntInf.int)); - -fun zsplit0 (C c) = ((0 : IntInf.int), C c) - | zsplit0 (Bound n) = - (if ((n : IntInf.int) = (0 : IntInf.int)) - then ((1 : IntInf.int), C (0 : IntInf.int)) - else ((0 : IntInf.int), Bound n)) - | zsplit0 (Cn (n, i, a)) = - let - val (ia, aa) = zsplit0 a; - in - (if ((n : IntInf.int) = (0 : IntInf.int)) then (IntInf.+ (i, ia), aa) - else (ia, Cn (n, i, aa))) - end - | zsplit0 (Neg a) = - let - val (i, aa) = zsplit0 a; - in - (IntInf.~ i, Neg aa) - end - | zsplit0 (Add (a, b)) = - let - val (ia, aa) = zsplit0 a; - val (ib, ba) = zsplit0 b; - in - (IntInf.+ (ia, ib), Add (aa, ba)) - end - | zsplit0 (Sub (a, b)) = - let - val (ia, aa) = zsplit0 a; - val (ib, ba) = zsplit0 b; - in - (IntInf.- (ia, ib), Sub (aa, ba)) - end - | zsplit0 (Mul (i, a)) = - let - val (ia, aa) = zsplit0 a; - in - (IntInf.* (i, ia), Mul (i, aa)) - end; - -fun zlfm (And (p, q)) = And (zlfm p, zlfm q) - | zlfm (Or (p, q)) = Or (zlfm p, zlfm q) - | zlfm (Imp (p, q)) = Or (zlfm (Not p), zlfm q) - | zlfm (Iff (p, q)) = - Or (And (zlfm p, zlfm q), And (zlfm (Not p), zlfm (Not q))) - | zlfm (Lt a) = - let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then Lt r - else (if IntInf.< ((0 : IntInf.int), c) - then Lt (Cn ((0 : IntInf.int), c, r)) - else Gt (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end - | zlfm (Le a) = - let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then Le r - else (if IntInf.< ((0 : IntInf.int), c) - then Le (Cn ((0 : IntInf.int), c, r)) - else Ge (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end - | zlfm (Gt a) = - let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then Gt r - else (if IntInf.< ((0 : IntInf.int), c) - then Gt (Cn ((0 : IntInf.int), c, r)) - else Lt (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end - | zlfm (Ge a) = - let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then Ge r - else (if IntInf.< ((0 : IntInf.int), c) - then Ge (Cn ((0 : IntInf.int), c, r)) - else Le (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end - | zlfm (Eq a) = - let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then Eq r - else (if IntInf.< ((0 : IntInf.int), c) - then Eq (Cn ((0 : IntInf.int), c, r)) - else Eq (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end - | zlfm (NEq a) = - let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then NEq r - else (if IntInf.< ((0 : IntInf.int), c) - then NEq (Cn ((0 : IntInf.int), c, r)) - else NEq (Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end - | zlfm (Dvd (i, a)) = - (if ((i : IntInf.int) = (0 : IntInf.int)) then zlfm (Eq a) - else let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then Dvd (abs_int i, r) - else (if IntInf.< ((0 : IntInf.int), c) - then Dvd (abs_int i, Cn ((0 : IntInf.int), c, r)) - else Dvd (abs_int i, - Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end) - | zlfm (NDvd (i, a)) = - (if ((i : IntInf.int) = (0 : IntInf.int)) then zlfm (NEq a) - else let - val (c, r) = zsplit0 a; - in - (if ((c : IntInf.int) = (0 : IntInf.int)) then NDvd (abs_int i, r) - else (if IntInf.< ((0 : IntInf.int), c) - then NDvd (abs_int i, Cn ((0 : IntInf.int), c, r)) - else NDvd (abs_int i, - Cn ((0 : IntInf.int), IntInf.~ c, Neg r)))) - end) - | zlfm (Not (And (p, q))) = Or (zlfm (Not p), zlfm (Not q)) - | zlfm (Not (Or (p, q))) = And (zlfm (Not p), zlfm (Not q)) - | zlfm (Not (Imp (p, q))) = And (zlfm p, zlfm (Not q)) - | zlfm (Not (Iff (p, q))) = - Or (And (zlfm p, zlfm (Not q)), And (zlfm (Not p), zlfm q)) - | zlfm (Not (Not p)) = zlfm p - | zlfm (Not T) = F - | zlfm (Not F) = T - | zlfm (Not (Lt a)) = zlfm (Ge a) - | zlfm (Not (Le a)) = zlfm (Gt a) - | zlfm (Not (Gt a)) = zlfm (Le a) - | zlfm (Not (Ge a)) = zlfm (Lt a) - | zlfm (Not (Eq a)) = zlfm (NEq a) - | zlfm (Not (NEq a)) = zlfm (Eq a) - | zlfm (Not (Dvd (i, a))) = zlfm (NDvd (i, a)) - | zlfm (Not (NDvd (i, a))) = zlfm (Dvd (i, a)) - | zlfm (Not (Closed p)) = NClosed p - | zlfm (Not (NClosed p)) = Closed p - | zlfm T = T - | zlfm F = F - | zlfm (Not (E ci)) = Not (E ci) - | zlfm (Not (A cj)) = Not (A cj) - | zlfm (E ao) = E ao - | zlfm (A ap) = A ap - | zlfm (Closed aq) = Closed aq - | zlfm (NClosed ar) = NClosed ar; - -fun unita p = - let - val pa = zlfm p; - val l = zeta pa; - val q = - And (Dvd (l, Cn ((0 : IntInf.int), (1 : IntInf.int), C (0 : IntInf.int))), - a_beta pa l); - val d = delta q; - val b = remdups eq_numa (map simpnum (beta q)); - val a = remdups eq_numa (map simpnum (alpha q)); - in - (if IntInf.