# HG changeset patch # User haftmann # Date 1216964153 -7200 # Node ID 85ea2be46c714d5fcdea39fabf28fb6bd898b579 # Parent 646ea25ff59d6bae45ece05918d8097d401c0aa4 dropped locale (open) diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/AC15_WO6.thy --- a/src/ZF/AC/AC15_WO6.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/AC15_WO6.thy Fri Jul 25 07:35:53 2008 +0200 @@ -20,7 +20,9 @@ Rubin & Rubin do. *) -theory AC15_WO6 imports HH Cardinal_aux begin +theory AC15_WO6 +imports HH Cardinal_aux +begin (* ********************************************************************** *) diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/AC16_WO4.thy --- a/src/ZF/AC/AC16_WO4.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/AC16_WO4.thy Fri Jul 25 07:35:53 2008 +0200 @@ -7,7 +7,9 @@ Tidied (using locales) by LCP *) -theory AC16_WO4 imports AC16_lemmas begin +theory AC16_WO4 +imports AC16_lemmas +begin (* ********************************************************************** *) (* The case of finite set *) @@ -202,8 +204,7 @@ by (blast intro: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans] succ_lepoll_natE) - -locale (open) AC16 = +locale AC16 = fixes x and y and k and l and m and t_n and R and MM and LL and GG and s defines k_def: "k == succ(l)" and MM_def: "MM == {v \ t_n. succ(k) \ v Int y}" @@ -558,9 +559,11 @@ (* The main theorem AC16(n, k) ==> WO4(n-k) *) (* ********************************************************************** *) +term AC16 + theorem AC16_WO4: - "[| AC16(k #+ m, k); 0 < k; 0 < m; k \ nat; m \ nat |] ==> WO4(m)" -apply (unfold AC16_def WO4_def) + "[| AC_Equiv.AC16(k #+ m, k); 0 < k; 0 < m; k \ nat; m \ nat |] ==> WO4(m)" +apply (unfold AC_Equiv.AC16_def WO4_def) apply (rule allI) apply (case_tac "Finite (A)") apply (rule lemma1, assumption+) @@ -569,7 +572,7 @@ apply (erule_tac x = "A Un y" in allE) apply (frule infinite_Un, drule mp, assumption) apply (erule zero_lt_natE, assumption, clarify) -apply (blast intro: AC16.conclusion) +apply (blast intro: AC16.conclusion [OF AC16.intro]) done end diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/AC16_lemmas.thy --- a/src/ZF/AC/AC16_lemmas.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/AC16_lemmas.thy Fri Jul 25 07:35:53 2008 +0200 @@ -5,7 +5,9 @@ Lemmas used in the proofs concerning AC16 *) -theory AC16_lemmas imports AC_Equiv Hartog Cardinal_aux begin +theory AC16_lemmas +imports AC_Equiv Hartog Cardinal_aux +begin lemma cons_Diff_eq: "a\A ==> cons(a,A)-{a}=A" by fast diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/AC17_AC1.thy --- a/src/ZF/AC/AC17_AC1.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/AC17_AC1.thy Fri Jul 25 07:35:53 2008 +0200 @@ -8,7 +8,9 @@ to AC0 and AC1. *) -theory AC17_AC1 imports HH begin +theory AC17_AC1 +imports HH +begin (** AC0 is equivalent to AC1. diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/AC18_AC19.thy --- a/src/ZF/AC/AC18_AC19.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/AC18_AC19.thy Fri Jul 25 07:35:53 2008 +0200 @@ -5,7 +5,9 @@ The proof of AC1 ==> AC18 ==> AC19 ==> AC1 *) -theory AC18_AC19 imports AC_Equiv begin +theory AC18_AC19 +imports AC_Equiv +begin definition uu :: "i => i" where diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/AC7_AC9.thy --- a/src/ZF/AC/AC7_AC9.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/AC7_AC9.thy Fri Jul 25 07:35:53 2008 +0200 @@ -6,7 +6,9 @@ instances of AC. *) -theory AC7_AC9 imports AC_Equiv begin +theory AC7_AC9 +imports AC_Equiv +begin (* ********************************************************************** *) (* Lemmas used in the proofs AC7 ==> AC6 and AC9 ==> AC1 *) diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/AC_Equiv.thy --- a/src/ZF/AC/AC_Equiv.