# HG changeset patch # User ballarin # Date 1190134337 -7200 # Node ID 85a6c200ecd39d6cee3f73eeb170bc3868c29c88 # Parent 9b73bc9b05a1718a4cc45375c6fc7ba3342f68fd Simplified proofs due to transitivity reasoner setup. diff -r 9b73bc9b05a1 -r 85a6c200ecd3 src/HOL/Dense_Linear_Order.thy --- a/src/HOL/Dense_Linear_Order.thy Tue Sep 18 18:51:07 2007 +0200 +++ b/src/HOL/Dense_Linear_Order.thy Tue Sep 18 18:52:17 2007 +0200 @@ -232,15 +232,8 @@ from fU neU have th2: "?MU \ U" and th2': "\u\U. ?MU \ u" by auto from th1 th2 H have "?ML \ ?MU" by auto with dense obtain w where th3: "?ML \ w" and th4: "w \ ?MU" by blast - from th3 th1' have "\l \ L. l \ w" - apply auto - apply (erule_tac x="l" in ballE) - by (auto intro: le_less_trans) - - moreover from th4 th2' have "\u \ U. w \ u" - apply auto - apply (erule_tac x="u" in ballE) - by (auto intro: less_le_trans) + from th3 th1' have "\l \ L. l \ w" by auto + moreover from th4 th2' have "\u \ U. w \ u" by auto ultimately show "\x. (\y\L. y \<^loc>< x) \ (\y\U. x \<^loc>< y)" by auto qed diff -r 9b73bc9b05a1 -r 85a6c200ecd3 src/HOL/Lattices.thy --- a/src/HOL/Lattices.thy Tue Sep 18 18:51:07 2007 +0200 +++ b/src/HOL/Lattices.thy Tue Sep 18 18:52:17 2007 +0200 @@ -289,8 +289,7 @@ fix x y z show "max x (min y z) = min (max x y) (max x z)" unfolding min_def max_def - by (auto simp add: intro: antisym, unfold not_le, - auto intro: less_trans le_less_trans aux) + by auto qed (auto simp add: min_def max_def not_le less_imp_le) interpretation min_max: diff -r 9b73bc9b05a1 -r 85a6c200ecd3 src/HOL/List.thy --- a/src/HOL/List.thy Tue Sep 18 18:51:07 2007 +0200 +++ b/src/HOL/List.thy Tue Sep 18 18:52:17 2007 +0200 @@ -2509,7 +2509,6 @@ lemma sorted_insort: "sorted (insort x xs) = sorted xs" apply (induct xs) apply(auto simp:sorted_Cons set_insort not_le less_imp_le) -apply(blast intro:order_trans) done theorem sorted_sort[simp]: "sorted (sort xs)"