<= (size_list b, size_list a) then (q, (b, d)) - else (mirror q, (a, d))) - end; - -fun cooper p = - let - val (q, (b, d)) = unita p; - val js = iupt (1 : IntInf.int) d; - val mq = simpfm (minusinf q); - val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js; - in - (if eq_fm md T then T - else let - val qd = - evaldjf (fn (ba, j) => simpfm (subst0 (Add (ba, C j)) q)) - (concat_map (fn ba => map (fn a => (ba, a)) js) b); - in - decr (disj md qd) - end) - end; - -fun prep (E T) = T - | prep (E F) = F - | prep (E (Or (p, q))) = Or (prep (E p), prep (E q)) - | prep (E (Imp (p, q))) = Or (prep (E (Not p)), prep (E q)) - | prep (E (Iff (p, q))) = - Or (prep (E (And (p, q))), prep (E (And (Not p, Not q)))) - | prep (E (Not (And (p, q)))) = Or (prep (E (Not p)), prep (E (Not q))) - | prep (E (Not (Imp (p, q)))) = prep (E (And (p, Not q))) - | prep (E (Not (Iff (p, q)))) = - Or (prep (E (And (p, Not q))), prep (E (And (Not p, q)))) - | prep (E (Lt ef)) = E (prep (Lt ef)) - | prep (E (Le eg)) = E (prep (Le eg)) - | prep (E (Gt eh)) = E (prep (Gt eh)) - | prep (E (Ge ei)) = E (prep (Ge ei)) - | prep (E (Eq ej)) = E (prep (Eq ej)) - | prep (E (NEq ek)) = E (prep (NEq ek)) - | prep (E (Dvd (el, em))) = E (prep (Dvd (el, em))) - | prep (E (NDvd (en, eo))) = E (prep (NDvd (en, eo))) - | prep (E (Not T)) = E (prep (Not T)) - | prep (E (Not F)) = E (prep (Not F)) - | prep (E (Not (Lt gw))) = E (prep (Not (Lt gw))) - | prep (E (Not (Le gx))) = E (prep (Not (Le gx))) - | prep (E (Not (Gt gy))) = E (prep (Not (Gt gy))) - | prep (E (Not (Ge gz))) = E (prep (Not (Ge gz))) - | prep (E (Not (Eq ha))) = E (prep (Not (Eq ha))) - | prep (E (Not (NEq hb))) = E (prep (Not (NEq hb))) - | prep (E (Not (Dvd (hc, hd)))) = E (prep (Not (Dvd (hc, hd)))) - | prep (E (Not (NDvd (he, hf)))) = E (prep (Not (NDvd (he, hf)))) - | prep (E (Not (Not hg))) = E (prep (Not (Not hg))) - | prep (E (Not (Or (hj, hk)))) = E (prep (Not (Or (hj, hk)))) - | prep (E (Not (E hp))) = E (prep (Not (E hp))) - | prep (E (Not (A hq))) = E (prep (Not (A hq))) - | prep (E (Not (Closed hr))) = E (prep (Not (Closed hr))) - | prep (E (Not (NClosed hs))) = E (prep (Not (NClosed hs))) - | prep (E (And (eq, er))) = E (prep (And (eq, er))) - | prep (E (E ey)) = E (prep (E ey)) - | prep (E (A ez)) = E (prep (A ez)) - | prep (E (Closed fa)) = E (prep (Closed fa)) - | prep (E (NClosed fb)) = E (prep (NClosed fb)) - | prep (A (And (p, q))) = And (prep (A p), prep (A q)) - | prep (A T) = prep (Not (E (Not T))) - | prep (A F) = prep (Not (E (Not F))) - | prep (A (Lt jn)) = prep (Not (E (Not (Lt jn)))) - | prep (A (Le jo)) = prep (Not (E (Not (Le jo)))) - | prep (A (Gt jp)) = prep (Not (E (Not (Gt jp)))) - | prep (A (Ge jq)) = prep (Not (E (Not (Ge jq)))) - | prep (A (Eq jr)) = prep (Not (E (Not (Eq jr)))) - | prep (A (NEq js)) = prep (Not (E (Not (NEq js)))) - | prep (A (Dvd (jt, ju))) = prep (Not (E (Not (Dvd (jt, ju))))) - | prep (A (NDvd (jv, jw))) = prep (Not (E (Not (NDvd (jv, jw))))) - | prep (A (Not jx)) = prep (Not (E (Not (Not jx)))) - | prep (A (Or (ka, kb))) = prep (Not (E (Not (Or (ka, kb))))) - | prep (A (Imp (kc, kd))) = prep (Not (E (Not (Imp (kc, kd))))) - | prep (A (Iff (ke, kf))) = prep (Not (E (Not (Iff (ke, kf))))) - | prep (A (E kg)) = prep (Not (E (Not (E kg)))) - | prep (A (A kh)) = prep (Not (E (Not (A kh)))) - | prep (A (Closed ki)) = prep (Not (E (Not (Closed ki)))) - | prep (A (NClosed kj)) = prep (Not (E (Not (NClosed kj)))) - | prep (Not (Not p)) = prep p - | prep (Not (And (p, q))) = Or (prep (Not p), prep (Not q)) - | prep (Not (A p)) = prep (E (Not p)) - | prep (Not (Or (p, q))) = And (prep (Not p), prep (Not q)) - | prep (Not (Imp (p, q))) = And (prep p, prep (Not q)) - | prep (Not (Iff (p, q))) = Or (prep (And (p, Not q)), prep (And (Not p, q))) - | prep (Not T) = Not (prep T) - | prep (Not F) = Not (prep F) - | prep (Not (Lt bo)) = Not (prep (Lt bo)) - | prep (Not (Le bp)) = Not (prep (Le bp)) - | prep (Not (Gt bq)) = Not (prep (Gt bq)) - | prep (Not (Ge br)) = Not (prep (Ge