# HG changeset patch # User haftmann # Date 1267633307 -3600 # Node ID 85aada96578b23a89dab9ff4716c15a143c0306d # Parent e2bc7f8d8d51159a74949ebc68a535a85772aa5e tuned whitespace diff -r e2bc7f8d8d51 -r 85aada96578b src/HOL/Nat_Transfer.thy --- a/src/HOL/Nat_Transfer.thy Wed Mar 03 17:21:45 2010 +0100 +++ b/src/HOL/Nat_Transfer.thy Wed Mar 03 17:21:47 2010 +0100 @@ -25,7 +25,7 @@ lemma TransferMorphism_nat_int: "TransferMorphism nat (op <= (0::int))" by (simp add: TransferMorphism_def) -declare TransferMorphism_nat_int[transfer +declare TransferMorphism_nat_int [transfer add mode: manual return: nat_0_le labels: natint @@ -80,7 +80,7 @@ (nat (x::int) dvd nat y) = (x dvd y)" by (auto simp add: zdvd_int) -declare TransferMorphism_nat_int[transfer add return: +declare TransferMorphism_nat_int [transfer add return: transfer_nat_int_numerals transfer_nat_int_functions transfer_nat_int_function_closures @@ -118,7 +118,7 @@ (EX x. Q x \ P x) = (EX x. Q x \ P' x)" by auto -declare TransferMorphism_nat_int[transfer add +declare TransferMorphism_nat_int [transfer add return: transfer_nat_int_quantifiers cong: all_cong ex_cong] @@ -190,7 +190,7 @@ {(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}" by auto -declare TransferMorphism_nat_int[transfer add +declare TransferMorphism_nat_int [transfer add return: transfer_nat_int_set_functions transfer_nat_int_set_function_closures transfer_nat_int_set_relations @@ -262,7 +262,7 @@ apply (subst setprod_cong, assumption, auto) done -declare TransferMorphism_nat_int[transfer add +declare TransferMorphism_nat_int [transfer add return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2 transfer_nat_int_sum_prod_closure cong: transfer_nat_int_sum_prod_cong] @@ -275,7 +275,7 @@ lemma TransferMorphism_int_nat: "TransferMorphism int (UNIV :: nat set)" by (simp add: TransferMorphism_def) -declare TransferMorphism_int_nat[transfer add +declare TransferMorphism_int_nat [transfer add mode: manual (* labels: int-nat *) return: nat_int @@ -326,7 +326,7 @@ "(int x dvd int y) = (x dvd y)" by (auto simp add: zdvd_int) -declare TransferMorphism_int_nat[transfer add return: +declare TransferMorphism_int_nat [transfer add return: transfer_int_nat_numerals transfer_int_nat_functions transfer_int_nat_function_closures @@ -346,7 +346,7 @@ apply auto done -declare TransferMorphism_int_nat[transfer add +declare TransferMorphism_int_nat [transfer add return: transfer_int_nat_quantifiers] @@ -401,7 +401,7 @@ {(x::nat). P x} = {x. P' x}" by auto -declare TransferMorphism_int_nat[transfer add +declare TransferMorphism_int_nat [transfer add return: transfer_int_nat_set_functions transfer_int_nat_set_function_closures transfer_int_nat_set_relations @@ -433,7 +433,7 @@ apply (subst int_setprod, auto simp add: cong: setprod_cong) done -declare TransferMorphism_int_nat[transfer add +declare TransferMorphism_int_nat [transfer add return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2 cong: setsum_cong setprod_cong]