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/AC_Equiv.thy Fri Jul 25 07:35:53 2008 +0200 @@ -12,7 +12,9 @@ but slightly changed. *) -theory AC_Equiv imports Main begin (*obviously not Main_ZFC*) +theory AC_Equiv +imports Main +begin (*obviously not Main_ZFC*) (* Well Ordering Theorems *) diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/DC.thy --- a/src/ZF/AC/DC.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/DC.thy Fri Jul 25 07:35:53 2008 +0200 @@ -5,7 +5,9 @@ The proofs concerning the Axiom of Dependent Choice *) -theory DC imports AC_Equiv Hartog Cardinal_aux begin +theory DC +imports AC_Equiv Hartog Cardinal_aux +begin lemma RepFun_lepoll: "Ord(a) ==> {P(b). b \ a} \ a" apply (unfold lepoll_def) @@ -95,7 +97,7 @@ transrec(b, %c r. THE x. first(x, {x \ X. \ R}, Q))" -locale (open) DC0_imp = +locale DC0_imp = fixes XX and RR and X and R assumes all_ex: "\Y \ Pow(X). Y \ nat --> (\x \ X. \ R)" @@ -237,16 +239,16 @@ apply (elim allE) apply (erule impE) (*these three results comprise Lemma 1*) -apply (blast intro!: DC0_imp.lemma1_1 DC0_imp.lemma1_2 DC0_imp.lemma1_3) +apply (blast intro!: DC0_imp.lemma1_1 [OF DC0_imp.intro] DC0_imp.lemma1_2 [OF DC0_imp.intro] DC0_imp.lemma1_3 [OF DC0_imp.intro]) apply (erule bexE) apply (rule_tac x = "\n \ nat. f`succ (n) `n" in rev_bexI) - apply (rule lam_type, blast dest!: DC0_imp.lemma2 intro: fun_weaken_type) + apply (rule lam_type, blast dest!: DC0_imp.lemma2 [OF DC0_imp.intro] intro: fun_weaken_type) apply (rule oallI) -apply (frule DC0_imp.lemma2, assumption) +apply (frule DC0_imp.lemma2 [OF DC0_imp.intro], assumption) apply (blast intro: fun_weaken_type) apply (erule ltD) (** LEVEL 11: last subgoal **) -apply (subst DC0_imp.lemma3, assumption+) +apply (subst DC0_imp.lemma3 [OF DC0_imp.intro], assumption+) apply (fast elim!: fun_weaken_type) apply (erule ltD) apply (force simp add: lt_def) @@ -293,7 +295,7 @@ done -locale (open) imp_DC0 = +locale imp_DC0 = fixes XX and RR and x and R and f and allRR defines XX_def: "XX == (\n \ nat. {f \ succ(n)->domain(R). \k \ n. \ R})" diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/HH.thy --- a/src/ZF/AC/HH.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/HH.thy Fri Jul 25 07:35:53 2008 +0200 @@ -8,7 +8,9 @@ AC15 ==> WO6 *) -theory HH imports AC_Equiv Hartog begin +theory HH +imports AC_Equiv Hartog +begin definition HH :: "[i, i, i] => i" where diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/Hartog.thy --- a/src/ZF/AC/Hartog.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/Hartog.thy Fri Jul 25 07:35:53 2008 +0200 @@ -5,7 +5,9 @@ Hartog's function. *) -theory Hartog imports AC_Equiv begin +theory Hartog +imports AC_Equiv +begin definition Hartog :: "i => i" where diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/WO1_AC.thy --- a/src/ZF/AC/WO1_AC.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/WO1_AC.thy Fri Jul 25 07:35:53 2008 +0200 @@ -25,7 +25,9 @@ *) -theory WO1_AC imports AC_Equiv begin +theory WO1_AC +imports AC_Equiv +begin (* ********************************************************************** *) (* WO1 ==> AC1 *) diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/WO1_WO7.thy --- a/src/ZF/AC/WO1_WO7.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/WO1_WO7.thy Fri Jul 25 07:35:53 2008 +0200 @@ -9,7 +9,9 @@ Also, WO1 <-> WO8 *) -theory WO1_WO7 imports AC_Equiv begin +theory WO1_WO7 +imports AC_Equiv +begin definition "LEMMA == diff -r 646ea25ff59d -r 85ea2be46c71 src/ZF/AC/WO6_WO1.thy --- a/src/ZF/AC/WO6_WO1.thy Mon Jul 21 16:30:49 2008 +0200 +++ b/src/ZF/AC/WO6_WO1.thy Fri Jul 25 07:35:53 2008 +0200 @@ -11,7 +11,9 @@ Fortunately order types made this proof also very easy. *) -theory WO6_WO1 imports Cardinal_aux begin +theory WO6_WO1 +imports Cardinal_aux +begin (* Auxiliary definitions used in proof *) definition