br)) - | prep (Not (Eq bs)) = Not (prep (Eq bs)) - | prep (Not (NEq bt)) = Not (prep (NEq bt)) - | prep (Not (Dvd (bu, bv))) = Not (prep (Dvd (bu, bv))) - | prep (Not (NDvd (bw, bx))) = Not (prep (NDvd (bw, bx))) - | prep (Not (E ch)) = Not (prep (E ch)) - | prep (Not (Closed cj)) = Not (prep (Closed cj)) - | prep (Not (NClosed ck)) = Not (prep (NClosed ck)) - | prep (Or (p, q)) = Or (prep p, prep q) - | prep (And (p, q)) = And (prep p, prep q) - | prep (Imp (p, q)) = prep (Or (Not p, q)) - | prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (Not p, Not q))) - | prep T = T - | prep F = F - | prep (Lt u) = Lt u - | prep (Le v) = Le v - | prep (Gt w) = Gt w - | prep (Ge x) = Ge x - | prep (Eq y) = Eq y - | prep (NEq z) = NEq z - | prep (Dvd (aa, ab)) = Dvd (aa, ab) - | prep (NDvd (ac, ad)) = NDvd (ac, ad) - | prep (Closed ap) = Closed ap - | prep (NClosed aq) = NClosed aq; - -fun qelim (E p) = (fn qe => dj qe (qelim p qe)) - | qelim (A p) = (fn qe => nota (qe (qelim (Not p) qe))) - | qelim (Not p) = (fn qe => nota (qelim p qe)) - | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe)) - | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe)) - | qelim (Imp (p, q)) = (fn qe => impa (qelim p qe) (qelim q qe)) - | qelim (Iff (p, q)) = (fn qe => iffa (qelim p qe) (qelim q qe)) - | qelim T = (fn _ => simpfm T) - | qelim F = (fn _ => simpfm F) - | qelim (Lt u) = (fn _ => simpfm (Lt u)) - | qelim (Le v) = (fn _ => simpfm (Le v)) - | qelim (Gt w) = (fn _ => simpfm (Gt w)) - | qelim (Ge x) = (fn _ => simpfm (Ge x)) - | qelim (Eq y) = (fn _ => simpfm (Eq y)) - | qelim (NEq z) = (fn _ => simpfm (NEq z)) - | qelim (Dvd (aa, ab)) = (fn _ => simpfm (Dvd (aa, ab))) - | qelim (NDvd (ac, ad)) = (fn _ => simpfm (NDvd (ac, ad))) - | qelim (Closed ap) = (fn _ => simpfm (Closed ap)) - | qelim (NClosed aq) = (fn _ => simpfm (NClosed aq)); - -fun pa p = qelim (prep p) cooper; - -end; (*struct Generated_Cooper*) diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/Tools/Qelim/presburger.ML --- a/src/HOL/Tools/Qelim/presburger.ML Tue May 11 09:10:31 2010 -0700 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,185 +0,0 @@ -(* Title: HOL/Tools/Qelim/presburger.ML - Author: Amine Chaieb, TU Muenchen -*) - -signature PRESBURGER = -sig - val cooper_tac: bool -> thm list -> thm list -> Proof.context -> int -> tactic -end; - -structure Presburger : PRESBURGER = -struct - -open Conv; -val comp_ss = HOL_ss addsimps @{thms semiring_norm}; - -fun strip_objimp ct = - (case Thm.term_of ct of - Const ("op -->", _) $ _ $ _ => - let val (A, B) = Thm.dest_binop ct - in A :: strip_objimp B end - | _ => [ct]); - -fun strip_objall ct = - case term_of ct of - Const ("All", _) $ Abs (xn,xT,p) => - let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct - in apfst (cons (a,v)) (strip_objall t') - end -| _ => ([],ct); - -local - val all_maxscope_ss = - HOL_basic_ss addsimps map (fn th => th RS sym) @{thms "all_simps"} -in -fun thin_prems_tac P = simp_tac all_maxscope_ss THEN' - CSUBGOAL (fn (p', i) => - let - val (qvs, p) = strip_objall (Thm.dest_arg p') - val (ps, c) = split_last (strip_objimp p) - val qs = filter P ps - val q = if P c then c else @{cterm "False"} - val ng = fold_rev (fn (a,v) => fn t => Thm.capply a (Thm.cabs v t)) qvs - (fold_rev (fn p => fn q => Thm.capply (Thm.capply @{cterm "op -->"} p) q) qs q) - val g = Thm.capply (Thm.capply @{cterm "op ==>"} (Thm.capply @{cterm "Trueprop"} ng)) p' - val ntac = (case qs of [] => q aconvc @{cterm "False"} - | _ => false) - in - if ntac then no_tac - else rtac (Goal.prove_internal [] g (K (blast_tac HOL_cs 1))) i - end) -end; - -local - fun isnum t = case t of - Const(@{const_name Groups.zero},_) => true - | Const(@{const_name Groups.one},_) => true - | @{term "Suc"}$s => isnum s - | @{term "nat"}$s => isnum s - | @{term "int"}$s => isnum s - | Const(@{const_name Groups.uminus},_)$s => isnum s - | Const(@{const_name Groups.plus},_)$l$r => isnum l andalso isnum r - | Const(@{const_name Groups.times},_)$l$r => isnum l andalso isnum r - | Const(@{const_name Groups.minus},_)$l$r => isnum l andalso isnum r - | Const(@{const_name Power.power},_)$l$r => isnum l andalso isnum r - | Const(@{const_name Divides.mod},_)$l$r => isnum l andalso isnum r - | Const(@{const_name Divides.div},_)$l$r => isnum l andalso isnum r - | _ => can HOLogic.dest_number t orelse can HOLogic.dest_nat t - - fun ty cts t = - if not (member (op =) [HOLogic.intT, HOLogic.natT, HOLogic.boolT] (typ_of (ctyp_of_term t))) then false - else case term_of t of - c$l$r => if member (op =) [@{term"op *::int => _"}, @{term"op *::nat => _"}] c - then not (isnum l orelse isnum r) - else not (member (op aconv) cts c) - | c$_ => not (member (op aconv) cts c) - | c => not (member (op aconv) cts c) - - val term_constants = - let fun h acc t = case t of - Const _ => insert (op aconv) t acc - | a$b => h (h acc a) b - | Abs (_,_,t) => h acc t - | _ => acc - in h [] end; -in -fun is_relevant ctxt ct = - subset (op aconv) (term_constants (term_of ct) , snd (CooperData.get ctxt)) - andalso forall (fn Free (_,T) => member (op =) [@{typ int}, @{typ nat}] T) (OldTerm.term_frees (term_of ct)) - andalso forall (fn Var (_,T) => member (op =) [@{typ int}, @{typ nat}] T) (OldTerm.term_vars (term_of ct)); - -fun int_nat_terms ctxt ct = - let - val cts = snd (CooperData.get ctxt) - fun h acc t = if ty cts t then insert (op aconvc) t acc else - case (term_of t) of - _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t) - | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc)) - | _ => acc - in h [] ct end -end; - -fun generalize_tac f = CSUBGOAL (fn (p, i) => PRIMITIVE (fn st => - let - fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"} - fun gen x t = Thm.capply (all (ctyp_of_term x)) (Thm.cabs x t) - val ts = sort (fn (a,b) => Term_Ord.fast_term_ord (term_of a, term_of b)) (f p) - val p' = fold_rev gen ts p - in implies_intr p' (implies_elim st (fold forall_elim ts (assume p'))) end)); - -local -val ss1 = comp_ss - addsimps @{thms simp_thms} @ [@{thm "nat_number_of_def"}, @{thm "zdvd_int"}] - @ map (fn r => r RS sym) - [@{thm "int_int_eq"}, @{thm "zle_int"}, @{thm "zless_int"}, @{thm "zadd_int"}, - @{thm "zmult_int"}] - addsplits [@{thm "zdiff_int_split"}] - -val ss2 = HOL_basic_ss - addsimps [@{thm "nat_0_le"}, @{thm "int_nat_number_of"}, - @{thm "all_nat"}, @{thm "ex_nat"}, @{thm "number_of1"}, - @{thm "number_of2"}, @{thm "int_0"}, @{thm "int_1"}, @{thm "Suc_eq_plus1"}] - addcongs [@{thm "conj_le_cong"}, @{thm "imp_le_cong"}] -val div_mod_ss = HOL_basic_ss addsimps @{thms simp_thms} - @ map (symmetric o mk_meta_eq) - [@{thm "dvd_eq_mod_eq_0"}, - @{thm "mod_add_left_eq"}, @{thm "mod_add_right_eq"}, - @{thm "mod_add_eq"}, @{thm "div_add1_eq"}, @{thm "zdiv_zadd1_eq"}] - @ [@{thm "mod_self"}, @{thm "zmod_self"}, @{thm "mod_by_0"}, - @{thm "div_by_0"}, @{thm "DIVISION_BY_ZERO"} RS conjunct1, - @{thm "DIVISION_BY_ZERO"} RS conjunct2, @{thm "zdiv_zero"}, @{thm "zmod_zero"}, - @{thm "div_0"}, @{thm "mod_0"}, @{thm "div_by_1"}, @{thm "mod_by_1"}, @{thm "div_1"}, - @{thm "mod_1"}, @{thm "Suc_eq_plus1"}] - @ @{thms add_ac} - addsimprocs [cancel_div_mod_nat_proc, cancel_div_mod_int_proc] - val splits_ss = comp_ss addsimps [@{thm "mod_div_equality'"}] addsplits - [@{thm "split_zdiv"}, @{thm "split_zmod"}, @{thm "split_div'"}, - @{thm "split_min"}, @{thm "split_max"}, @{thm "abs_split"}] -in -fun nat_to_int_tac ctxt = - simp_tac (Simplifier.context ctxt ss1) THEN_ALL_NEW - simp_tac (Simplifier.context ctxt ss2) THEN_ALL_NEW - simp_tac (Simplifier.context ctxt comp_ss); - -fun div_mod_tac ctxt i = simp_tac (Simplifier.context ctxt div_mod_ss) i; -fun splits_tac ctxt i = simp_tac (Simplifier.context ctxt splits_ss) i; -end; - - -fun core_cooper_tac ctxt = CSUBGOAL (fn (p, i) => - let - val cpth = - if !quick_and_dirty - then linzqe_oracle (Thm.cterm_of (ProofContext.theory_of ctxt) - (Envir.beta_norm (Pattern.eta_long [] (term_of (Thm.dest_arg p))))) - else arg_conv (Cooper.cooper_conv ctxt) p - val p' = Thm.rhs_of cpth - val th = implies_intr p' (equal_elim (symmetric cpth) (assume p')) - in rtac th i end - handle Cooper.COOPER _ => no_tac); - -fun finish_tac q = SUBGOAL (fn (_, i) => - (if q then I else TRY) (rtac TrueI i)); - -fun cooper_tac elim add_ths del_ths ctxt = -let val ss = Simplifier.context ctxt (fst (CooperData.get ctxt)) delsimps del_ths addsimps add_ths - val aprems = Arith_Data.get_arith_facts ctxt -in - Method.insert_tac aprems - THEN_ALL_NEW