# HG changeset patch # User hoelzl # Date 1322744637 -3600 # Node ID 852597248663e4f9326aa9615c1a5842edfc21c9 # Parent a2c32e196d49d507b817431f6a8176cab1bb5fd4 moved theorems about distribution to the definition; removed oopsed-lemma diff -r a2c32e196d49 -r 852597248663 src/HOL/Probability/Information.thy --- a/src/HOL/Probability/Information.thy Thu Dec 01 14:03:57 2011 +0100 +++ b/src/HOL/Probability/Information.thy Thu Dec 01 14:03:57 2011 +0100 @@ -1009,17 +1009,6 @@ by (simp add: setsum_cartesian_product' distribution_remove_const) qed -lemma (in prob_space) distribution_unit[simp]: "distribution (\x. ()) {()} = 1" - unfolding distribution_def using prob_space by auto - -lemma (in prob_space) joint_distribution_unit[simp]: "distribution (\x. (X x, ())) {(a, ())} = distribution X {a}" - unfolding distribution_def by (auto intro!: arg_cong[where f=\']) - -lemma (in prob_space) setsum_distribution: - assumes X: "finite_random_variable MX X" shows "(\a\space MX. distribution X {a}) = 1" - using setsum_joint_distribution[OF assms, of "\ space = UNIV, sets = Pow UNIV \" "\x. ()" "{()}"] - using sigma_algebra_Pow[of "UNIV::unit set" "()"] by simp - lemma (in information_space) conditional_mutual_information_generic_positive: assumes X: "finite_random_variable MX X" and Y: "finite_random_variable MY Y" and Z: "finite_random_variable MZ Z" shows "0 \ conditional_mutual_information b MX MY MZ X Y Z" diff -r a2c32e196d49 -r 852597248663 src/HOL/Probability/Probability_Measure.thy --- a/src/HOL/Probability/Probability_Measure.thy Thu Dec 01 14:03:57 2011 +0100 +++ b/src/HOL/Probability/Probability_Measure.thy Thu Dec 01 14:03:57 2011 +0100 @@ -70,6 +70,12 @@ "joint_distribution X X {(x, x)} = distribution X {x}" unfolding distribution_def by (auto intro!: arg_cong[where f=\']) +lemma (in prob_space) distribution_unit[simp]: "distribution (\x. ()) {()} = 1" + unfolding distribution_def using prob_space by auto + +lemma (in prob_space) joint_distribution_unit[simp]: "distribution (\x. (X x, ())) {(a, ())} = distribution X {a}" + unfolding distribution_def by (auto intro!: arg_cong[where f=\']) + lemma (in prob_space) not_empty: "space M \ {}" using prob_space empty_measure' by auto @@ -743,6 +749,11 @@ finite_random_variableD[OF Y(1)] finite_random_variable_imp_sets[OF Y]] by simp +lemma (in prob_space) setsum_distribution: + assumes X: "finite_random_variable MX X" shows "(\a\space MX. distribution X {a}) = 1" + using setsum_joint_distribution[OF assms, of "\ space = UNIV, sets = Pow UNIV \" "\x. ()" "{()}"] + using sigma_algebra_Pow[of "UNIV::unit set" "()"] by simp + locale pair_finite_prob_space = M1: finite_prob_space M1 + M2: finite_prob_space M2 for M1 M2 sublocale pair_finite_prob_space \ pair_prob_space M1 M2 by default diff -r a2c32e196d49 -r 852597248663 src/HOL/Probability/ex/Koepf_Duermuth_Countermeasure.thy --- a/src/HOL/Probability/ex/Koepf_Duermuth_Countermeasure.thy Thu Dec 01 14:03:57 2011 +0100 +++ b/src/HOL/Probability/ex/Koepf_Duermuth_Countermeasure.thy Thu Dec 01 14:03:57 2011 +0100 @@ -75,13 +75,6 @@ qed qed -lemma (in prob_space) - assumes "finite (X`space M)" - shows "bij_betw (ordered_variable_partition X) {0..i j. \ i < card (X`space M) ; j < card (X`space M) ; i \ j \ \ - distribution X {ordered_variable_partition X i} \ distribution X {ordered_variable_partition X j}" - oops - definition (in prob_space) "order_distribution X i = real (distribution X {ordered_variable_partition X i})"