Object_Logic.full_atomize_tac - THEN_ALL_NEW CONVERSION Thm.eta_long_conversion - THEN_ALL_NEW simp_tac ss - THEN_ALL_NEW (TRY o generalize_tac (int_nat_terms ctxt)) - THEN_ALL_NEW Object_Logic.full_atomize_tac - THEN_ALL_NEW (thin_prems_tac (is_relevant ctxt)) - THEN_ALL_NEW Object_Logic.full_atomize_tac - THEN_ALL_NEW div_mod_tac ctxt - THEN_ALL_NEW splits_tac ctxt - THEN_ALL_NEW simp_tac ss - THEN_ALL_NEW CONVERSION Thm.eta_long_conversion - THEN_ALL_NEW nat_to_int_tac ctxt - THEN_ALL_NEW (core_cooper_tac ctxt) - THEN_ALL_NEW finish_tac elim -end; - -end; diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/ex/Landau.thy --- a/src/HOL/ex/Landau.thy Tue May 11 09:10:31 2010 -0700 +++ b/src/HOL/ex/Landau.thy Tue May 11 11:02:56 2010 -0700 @@ -8,8 +8,8 @@ begin text {* - We establish a preorder releation @{text "\"} on functions - from @{text "\"} to @{text "\"} such that @{text "f \ g \ f \ O(g)"}. + We establish a preorder releation @{text "\"} on functions from + @{text "\"} to @{text "\"} such that @{text "f \ g \ f \ O(g)"}. *} subsection {* Auxiliary *} @@ -175,12 +175,12 @@ text {* We would like to show (or refute) that @{text "f \ g \ f \ o(g)"}, - i.e.~@{prop "f \ g \ (\c. \n. \m>n. f m < Suc c * g m)"} but did not manage to - do so. + i.e.~@{prop "f \ g \ (\c. \n. \m>n. f m < Suc c * g m)"} but did not + manage to do so. *} -subsection {* Assert that @{text "\"} is ineed a preorder *} +subsection {* Assert that @{text "\"} is indeed a preorder *} interpretation fun_order: preorder_equiv less_eq_fun less_fun where "preorder_equiv.equiv less_eq_fun = equiv_fun" diff -r 4d4462d644ae -r 84ee370b4b1b src/HOL/ex/Summation.thy diff -r 4d4462d644ae -r 84ee370b4b1b src/Provers/blast.ML --- a/src/Provers/blast.ML Tue May 11 09:10:31 2010 -0700 +++ b/src/Provers/blast.ML Tue May 11 11:02:56 2010 -0700 @@ -1278,7 +1278,7 @@ val (depth_limit, setup_depth_limit) = Attrib.config_int_global "blast_depth_limit" (K 20); fun blast_tac cs i st = - ((DEEPEN (1, Config.get_thy (Thm.theory_of_thm st) depth_limit) + ((DEEPEN (1, Config.get_global (Thm.theory_of_thm st) depth_limit) (timing_depth_tac (start_timing ()) cs) 0) i THEN flexflex_tac) st handle TRANS s => diff -r 4d4462d644ae -r 84ee370b4b1b src/Pure/Isar/attrib.ML --- a/src/Pure/Isar/attrib.ML Tue May 11 09:10:31 2010 -0700 +++ b/src/Pure/Isar/attrib.ML Tue May 11 11:02:56 2010 -0700 @@ -355,7 +355,7 @@ | scan_value (Config.String _) = equals |-- Args.name >> Config.String; fun scan_config thy config = - let val config_type = Config.get_thy thy config + let val config_type = Config.get_global thy config in scan_value config_type >> (K o Thm.declaration_attribute o K o Config.put_generic config) end; in diff -r 4d4462d644ae -r 84ee370b4b1b src/Pure/System/isabelle_system.scala --- a/src/Pure/System/isabelle_system.scala Tue May 11 09:10:31 2010 -0700 +++ b/src/Pure/System/isabelle_system.scala Tue May 11 11:02:56 2010 -0700 @@ -318,7 +318,7 @@ val font_family = "IsabelleText" - def get_font(bold: Boolean = false, size: Int = 1): Font = + def get_font(size: Int = 1, bold: Boolean = false): Font = new Font(font_family, if (bold) Font.BOLD else Font.PLAIN, size) def install_fonts() @@ -330,7 +330,7 @@ else "$ISABELLE_HOME/lib/fonts/IsabelleText.ttf" Font.createFont(Font.TRUETYPE_FONT, platform_file(name)) } - def check_font() = get_font(false).getFamily == font_family + def check_font() = get_font().getFamily == font_family if (!check_font()) { val font = create_font(false) diff -r 4d4462d644ae -r 84ee370b4b1b src/Pure/config.ML --- a/src/Pure/config.ML Tue May 11 09:10:31 2010 -0700 +++ b/src/Pure/config.ML Tue May 11 11:02:56 2010 -0700 @@ -16,9 +16,9 @@ val get: Proof.context -> 'a T -> 'a val map: 'a T -> ('a -> 'a) -> Proof.context -> Proof.context val put: 'a T -> 'a -> Proof.context -> Proof.context - val get_thy: theory -> 'a T -> 'a - val map_thy: 'a T -> ('a -> 'a) -> theory -> theory - val put_thy: 'a T -> 'a -> theory -> theory + val get_global: theory -> 'a T -> 'a + val map_global: 'a T -> ('a -> 'a) -> theory -> theory + val put_global: 'a T -> 'a -> theory -> theory val get_generic: Context.generic -> 'a T -> 'a val map_generic: 'a T -> ('a -> 'a) -> Context.generic -> Context.generic val put_generic: 'a T -> 'a -> Context.generic -> Context.generic @@ -83,9 +83,9 @@ fun map_ctxt config f = Context.proof_map (map_generic config f); fun put_ctxt config value = map_ctxt config (K value); -fun get_thy thy = get_generic (Context.Theory thy); -fun map_thy config f = Context.theory_map (map_generic config f); -fun put_thy config value = map_thy config (K value); +fun get_global thy = get_generic (Context.Theory thy); +fun map_global config f = Context.theory_map (map_generic config f); +fun put_global config value = map_global config (K value); (* context information *) diff -r 4d4462d644ae -r 84ee370b4b1b src/Pure/library.scala --- a/src/Pure/library.scala Tue May 11 09:10:31 2010 -0700 +++ b/src/Pure/library.scala Tue May 11 11:02:56 2010 -0700 @@ -76,9 +76,11 @@ private def simple_dialog(kind: Int, default_title: String) (parent: Component, title: String, message: Any*) { - JOptionPane.showMessageDialog(parent, - message.toArray.asInstanceOf[Array[AnyRef]], - if (title == null) default_title else title, kind) + Swing_Thread.now { + JOptionPane.showMessageDialog(parent, + message.toArray.asInstanceOf[Array[AnyRef]], + if (title == null) default_title else title, kind) + } } def dialog = simple_dialog(JOptionPane.PLAIN_MESSAGE, null) _ diff -r 4d4462d644ae -r 84ee370b4b1b src/Pure/unify.ML --- a/src/Pure/unify.ML Tue May 11 09:10:31 2010 -0700 +++ b/src/Pure/unify.ML Tue May 11 11:02:56 2010 -0700 @@ -349,7 +349,7 @@ fun matchcopy thy vname = let fun mc(rbinder, targs, u, ed as (env,dpairs)) : (term * (Envir.env * dpair list))Seq.seq = let - val trace_tps = Config.get_thy thy trace_types; + val trace_tps = Config.get_global thy trace_types; (*Produce copies of uarg and cons them in front of uargs*) fun copycons uarg (uargs, (env, dpairs)) = Seq.map(fn (uarg', ed') => (uarg'::uargs, ed')) @@ -584,9 +584,9 @@ fun hounifiers (thy,env, tus : (term*term)list) : (Envir.env * (term*term)list)Seq.seq = let - val trace_bnd = Config.get_thy thy trace_bound; - val search_bnd = Config.get_thy thy search_bound; - val trace_smp = Config.get_thy thy trace_simp; + val trace_bnd = Config.get_global thy trace_bound; + val search_bnd = Config.get_global thy search_bound; + val trace_smp = Config.get_global thy trace_simp; fun add_unify tdepth ((env,dpairs), reseq) = Seq.make (fn()=> let val (env',flexflex,flexrigid) = diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/README_BUILD --- a/src/Tools/jEdit/README_BUILD Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/README_BUILD Tue May 11 11:02:56 2010 -0700 @@ -8,10 +8,10 @@ * Netbeans 6.8 http://www.netbeans.org/downloads/index.html -* Scala for Netbeans: version 6.8v1.1 - http://sourceforge.net/project/showfiles.php?group_id=192439&package_id=256544 +* Scala for Netbeans: version 6.8v1.1.0rc2 + http://wiki.netbeans.org/Scala + http://sourceforge.net/projects/erlybird/files/nb-scala/6.8v1.1.0rc2 http://blogtrader.net/dcaoyuan/category/NetBeans - http://wiki.netbeans.org/Scala * jEdit 4.3.1 or 4.3.2 http://www.jedit.org/ diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/dist-template/properties/jedit.props --- a/src/Tools/jEdit/dist-template/properties/jedit.props Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/dist-template/properties/jedit.props Tue May 11 11:02:56 2010 -0700 @@ -185,6 +185,7 @@ sidekick.complete-delay=300 sidekick.splitter.location=721 tip.show=false +twoStageSave=false view.antiAlias=standard view.blockCaret=true view.caretBlink=false diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/nbproject/build-impl.xml --- a/src/Tools/jEdit/nbproject/build-impl.xml Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/nbproject/build-impl.xml Tue May 11 11:02:56 2010 -0700 @@ -230,7 +230,7 @@ - + @@ -549,7 +549,7 @@ --> - + diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/nbproject/genfiles.properties --- a/src/Tools/jEdit/nbproject/genfiles.properties Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/nbproject/genfiles.properties Tue May 11 11:02:56 2010 -0700 @@ -4,5 +4,5 @@ # This file is used by a NetBeans-based IDE to track changes in generated files such as build-impl.xml. # Do not edit this file. You may delete it but then the IDE will never regenerate such files for you. nbproject/build-impl.xml.data.CRC32=8f41dcce -nbproject/build-impl.xml.script.CRC32=1c29c971 -nbproject/build-impl.xml.stylesheet.CRC32=8c3c03dd@1.3.4 +nbproject/build-impl.xml.script.CRC32=e3e2a5d5 +nbproject/build-impl.xml.stylesheet.CRC32=5220179f@1.3.5 diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/plugin/Isabelle.props --- a/src/Tools/jEdit/plugin/Isabelle.props Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/plugin/Isabelle.props Tue May 11 11:02:56 2010 -0700 @@ -25,8 +25,10 @@ options.isabelle.label=Isabelle options.isabelle.code=new isabelle.jedit.Isabelle_Options(); options.isabelle.logic.title=Logic -options.isabelle.font-size.title=Font Size -options.isabelle.font-size=14 +options.isabelle.relative-font-size.title=Relative Font Size +options.isabelle.relative-font-size=100 +options.isabelle.relative-margin.title=Relative Margin +options.isabelle.relative-margin=90 options.isabelle.startup-timeout=10000 #menu actions diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/src/jedit/html_panel.scala --- a/src/Tools/jEdit/src/jedit/html_panel.scala Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/src/jedit/html_panel.scala Tue May 11 11:02:56 2010 -0700 @@ -10,7 +10,7 @@ import isabelle._ import java.io.StringReader -import java.awt.{BorderLayout, Dimension} +import java.awt.{BorderLayout, Dimension, GraphicsEnvironment, Toolkit} import java.awt.event.MouseEvent import javax.swing.{JButton, JPanel, JScrollPane} @@ -40,7 +40,7 @@ class HTML_Panel( sys: Isabelle_System, - initial_font_size: Int, + font_size0: Int, relative_margin0: Int, handler: PartialFunction[HTML_Panel.Event, Unit]) extends HtmlPanel { // global logging @@ -56,6 +56,15 @@ } private def template(font_size: Int): String = + { + // re-adjustment according to org.lobobrowser.html.style.HtmlValues.getFontSize + val dpi = + if (GraphicsEnvironment.isHeadless()) 72 + else Toolkit.getDefaultToolkit().getScreenResolution() + + val size0 = font_size * dpi / 96 + val size = if (size0 * 96 / dpi == font_size) size0 else size0 + 1 + """ @@ -65,13 +74,24 @@ """ + try_file("$ISABELLE_HOME/lib/html/isabelle.css") + "\n" + try_file("$ISABELLE_HOME_USER/etc/isabelle.css") + "\n" + - "body { font-family: " + sys.font_family + "; font-size: " + font_size + "px }" + + "body { font-family: " + sys.font_family + "; font-size: " + size + "px }" + """ """ + } + + + def panel_width(font_size: Int, relative_margin: Int): Int = + { + val font = sys.get_font(font_size) + Swing_Thread.now { + val char_width = (getFontMetrics(font).stringWidth("mix") / 3) max 1 + ((getWidth() * relative_margin) / (100 * char_width)) max 20 + } + } /* actor with local state */ @@ -98,7 +118,7 @@ private val builder = new DocumentBuilderImpl(ucontext, rcontext) - private case class Init(font_size: Int) + private case class Init(font_size: Int, relative_margin: Int) private case class Render(body: List[XML.Tree]) private val main_actor = actor { @@ -106,9 +126,15 @@ var doc1: org.w3c.dom.Document = null var doc2: org.w3c.dom.Document = null + var current_font_size = 16 + var current_relative_margin = 90 + loop { react { - case Init(font_size) => + case Init(font_size, relative_margin) => + current_font_size = font_size + current_relative_margin = relative_margin + val src = template(font_size) def parse() = builder.parse(new InputSourceImpl(new StringReader(src), "http://localhost")) @@ -118,7 +144,9 @@ case Render(body) => val doc = doc2 - val html_body = Pretty.formatted(body).map(t => XML.elem(HTML.PRE, HTML.spans(t))) + val html_body = + Pretty.formatted(body, panel_width(current_font_size, current_relative_margin)) + .map(t => XML.elem(HTML.PRE, HTML.spans(t))) val node = XML.document_node(doc, XML.elem(HTML.BODY, html_body)) doc.removeChild(doc.getLastChild()) doc.appendChild(node) @@ -131,11 +159,11 @@ } } - main_actor ! Init(initial_font_size) - /* main method wrappers */ - def init(font_size: Int) { main_actor ! Init(font_size) } + def init(font_size: Int, relative_margin: Int) { main_actor ! Init(font_size, relative_margin) } def render(body: List[XML.Tree]) { main_actor ! Render(body) } + + init(font_size0, relative_margin0) } diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/src/jedit/isabelle_options.scala --- a/src/Tools/jEdit/src/jedit/isabelle_options.scala Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/src/jedit/isabelle_options.scala Tue May 11 11:02:56 2010 -0700 @@ -15,7 +15,8 @@ class Isabelle_Options extends AbstractOptionPane("isabelle") { private val logic_name = new JComboBox() - private val font_size = new JSpinner() + private val relative_font_size = new JSpinner() + private val relative_margin = new JSpinner() private class List_Item(val name: String, val descr: String) { def this(name: String) = this(name, name) @@ -36,18 +37,26 @@ logic_name }) - addComponent(Isabelle.Property("font-size.title"), { - font_size.setValue(Isabelle.Int_Property("font-size")) - font_size + addComponent(Isabelle.Property("relative-font-size.title"), { + relative_font_size.setValue(Isabelle.Int_Property("relative-font-size")) + relative_font_size + }) + + addComponent(Isabelle.Property("relative-margin.title"), { + relative_margin.setValue(Isabelle.Int_Property("relative-margin")) + relative_margin }) } override def _save() { - val logic = logic_name.getSelectedItem.asInstanceOf[List_Item].name - Isabelle.Property("logic") = logic + Isabelle.Property("logic") = + logic_name.getSelectedItem.asInstanceOf[List_Item].name - val size = font_size.getValue().asInstanceOf[Int] - Isabelle.Int_Property("font-size") = size + Isabelle.Int_Property("relative-font-size") = + relative_font_size.getValue().asInstanceOf[Int] + + Isabelle.Int_Property("relative-margin") = + relative_margin.getValue().asInstanceOf[Int] } } diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/src/jedit/output_dockable.scala --- a/src/Tools/jEdit/src/jedit/output_dockable.scala Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/src/jedit/output_dockable.scala Tue May 11 11:02:56 2010 -0700 @@ -24,8 +24,9 @@ if (position == DockableWindowManager.FLOATING) setPreferredSize(new Dimension(500, 250)) - private val html_panel = - new HTML_Panel(Isabelle.system, Isabelle.Int_Property("font-size"), null) + val html_panel = + new HTML_Panel(Isabelle.system, + Isabelle.font_size(), Isabelle.Int_Property("relative-margin"), null) add(html_panel, BorderLayout.CENTER) @@ -43,7 +44,7 @@ } case Session.Global_Settings => - html_panel.init(Isabelle.Int_Property("font-size")) + html_panel.init(Isabelle.font_size(), Isabelle.Int_Property("relative-margin")) case bad => System.err.println("output_actor: ignoring bad message " + bad) } diff -r 4d4462d644ae -r 84ee370b4b1b src/Tools/jEdit/src/jedit/plugin.scala --- a/src/Tools/jEdit/src/jedit/plugin.scala Tue May 11 09:10:31 2010 -0700 +++ b/src/Tools/jEdit/src/jedit/plugin.scala Tue May 11 11:02:56 2010 -0700 @@ -42,22 +42,37 @@ object Property { - def apply(name: String): String = jEdit.getProperty(OPTION_PREFIX + name) - def update(name: String, value: String) = jEdit.setProperty(OPTION_PREFIX + name, value) + def apply(name: String): String = + jEdit.getProperty(OPTION_PREFIX + name) + def apply(name: String, default: String): String = + jEdit.getProperty(OPTION_PREFIX + name, default) + def update(name: String, value: String) = + jEdit.setProperty(OPTION_PREFIX + name, value) } object Boolean_Property { - def apply(name: String): Boolean = jEdit.getBooleanProperty(OPTION_PREFIX + name) - def update(name: String, value: Boolean) = jEdit.setBooleanProperty(OPTION_PREFIX + name, value) + def apply(name: String): Boolean = + jEdit.getBooleanProperty(OPTION_PREFIX + name) + def apply(name: String, default: Boolean): Boolean = + jEdit.getBooleanProperty(OPTION_PREFIX + name, default) + def update(name: String, value: Boolean) = + jEdit.setBooleanProperty(OPTION_PREFIX + name, value) } object Int_Property { - def apply(name: String): Int = jEdit.getIntegerProperty(OPTION_PREFIX + name) - def update(name: String, value: Int) = jEdit.setIntegerProperty(OPTION_PREFIX + name, value) + def apply(name: String): Int = + jEdit.getIntegerProperty(OPTION_PREFIX + name) + def apply(name: String, default: Int): Int = + jEdit.getIntegerProperty(OPTION_PREFIX + name, default) + def update(name: String, value: Int) = + jEdit.setIntegerProperty(OPTION_PREFIX + name, value) } + def font_size(): Int = + (jEdit.getIntegerProperty("view.fontsize", 16) * Int_Property("relative-font-size", 100)) / 100 + /* settings */